Pediatric Autoimmunity and Transplantation

A Case-Based Collection with MCQs, Volume 3 Farzaneh Rahmani Nima Rezaei *Editors*

Pediatric Autoimmunity and Transplantation

Farzaneh Rahmani • Nima Rezaei Editors

Pediatric Autoimmunity and Transplantation

A Case-Based Collection with MCQs, Volume 3

Editors Farzaneh Rahmani Student's Scientific Research Center (SSRC) Tehran University of Medical Sciences (TUMS) Tehran Iran

NeuroImaging Network (NIN) Universal Scientific Education and Research Network (USERN) Tehran Iran Nima Rezaei Department of Immunology, School of Medicine Research Center for Immunodeficiencies (RCID) Children's Medical Center Tehran University of Medical Sciences (TUMS) Tehran Iran

Network of Immunity in Infection Malignancy and Autoimmunity (NIIMA) Universal Scientific Education and Research Network (USERN) Tehran Iran

ISBN 978-3-030-26279-2 ISBN 978-3-030-26280-8 (eBook) https://doi.org/10.1007/978-3-030-26280-8

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Immunology has found its way well into the practice of pediatrics. Years after publication of the first pediatric textbooks, footprints of immunology can be found in diagnosis and practice of almost all pediatric disorders. Delivering a magnificent contribution is the advent of novel diagnostic methods in molecular genetics in pediatric practice. Genetic diagnosis is now an indispensable part of the routine practice of primary immunodeficiency disorders, inborn metabolic errors, and monogenic malformations, making way into diagnostic criteria of some as well. It won't go far wrong to state that the science of pediatrics has entered into an era of interdisciplinary practice with genetics and immunology. The rapid flow of discovery of biological drugs during the last decade, availability of next-genome and whole-exome sequencing methods, and the outstanding boost in the rate of success of hematopoietic and solid organ transplantation are all affirmative to this notion. Thanks to molecular genetic methods, an increasing number of the newly introduced "autoinflammatory disorders" are being characterized, donors and recipients are being cross-matched using intricate phenotypic cross matching, and immunotherapy for allergy benefits from state-of-the-art characterization of culprit epitopes in peptide scales. This book tries to strike a balance between cutting-edge science of immunology and clinical practice of pediatrics, through a series of meticulously chosen case discussions, presented by pediatric practitioners and immunology experts.

Pediatric Immunology Series is a three-volume book series and a collection of well-presented case discussions in pediatric medicine. Volume I, *Pediatric Allergy*, is focused on diagnosis and practice of allergy, asthma, atopy, and relevant disorders. Volume II, *Pediatric Immunology*, thoroughly addresses cases on primary immunodeficiency disorders; and finally, Volume III, *Pediatric Autoimmunity and Transplantation*, is a constellation of cases in autoimmune and rheumatologic disorders of childhood, secondary immunodeficiency conditions, and real cases with hematopoietic and solid organ transplantation.

Volume III of this series is the final frame and a diverse constellation of case discussions, from autoimmunity and pediatric rheumatologic disorders to immunohematology and transplantation, to autoimmune skin disorders, and finally to secondary conditions causing immunodeficiency. Chapters 1–19 and 82–83 showcase case discussions with childhood-onset rheumatologic disorders, adult rheumatic disorders with pediatric onset, and disorders of potential autoimmune origin such as idiopathic thrombocytopenia. Cutaneous immune-related conditions and cutaneous manifestations of systemic disorders are a must know for every pediatric practitioner and are hence addressed in Chaps. 57–81. Secondary conditions that mimic presentations of primary immunodeficiency disorders comprise heterogeneous entities that are the main focus of the few cases presented in Chaps. 20–34. Finally, the fine art of recipient, i.e., donor matching in hematopoietic stem cell and solid organ transplantation, is skillfully discussed in Chaps. 35–56 of this volume.

The Pediatric Immunology Series is the result of a multinational collaboration of more than 350 scientists from more than 100 well-known universities/institutes worldwide. I would like to hereby acknowledge the expertise of all contributors for their generous devotion of time and effort in preparing each of the chapters. I would also like to extend my gratitude to the Springer publication for providing me the opportunity to publish the book.

