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PREFACE

Phosphorus is the second member of the nitrogen family of elements. Its
atomic number is 15 and its atomic weight is 30.9738. Phosphorus was
discovered in 1669 by the German alchemist Hennig Brandt from a residue
of evaporated urine during his search for the elusive philosophers' stone. The
name phosphorus comes from the Greek "phosphoros" which means "light-
bringing" and was given to the element because of its spontaneous ignition
in air. Phosphorus forms the basis of a very large number of compounds, the
most important class of which are the phosphates. For every form of living
plant or animal cell, phosphates play an essential role. The importance of
phosphorus in the metabolism of human osseous and nonosseous tissues has
been well established long ago.

Since its publication in 1979, Helen and her late husband Harold Har-
rison's book Disorders of Calcium and Phosphate Metabolism in Childhood
and Adolescence has served as the reference book for mineral disorders in
the pediatric age group. With the explosion of information regarding mineral
metabolism during the past quarter century, we felt that the time had come
for a new book on these issues. In order to provide state-of-the-art, up-to-
date coverage within the frame of a concise format, we elected to concentrate,
in this book, mainly on phosphate metabolism. Nonetheless, because of the
close interaction between calcium and phosphate, the book also covers ex-
tensive aspects of calcium metabolism and disorders related to calcium ho-
meostasis. We hope that this book will serve as a guide and a standard
reference in the years to come to all those interested in the intriguing fields
of physiology, pathophysiology, and clinical aspects of mineral metabolism
in childhood.

Our task could not have been accomplished without the help of our
colleagues and friends who combined forces with us in writing this book. We
are very much obliged to all of them for their much appreciated contributions.

Uri Alon, M.D.
Kansas City, Missouri
James C. M. Chan, M.D.
Richmond, Virginia
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2 Phosphate in Pediatric Health and Disease

I. INTRODUCTION

Phosphorus is one of the most important inorganic elements, second only
to calcium in abundance in the human body. In humans, approximately 85%
of the total body phosphorus is in bones, 14% in cells and soft tissues, and
1% in extracellular fluids. The phosphorus contained in bone is in the mineral
phase as inorganic orthophosphate and small amounts of inorganic phosphate.
In soft tissue and cell membranes, phosphorus exists mainly as phosphate
esters and to a lesser extent as phosphoproteins and free phosphate ions. In
extracellular fluid, about one tenth of the phosphorus content is bound to
proteins, one third is complexed to sodium, calcium, and magnesium, and
the remainder is present as inorganic phosphate. In biological systems, phos-
phorus is present as phosphate, and these two terms are used interchangeably
in this chapter.

Plasma phosphate and intracellular phosphate have diverse functions.
They take part in the formation of hydroxyapatite, the basic crystalline struc-
ture present in bone. Additionally, they are essential for the process of bone
mineralization. Phosphate serves a vital role in the intermediary metabolism
of carbohydrates, lipids, and proteins. It functions as a cofactor in enzyme
systems and is of paramount importance in the formation of high energy
phosphate compounds. As a component of genetic materials, phosphate is an
essential part of the nucleic acid in chromosomes and ribosomes. Phospho-
lipids are major structural constituents of cell membranes and intracellular
organelles. Phosphate plays a critical role in secondary messenger systems
such as cAMP and phosphatidylinositol, which act as important secondary
messengers that mediate the intracellular effects of various hormones, neu-
rotransmitters, and growth factors. Another important phosphate-containing
compound, diphosphoglycerate, plays a crucial role in oxygen availability/
delivery to the tissue. Phosphate aids in regulating body fluid pH and in
modifying the effects of the B vitamins.

The normal plasma inorganic phosphate concentration ranges between
2.5 and 4.5 mg/dl in adults and between 4.0 and 6.5 mg/dl in children (Chapter
6). The concentration of plasma phosphate varies with dietary phosphate
intake, age and stage of growth, time of day, hormonal effects, and renal
function. Of the total plasma phosphate 88% is ultrafilterable. At pH 7.4,
85% of the ultrafilterable phosphate is in the form of monohydrogen phos-
phate, and the remainder exists mainly as dihydrogen phosphate. Circulating
phosphate is in equilibrium with skeletal and cellular inorganic phosphate as
well as with the organic phosphate formed through the processes of cellular
metabolism. The concentration of inorganic phosphate in the extracellular
fluid is an important factor influencing the mineralization of the skeleton and
cell growth. Inorganic phosphate is a partial determinant of the concentration
of cellular phosphoric esters such as 2,3-diphosphoglycerate in the blood cells
and adenosine triphosphate (ATP) in other cells.
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II. PHOSPHATE HOMEOSTASIS

Phosphate homeostasis denotes a balance between intestinal absorption,
bone resorption, and renal reabsorption of filtered phosphate. Phosphate ho-
meostasis is achieved by hormonal regulation of the factors that affect phos-
phate metabolism in the small intestine, kidney, and bone. The small intestine
determines the rate of absorption of dietary phosphate. The kidney is the site
of phosphate conservation through controlled reabsorption and excretion
(Chapter 2). The bones serve as the major reservoir of phosphate.