We are hopeful that this book provides an exemplary touch to the fast-growing intersection of pediatrics and immunology, and a useful guide for pediatric practitioners worldwide.

Tehran, Iran Tehran, Iran Farzaneh Rahmani Nima Rezaei

Abbreviations

3TC	Lamivudine
4CmenB	4-Component meningococcal serogroup B vaccine
AA	Alopecia areata
ABC	Abacavir
ACE	Angiotensin-converting enzyme
ACLE	Acute cutaneous lupus erythematosus
ACPA	Anti-citrullinated protein antibody
ACR	American College of Rheumatology
AD	Autosomal dominant
ADCC	Antibody-dependent cellular cytotoxicity
AECA	Anti-endothelial cells
AGEP	Acute generalized exanthematous pustulosis
aGVHD	Acute GVHD
AIDS	Acquired immunodeficiency syndrome
AIHA	Autoimmune hemolytic anemia
ALDY	Annular lichenoid dermatitis of youth
ALL	Acute lymphoblastic leukemia
ALPS	Autoimmune lymphoproliferative syndrome
AML	Acute myeloid leukemia
AMR	Antibody-mediated rejection
ANA	Antinuclear antibody
ANC	Absolute neutrophil count
ANCA	Anti-neutrophil cytoplasmic antibodies
Anti-CCP	Anti-cyclic citrullinated peptide
Anti-dsDNA	Anti-double-stranded DNA
Anti-EMA	Anti-endomysial antibodies
Anti-ENA	Anti-extractable nuclear antigens
Anti-eTG	Anti-epidermal transglutaminase
Anti-MDA5	Anti-melanoma differentiation-associated gene 5 antibodies
Anti-TG	Anti-thyroglobulin

Anti-TPO	Antithyroid peroxidase
Anti-tTG	Tissue transglutaminase antibody
APC	Antigen-presenting cells
APECED	Autoimmune polyendocrinopathy-candidiasis-ectodermal
	dystrophy
APGAR	Appearance, pulse, grimace, activity, and respiration
APS-1	Autoimmune polyendocrine syndrome type 1
AR	Autosomal recessive
ARF	Acute rheumatic fever
ART	Anti-retroviral therapy
A-T	Ataxia-telangiectasia
AT1R	Anti-angiotensin II type 1 receptor
ATG	Anti-thymocyte globulin
ATN	Acute tubular necrosis
ATR	Ataxia-telangiectasia and Rad3 related
AZT	Zidovudine
BB-UVB	Broadband ultraviolet B
BCG	Bacillus Calmette-Guérin
BD	Behçet's disease
BMT	Bone marrow transplantation
BMZ	Basement membrane zone
BNP	Brain natriuretic peptide
BP	Blood pressure
BPAg2	Bullous pemphigoid antigen
bpm	Beats per minute
BSA	Body surface area
BSLE	Bullous SLE
CAJDM	Clinically amyopathic juvenile dermatomyositis
c-ANCA	Cytosolic anti-neutrophil cytoplasmic antibodies
CARRA	Childhood Arthritis and Rheumatology Research Alliance
CAT	Cutaneous assessment tool
CBC	Complete blood count
CBDC	Chronic bullous disease of childhood
CBT	Cord blood transplantation
CCLE	Chronic cutaneous lupus erythematosus
CD	Cluster of differentiation
CDC	Complement-dependent cytotoxicity
CGD	Chronic granulomatous disease
CHAQ	Childhood Health Assessment Questionnaire
CHB	Congenital heart block
CHS	Chediak-Higashi syndrome
CID	Combined immunodeficiency
CLAD	Childhood linear IgA disease
СМ	Cutaneous mastocytosis
CMAS	Childhood Myositis Assessment Scale