III. INTESTINAL PHOSPHATE ABSORPTION

Absorption of phosphate in humans occurs throughout the small intestine.
The jejunum is the most active absorptive site, although phosphate is also
readily absorbed in the duodenum. The ileum is the least efficient in the
absorption of phosphate.1 Most phosphate is absorbed in its inorganic form.
Organically bound phosphate is promptly hydrolyzed enzymatically in the
intestinal lumen and released as inorganic phosphate. Intestinal absorption of
phosphate occurs by two mechanisms: (1) passively by a linear concentration-
dependent process, and (2) actively by a sodium gradient-driven phosphate
transfer. It has been well established that the sodium electrochemical gradient
across the brush-border membrane provides the driving force for active ac-
cumulation of phosphate into the cell.23 A sodium-dependent transport system
energized by ATP was detected in basolateral membrane vesicles from the
human small intestine.4 This active transport system can be enhanced by
calcitriol (1,25(OH)2D3) and shows a linear relationship to the luminal sodium
concentration.5

Many factors influence the intestinal absorption of phosphate. Hormones,
dietary phosphate intake, age, and other substances in the intestinal lumen
all regulate absorption of intestinal phosphate.

The major hormonal control of intestinal phosphate is through vitamin
D, especially its metabolite, 1,25(OH)2D3. Calcitriol directly stimulates in-
testinal absorption of phosphate.6~9 The mode by which vitamin D exerts this
effect has been shown to be activation of sodium (Na+)-dependent phosphate
transport through enhancement of the acceleration to maximum velocity (Vm)
of the carrier system.3'10'12 Data obtained from experiments with cultured
embryonic chick jejunum showed that the effect of 1,25(OH)2D3 on Na+-
dependent phosphate absorption was through its influence on the rate of Na+

gradient-driven phosphate accumulation in brush-border membrane vesi-
cles.13'14 This 1,25(OH)2D3 induction of Na+-dependent phosphate transport
can be potentiated by thyroid hormones.15 Triiodothyronine enhances the Na+

gradient-driven phosphate translocation across the luminal plasma membrane
of enterocytes.15 Glucocorticoids are capable of stimulating vitamin D-in-
dependent phosphate uptake by embyronic chick duodenum, and similar to
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thyroid hormones they synergistically enhance 1,25(OH)2D3-dependent phos-
phate uptake.16'17 Insulin can also modulate the action of vitamin D on Na+-
dependent phosphate transport in enterocytes. This occurs through enhance-
ment of vitamin D-dependent phosphate uptake. Conversely, insulin alone
has no effect.18 Parathyroid hormone (PTH) stimulates the synthesis of
1,25(OH)2D3 in the kidney; thus, it exerts an indirect effect enhancing intes-
tinal phosphate absorption. There is no evidence for direct action of PTH on
intestinal Na+-dependent phosphate transport.11'19

Phosphate availability and the stress of growth are known to affect phos-
phate absorption independent of vitamin D regulation.20 Balance studies in
the rat have demonstrated that net phosphate absorption is linearly related to
dietary phosphorus.21 A similar linear relationship has also been observed in
normal humans.22 Active phosphate absorption has been demonstrated in the
intestine of young vitamin D3-deficient rats.

In addition to phosphate availability, age is also known to influence
phosphate absorption, both dependent upon and independent of vitamin D3

regulation. Increasing phosphate concentration in the intestinal lumen en-
hances jejunal phosphate absorptive flux in vitamin D-deficient rats.20 In
vitamin D3- or 1,25(OH)2D3-repleted rats, phosphate depletion has a profound
stimulatory effect on active phosphate absorption.21 A low phosphorus diet
also increases Na+-dependent phosphate uptake by the brush-border mem-
brane vesicles.22"24