Abbreviations

CMC	Chronic mucocutaneous candidiasis
CMG2	Capillary morphogenesis gene 2
CML	Chronic myeloid leukemia
CMP	Cartilage matrix protein
cMPO	Myeloperoxidase deficiency
CMV	Cytomegalovirus
CNIs	Calcineurin inhibitors
CRP	C-reactive protein
CsA	Cyclosporine A
CSF	Cerebrospinal fluid
CT	Computed tomography
CTL	Cytotoxic T-lymphocytes
CVID	Common variable immune deficiency
CWD	Common and well-documented alleles
CXCR4	CXC chemokine receptor 4
CXR	Chest X-ray
DAT	Direct antiglobulin test
DCM	Diffuse cutaneous mastocytosis
DFA	Direct fluorescent antibody
DGP	Gliadin-derived peptides
DH	Dermatitis herpetiformis
DIF	Direct immunofluorescence
DIHS	Drug-induced hypersensitivity syndrome
DIRA	Deficiency of interleukin-1 receptor antagonist
DLE	Discoid lupus ervthematosus
DLI	Donor lymphocyte infusion
DMARDs	Disease-modifying antirheumatic drugs
DNA	Deoxyribonucleic acid
DOCK8	Dedicator of cytokinesis 8
DRESS	Drug reaction with eosinophilia and systemic symptoms
DSA	Donor-specific antibodies
dsDNA	Double-stranded DNA antibodies
Dsg	Desmoglein
DT	Diphtheria and tetanus toxoids full strength
dT	Diphtheria-tetanus toxoids with reduced content of
	diphtheria
DtaP	Diphtheria-tetanus acellular pertussis vaccine
DTaP3	Diphtheria-tetanus-3-component acellular pertussis
	vaccine
DTaP5-IPV-Hib	Diphtheria-tetanus-3-component acellular pertussis-
	inactivated polio haemophilus influenzae type b
DTaP-IPV-HBV+Hib	Hexavalent diphtheria-tetanus-acellular pertussis-
	inactivated polio-hepatitis B vaccine
Е	Ethambutol
EB	Epidermolysis bullosa
	-provincijsts ourosu

-		
	s	
- 4	2	

EBV	Epstein-Barr virus
ECDS	En coup de sabre
ECP	Extracorporeal photopheresis
EFE	Endocardial fibroelastosis
ELE	Erysipelas-like erythema
ELISA	Enzyme-linked immunosorbent assay
EM	Erythema multiforme
EmA	Anti-endomysium
EMG	Electromyography
EMM	Erythema multiforme major
ERK	Extracellular signal-regulated kinases
ES	Evans syndrome
ESID	European Society for Immunodeficiencies
ESR	Erythrocyte sedimentation rate
ESRD	End-stage renal disease
ETaR	Anti-endothelin-1 type A receptor
EULAR	European League Against Rheumatism
FACS	Fluorescence-activated cell sorting
Fas	First apoptosis signal
FCXM	Flow cytometric crossmatch
FDA	Food and Drug Administration
FFP	Fresh frozen plasma
FHLH/FHL	Familial hemophagocytic lymphohistiocytosis
FIA	Flow injection analysis
FiO2	Fraction of inspired oxygen
FISH	Fluorescence in-situ hybridization
FLAMSA	Fludarabine, cytarabine, amsacrine
Flt3L	FMS-like tyrosine kinase 3 ligand
FOXP3	Forkhead box protein 3
FS-MPGN	Focal segmental membranoproliferative
	glomerulonephritis
FTT	Failure to thrive
FUMHD	Febrile ulceronecrotic Mucha-Habermann disease
G6PD	Glucose-6-phosphatase deficiency
GATA2	GATA-binding factor 2
G-CSF	Granulocyte colony-stimulating factor
GI	Gastrointestinal
GM-CSF	Granulocyte-macrophage colony-stimulating factor
GPCR	G protein-coupled receptor
GU	Genitourinary
GVHD	Graft versus host disease
GvL	Graft-versus-leukemia
Н	Isoniazid
HAART	Highly active anti-retroviral therapy
HAV	Hepatitis A vaccine