Phosphate uptake declines significantly in the duodenum and jejunum
with increasing age in the rat.25 This age-related decline in phosphate uptake
is restricted to the Na+-dependent component but not in the Na+-independent
component. This decline in the gut absorption of phosphate parallels the
decrease in serum 1,25(OH)2D3 with age.26 Intestinal vitamin D receptors
decrease with age as well and this may be related to the decrease in phosphate
absorption.27

Other dietary factors such as sodium, potassium, and calcium may also
impact on the absorption of phosphate. Increased sodium and potassium con-
centrations in the intestinal lumen promote the transport of phosphate.3-28-29

Calcium may affect intestinal absorption of phosphate both directly and in-
directly. Excess calcium in the gastrointestinal tract may elevate the calcium-
phosphate ratio to greater than 3, and may directly interact with phosphate
to form nonabsorbable complexes, thus reducing the bioavailability of phos-
phate.23 Calcium exerts an indirect effect mediated through its influence on
vitamin D metabolism.30 Consumption of a low calcium diet increases jejunal
phosphate absorption in both young and adult rats.25 The mechanism respon-
sible for such an adaptation is not clear, but appears to be independent of the
circulating concentration of 1,25(OH)2D3 in the adult rats.26
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IV. PHOSPHATE AND BONE

Bone is the reservoir of phosphate that may replenish blood phosphate
by resorption.31 Bone resorption is mediated by 1,25(OH)2D3 and PTH that
stimulate mobilization of bone calcium and phosphate to normalize the blood
concentrations of these two minerals. Serum and dietary inorganic phosphorus
play a highly significant role in the regulation of 25-OH-D3-la-hydroxylase
activity in the renal tissue. This enzyme in turn regulates the conversion of
vitamin D to its metabolically active form. Phosphate depletion stimulates
the activity of 25-hydroxyvitamin D3-la-hydroxylase (Chapter 3). When serum
inorganic phosphorus level is normal, the predominant enzyme form is
25(OH)D3-24-hydroxylase as has been shown in thyroparathyroidectomized
rats fed an adequate phosphate and calcium diet.32 The metabolite 24,25(OH)2D3

is thought to be essential for bone formation and thus removal of phosphate
from the plasma into the bone.33

Biological mineralization of the cartilage and bone is an extracellular
event occurring in the extracellular matrices of these tissues. Cartilage and
bone contain varying amounts of type 1 and type 5 collagen within their
matrices that serve as a support structure for the process of mineralization
that occurs both within the collagen fibrils and external to them in the ground
substance.33'34 It seems that a number of factors operate synergistically or
interchangeably to initiate the process of mineralization. In immature bone
and cartilage where the initial stages of mineralization take place, matrix
vesicles are present and are situated at varying distances from the direct site
of mineralization. These vesicles originate by pinching off from the plasma
membrane of cells producing the mineralized tissue, such as the osteoblast.
Once formed, the loaded vesicles containing calcium, phosphorus, alkaline
phosphatase, and varying enzymes migrate to the predestined site of mineral
deposition and expel their contents, increasing the local concentration of
mineral, possibly increasing the calcium x phosphorus product sufficiently
to initiate the first-formed solid phase of bone formation. Although the exact
characteristics of this first-formed solid phase, whether amorphous or crys-
talline, are not known, it is widely accepted that amorphous calcium-phosphate
(Ca^POJg) present in early mineralization undergoes progressive transfor-
mation into a crystalline structure resulting in hydroxyapatite, the final mineral
deposite in bone. This process of crystallization is dependent upon the local
calcium-phosphorus product, also known as [Ca2+] x [Pi] ion product (Pi
denotes total free inorganic orthophosphate, HPO4

2~, H2PO4~, and PO4
3~).34

The initiator that operates to raise this ion product, whether local or systemic,35

remains elusive. The increase in the ion product causes calcium and phosphate
to separate out of the solid phase and then to undergo solid phase transition
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and interconversion to a host of alternate crystalline structures resulting ul-
timately in hydroxyapatite deposition.