Hb	Hemoglobin
HBV	Hepatitis B virus
HCT	Hematopoietic cell transplantation
HCV	Hepatitis C virus
HFS	Hyaline fibromatosis syndrome
Hib	Haemophilus influenza type b vaccine
HiDAC	High-dose cytarabine
HIGM	Hyper-IgM syndrome
HIV	Human immunodeficiency virus
HLA	Human leukocyte antigens
HLA-B27	Human leukocyte antigen-B27
HLH	Hemophagocytic lymphohistiocytosis
HNIG	Human normal immunoglobulin
HPA	Hereditary papulotranslucent acrokeratoderma
HPLC	High-performance liquid chromatography
HPS	Hermansky-Pudlak syndrome
HPS2	Hermansky-Pudlak type 2
HPV	Human papilloma virus
HRCT	High-resolution computed tomography
HSC	Hematopoietic stem cells
HSCT	Hematopoietic stem cell transplantation
HSE	Herpes simplex encephalitis
HSP	Henoch-Schönlein purpura
HSV	Herpes simplex virus
HUS	Hemolytic uremic syndrome
HUV	Hypocomplementemic urticarial vasculitis
HUVS	Hypocomplementemic urticarial vasculitis syndrome
IA	Idiopathic anaphylaxis
IBD	Inflammatory bowel disease
ICU	Intensive care unit
IFN	Interferon
IFN-γ	Interferon-y
IgA	Immunoglobulin A
IgE	Immunoglobulin E
IgG	Immunoglobulin G
IgM	Immunoglobulin M
IHC	Immunohistochemistry
IIF	Indirect immunofluorescence
IIV	Inactivated influenza vaccine
IL	Interleukin
IL-12	Interleukin-12
ILAR	International League Against Rheumatism
ILD	Interstitial lung disease
IM	Intramuscular
IMA	Inherited maternal antigens/haplotype

IMGT	International ImMunoGeneTics information
Inf	Influenza vaccine
INH	Isoniazid
IPA	Inherited paternal antigens/haplotype
IPSS	International Prognostic Scoring System
IPV	Inactivated polio vaccine
ITK	IL-2 inducible tyrosine/T-cell kinase
ITP	Idiopathic thrombocytopenic purpura
IV	Intravenous
IVIG	Intravenous immunoglobulin
JDM	Juvenile dermatomyositis
JIA	Juvenile idiopathic arthritis
JPsA	Juvenile psoriatic arthritis
kD	Kilodalton
KD	Kawasaki disease
ko	Kilogram
KS	Kaposi sarcoma
LARD	Linear IgA bullous disease
LAD	Leukocyte adhesion deficiency
LAIV	Live attenuated influenza vaccine
LDH	L'actate dehydrogenase
IF	Lupus erythematosus
I FKTI	Kazal-type-related inhibitor
IFT	Liver function test
LOF	Loss-of-function
IP	Lumbar puncture
I PV	Loninavir
LOTS	Long OT syndrome
IRD	Living-related donor
LKD	Localized scleroderma
	Lymphocyte steroid sensitivity
	Leukotrianes
	Lumphoeyte transformation test
LTT	Lymphocyte transformation test
MAC	Membrane attack complex
MAC	Mitagen activated protein kinases
MARK	Macrophage activation syndrome
MREU	Monobenzul ether of hydroguinone
MCV	Maan corpuscular volume
	Mualaduanlasia ralatad AMI
MDR-AML	Myelodysplastic sundrome
MDS/AMI	Myelodysplastic syndrome/acute myeloid leukemie
Mon	Maningococcal vaccine
MonCV4	A Valant (A C W 125 V) conjugate manifestation
IVICIIC V 4	vaccine (A,C,w-155,1) conjugate meningococcal