Intermediate stages in the association between calcium and phosphorus
in the process of mineral deposition exist, as shown by the recently developed
technique of electron spectroscopic imaging.36 This analytical technique al-
lows the chemical nature of the elements seen in standard transmission electron
microscopy (TEM) to be analyzed and superimposed onto the TEM image.
Analysis of calcifying cartilage and bone has shown that calcium in calcifying
cartilage is first associated with sulfur, probably in the sulfated glycosami-
noglycans of the cartilage matrix.34 As the mineralization process proceeds,
phosphate superimposes with both calcium and sulfur, presumably increasing
the (Ca2+ x Pi) ion product, and the chain of events leading to crystalline
calcium phosphate precipitation, solid phase transition, crystalline intercon-
version, and eventual hydroxy apatite deposition ensues.34

Clinical evidence of the importance of phosphate in the process of laying
down newly formed bone (calcification) was underscored in the late 1950s
by Fraser and colleagues37 in their experiments involving rachitic costochon-
dral junctions. Three children with vitamin D-resistant rickets had a rachitic
costochondral junction removed which was sectioned, and the slices were
subsequently incubated in the sera from the three patients, sera from normal
children, or sera from the three patients supplemented with physiologic amounts
of calcium and phosphorus. A demonstrable increase in the deposition of
bone salts occurred at the zone of provisional calcification in the normal sera
and the supplemented patients' sera, but no change in calcification was seen
in the sections incubated in the nonenriched patients' sera. The in vivo response
of rachitic bone to phosphate supplementation was subsequently assessed in
two children with untreated vitamin D-resistant rickets who received a con-
tinuous intravenous infusion of isotonic sodium phosphate infused at a rate
such that the serum inorganic phosphorus concentration was maintained at or
above 5 mg/dl. In both patients, the establishment of a normal serum phos-
phorus concentration induced an immediate fall in the serum calcium followed
by radiographic evidence of healing of the rickets in the metaphyseal region
of the wrists and knees within 5 d. Concurrent with this healing, the serum
alkaline phosphatase concentration showed a gradual decline to the normal
range. When the intravenous phosphate therapy was discontinued, biochem-
ical evidence of rickets rapidly reappeared, but the radiographic reappearance
of fraying in the wrists and knees was delayed for 2 months.37 This method
of treatment was subsequently extended to other untreated severely rachitic
infants with vitamin D deficiency.38 Continuous intravenous administration
of inorganic phosphorus in two patients and phosphate and calcium admin-
istered in an alternating regimen to the other children resulted in a rapid
calcification of the rachitic lesions such that new bone mineralization was
evident radiographically as early as 2 d postinitiation of therapy. Alkaline
phosphatase decreased gradually over the 6 to 12 d of treatment. Further
evidence, although indirect, of the importance of phosphate in bone cell
metabolism is reflected by the growth pattern seen in hereditary hypophos-
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phatemia.39 At birth, these children fall within normal growth percentiles for
height and weight and maintain normal growth measurements until such time
as the serum phosphorus drops below the normal range. By 6 months of life,
this has usually occurred, and anthropometric measurements for length and
weight decline to less than or equal to the third percentile. Additionally,
radiographic evidence of rickets and bone disease is not evident until the
onset of hypophosphatemia.39 The effect of an elevation of serum phosphorus
on growth was interestingly demonstrated in a patient with hereditary hy-
pophosphatemia treated with a high dose of vitamin D who experienced renal
damage from vitamin D toxicity; this resulted in a decline of his glomerular
filtration rate to 50 to 60% of normal and an elevation of his serum phosphorus
from 2.0 to 3.0 mg/dl to 4.0 to 4.5 mg/dl. His growth, which had ceased
with the hypervitaminosis, increased with elevation of his serum phosphorus
and accelerated to cross several percentile lines, reaching the 50th percentile.39

The use of long-term oral phosphate supplementation as a sole therapy
in hypophosphatemic vitamin D-resistant rickets, a disease associated with
hypophosphatemia and growth failure, induces a transient increase in the
serum phosphorus concentration, a sustained rise in the serum PTH concen-
tration (iPTH), and stimulation of both endosteal osteoblastic and osteoclastic
activities.40 Despite the induction of the increased bone cell turnover, growth
rates with this form of therapy in most cases are markedly increased.40-41 The
addition of 1,25-dihydroxyvitamin-D has been found to decrease the osteo-
clastic resorption and allow better control of the iPTH, but does not always
promote further increases in growth velocity over phosphate alone.40 The
addition of vitamin D, however, does improve cortical bone mineralization
and enhance osteoblastic recruitment.42 In summary, it appears that phosphate
is critical in the process of bone mineralization in conjunction with calcium
and sulfur, presumably mediated by matrix vesicles enhancing the local Ca2 +

x Pi ion product. Its importance in mediating growth is reflected in patients
with hypophosphatemic vitamin D-resistant rickets where supplementation
greatly increases growth velocity, but induces secondary hyperparathyroidism
(Chapter 9). The addition of 1,25-dihydroxyvitamin-D helps to alleviate this
problem, although it is unclear if the improvement in bone mineralization
mediated by enhancement of the osteoblast population is a direct effect of
1,25-dihydroxyvitamin-D on the osteoblast or an indirect effect through en-
hancement of phosphate availability. The oral intake of phosphorus has been
shown to determine the production rate of 1,25-dihydroxyvitamin-D as well
as regulate its serum concentration. In turn, vitamin D and its metabolites
suppress PTH secretion and more recently have been shown to modulate PTH
gene transcription (Chapter 3).

V. CELLULAR PHOSPHATE STASIS

Intracellular concentration of phosphate has been implicated in the reg-
ulation of glycolysis, oxidative phosphorylation, basal metabolic rate, and
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modulation of calcium-activated cellular processes.43"47 Careful regulation of
intracellular phosphate is necessary for normal cell functioning.48

Phosphate that enters cells either is incorporated into organic phosphate
or remains as an inorganic anion. The concentration of intracellular phosphate
is not directly proportional to the plasma concentration. When the extracellular
concentration is disturbed, the cells are able to maintain cytosolic phosphate
concentration. This intracellular buffering capacity has been demonstrated by
nuclear magnetic resonance (NMR) determination of intramuscular phosphate
concentrations in patients who exhibit a wide range of plasma phosphate
concentrations due to diseases.49

Intracellular phosphate concentration is maintained to some extent at the
expense of organic phosphates.50 Phosphate is liberated from the organic pool
during ATPase and phosphatase reactions. Mitochondria act as the reservoir
to replenish cytosolic phosphate when the metabolic demand for phosphate
is greater than the cellular uptake.50 Further refinement of the cytosolic phos-
phate concentration is made through the activity of the mitochondrial phos-
phate transporters. Future studies using NMR techniques may further elucidate
the mechanisms responsible for the net transfer and steady-state fluxes of
phosphate compounds between the intracellular compartments and plasma
membrane.

VI. PHOSPHATE NUTRITION

Phosphate is abundantly available and is present in all natural foods. All
foods composed of animal or plant cells are rich in phosphate; the major
sources are protein-rich foods and cereal grains. Milk and milk products
contain the phosphoprotein casein, making them the richest source of phos-
phate in the diet.51 Other good sources of phosphate are meat, fish, poultry,
eggs, and peanuts.52

Diets providing sufficient protein and calories also contain adequate
amounts of phosphate.30 The mean daily intake of phosphate is approximately
1500 mg for adult males and 1000 mg for adult females.53

Phosphate interacts with several dietary minerals such as calcium, sodium,
and magnesium.52 For example, an increase in dietary magnesium results in
a decrease in phosphate absorption, and, conversely, a deficiency of luminal
magnesium enhances the absorption of phosphate. An adequate luminal con-
centration of sodium is essential to ensure phosphate absorption.

It has been demonstrated in animal studies that diets low in the calcium/
phosphorus (Ca/P) ratio lead to progressive bone loss due to excessive PTH
stimulation.54"57 A similar stimulatory effect may also occur in humans con-
suming high phosphate diets for prolonged periods.58 The recommended Ca/P
ratio in the diet is between 1.0 and 1.5, but not <0.5.54 The average ratio
in the U.S. diet is 1.0 to 1.8 for adults between 35 to 50 years of age.53 This
ratio is higher in the diets of infants and children due to their greater con-
sumption of milk.
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Phosphate deficiency is characterized by weakness, anorexia, malaise,
and pain (Chapter 8).52 Bone loss is the major effect of phosphate deficiency.52

Mild hypophosphatemia (1.5 to 3.5 mg/dl) seldom produces symptoms, and
severe hypophosphatemia (<1.5 mg/dl) often causes symptoms requiring
immediate treatment.31 The phosphate deficiency syndrome52 is encountered
when hypophosphatemia occurs in conjunction with intracellular phosphate
depletion. This is usually a chronic syndrome with gradual onset of symptoms
seen in chronic negative phosphate balance.30 The clinical and metabolic
manifestations of the syndrome are due mainly to the fall in intracellular levels
of ATP and decreased availability of oxygen to the tissues, secondary to 2,3-
diphosphoglycerate depletion.30 Phosphate deficiency may occur secondary
to inadequate intake or absorption of phosphate, or alternatively from defects
in renal tubular reabsorption of phosphate.

Nutritional deficiencies of phosphate are rare because virtually all foods
contain phosphorus.51 However, in premature infants exclusively fed human
milk without additional phosphate, hypophosphatemic rickets may develop
(Chapter 7).59 These premature infants have a high rate of active bone mi-
neralization, and thus they require more phosphate than is contained in human
milk.60 Furthermore, patients receiving phosphate binders such as aluminum
hydroxide, an antacid, for prolonged periods may also develop serious phos-
phate deficiency.51-62 Patients receiving total parenteral nutrition (TPN) with
insufficient amounts of phosphate have been reported to develop manifesta-
tions of the phosphate deficiency syndrome.63 Supplemental phosphate may
be required to achieve and maintain normal serum phosphate concentration
in patients with severe phosphate depletion who receive commercial enteral
feeding solutions.63-64 Breakdown of intracellular phosphate-containing com-
pounds occurs in starvation, uncontrolled diabetes mellitus, and in chronic
alcoholism.30 This results in tissue phosphate release into the plasma and
subsequent loss in the urine. Under conditions of severe malnutrition, i.e.,
starvation, normal plasma concentrations of phosphate may not reflect total
body phosphate depletion. In uncontrolled diabetes mellitus, hyperglycemia,
polyuria, acidosis and enhanced osmotic phosphate diuresis cause excessive
phosphaturia. In the chronic alcoholic, causes for phosphate depletion include
decreased dietary intake, malabsorption, hypomagnesemia, hypokalemia, sec-
ondary hyperparathyroidism, ketoacidosis, lactic acidosis, and increased uri-
nary loss. Phosphate repletion should be given serious consideration in the
treatment of these metabolic derangements. The major cause of hypophos-
phatemia in this state is an abnormality in tubular handling of phosphate.

An inborn as well as acquired defect of the disruption of phosphate balance
by the proximal tubule is the Fanconi syndrome which causes dysfunction of
the proximal renal tubule with attendant defective tubular reabsorption of
glucose, amino acids, and phosphate (Chapter 9). This results in renal gly-
cosuria, amino-aciduria, and hyper- and hypophosphatemia.51 Another inborn
error of renal phosphate handling is X-linked hypophosphatemia (Chapter 9).
Perturbation of renal phosphate balance also occurs in renal tubular acidosis.
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This is a defect in the kidney for the reabsorption of bicarbonate and exchange
of hydrogen ion for Na+ in the renal tubular contents.51 Defective tubular
reabsorption of phosphate resulting from bicarbonate deficiency is corrected
by bicarbonate replacement. Further causes of a reduction in the tubular
reabsorption of phosphate include genetic and acquired primary hypophos-
phatemia, cystinosis, tyrosinosis, multiple myeloma, and connective tissue
tumors.31

Phosphate supplementation is essential in severely hypophosphatemic pa-
tients as well as in those who are symptomatic. Phosphate can be administered
orally, parenterally, or through dialysis fluids. It should be noted that phos-
phate treatment must be monitored carefully as it can result in complications
such as diarrhea, hyperphosphatemia, hypocalcemia, hypomagnesemia, hy-
perkalemia, volume excess, and mild acidosis.30-31 Phosphate supplementation
is contraindicated in renal failure.

Hyperphosphatemia occurs primarily from inadequate renal excretion and
is an important complication of renal insufficiency. Hyperphosphatemia (>5.0
mg/dl) can develop from the following mechanisms: (1) decreased glomerular
filtration rate, (2) increased tubular reabsorption of phosphate, and (3) in-
creased phosphate loading.31 In disorders such as renal failure, hemolysis,
rhabdomyolysis, and tumor lysis syndrome, hyperphosphatemia is a frequent
complication. Hyperphosphatemia has effects on multiple systems. Various
soft tissues may develop ectopic calcification with prolonged hyperphospha-
temia. Precipitation with calcium occurs when the Ca/P ion product exceeds
70.31 Volume expansion, phosphate binders, or a diet that is low in protein
and thus in phosphorus has often been used in the treatment of hyperphos-
phatemia. The use of phosphate binders is limited by their potential side
effects.30

The precise dietary requirement of phosphate is not known. If normal
caloric requirements are met, an intake of 0.2 mg of phosphorus per calorie
consumed is sufficient to meet the needs of the growing child, the adolescent,
and the adult.51 The Recommended Dietary Allowance (RDA 1989) for phos-
phorus is 800 mg for children 1 to 10 years, 1200 mg for ages 11 to 24 years,
and 800 mg beyond age 24." During pregnancy and lactation, the daily
allowance is increased to 1200 mg.53 The RDA of phosphorus for formula-
fed infants from birth to 6 months of age is 300 mg/d; for infants 6 to 12
months of age, 500 mg/d.53
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