MF	Mycosis fungoides
MFI	Mean fluorescence intensity
MIS	Mastocytosis in the skin
MIV	Marginal inflammatory vitiligo
MMF	Mycophenolate mofetil
mmHg	Millimeter of mercury
MMR	Measles-mumps-rubella
MODS	Multi-organ dysfunction syndrome
MOTT	Mycobacteria other than tuberculosis
MPO	Myeloperoxidase
MRI	Magnetic resonance imaging
MRSA	Methicillin-resistant Staphylococcus aureus
MSA	Myositis-specific autoantibodies
Msc/MSCs	Mesenchymal stem cells
MSH6	mutS homolog 6
MSMD	Mendelian susceptibility to mycobacterial disease
mTOR	Mechanistic target of rapamycin
MUD	Matched unrelated donors
WHIM syndrome	Warts, hypogammaglobulinemia, infections, and
	mvelokathexis
NASH	Nonalcoholic steatohepatitis
NAT	Nucleic acid testing
NBT	Nitroblue tetrazolium
NB-UVB	Narrowband ultraviolet B
NEC	Necrotizing enterocolitis
NEMO	NF-kB essential modulator
NIH	National Institutes of Health
NIMA	Non-inherited maternal HLA antigen/haplotype
NIPA	Non-inherited paternal HLA antigen/haplotype
NK cell	Natural killer cell
NKT cells	Natural killer T cells
NLE	Neonatal lupus erythematosus
NLRs	NOD-like receptor
NMDP	National Marrow Donor Program
NOTA	National Organ Transplantation Act
NPV	Nevirapine
NRTI	Nucleoside reverse transcriptase inhibitors
NSAIDs	Nonsteroidal anti-inflammatory drugs
NTM	Non-tuberculous mycobacteria
NT-proBNP	N-terminal proBNP
NUV	Normocomplementemic urticarial vasculitis
OCA	Oculocutaneous albinism
OLT	Orthotopic liver transplantation
OPO	Originating organ procurement organization
OPV	Oral polio vaccine

OS	Omenn's syndrome
PAF	Platelet-activating factor
PAN	Polyarteritis nodosa
p-ANCA	Perinuclear anti-neutrophil cytoplasmic antibodies
PAP	Pulmonary alveolar proteinosis
PAPA	Pyogenic sterile arthritis, pyoderma gangrenosum, and
	acne
PBSCT	Peripheral blood stem cell transplantation
PCP	Pneumocystis jirovecii pneumonia
PCR	Polymerase chain reaction
PCV	Pneumococcal conjugate vaccine
PF	Pemphigus foliaceus
PG	Pyoderma gangrenosum
РКСб	Protein kinase C-delta
PL	Pityriasis lichenoides
PLC	Pityriasis lichenoides chronica
PLE	Protein-losing enteropathy
PLEVA	Pityriasis lichenoides et varioliformis acuta
PMA	Phorbol 12-myristate 13-acetate
PO	Per os/oral
PPSV	Pneumococcal polysaccharide vaccine
PRCSG	Pediatric Rheumatology Collaborative Study Group
PRI	Potential repigmentation index
PRINTO	Paediatric Rheumatology International Trials Organisation
PRP	Pityriasis rubra pilaris
PRS	Parry-Romberg syndrome
PUVA	Psoralen and ultraviolet A
PV	Pemphigus vulgaris
R	Rifampicin
RA	Rheumatoid arthritis
RAST	Radioallergosorbent test
RBC	Red blood cell
RF	Rheumatoid factor
RIC	Reduced-intensity conditioning
ROS	Reactive oxygen species
RV	Rotavirus vaccine
SAA	Serum amyloid A
SAB	Single-antigen antibody
SAM	Severe acute malnutrition
SBEG	Suction blister epidermal grafts
SBS	Short bowel syndrome
SCID	Severe combined immunodeficiency
Scl-70	Anti-toposiomerase I
SCLE	Subacute cutaneous lupus erythematosus
sIL-2R or sCD25	Soluble interleukin-2 receptor

sIL-2Rα	Soluble IL-2 receptor alpha
SIRS	Systemic inflammatory response syndrome
SJIA	Systemic juvenile idiopathic arthritis
SJS	Stevens-Johnson syndrome
SLE	Systemic lupus erythematosus
SLICC	Systemic Lupus International Collaborating Clinics
SM	Systemic mastocytosis
SMA II	Spinal muscular atrophy type 2
SoJIA	Systemic-onset juvenile idiopathic arthritis
SPD	Subcorneal pustular dermatosis
SPINK5	Serine protease inhibitor, Kazal type 5
SPT	Skin prick test
SSc	Systemic sclerosis
SSLR	Serum sickness-like reaction
SSSS	Staphylococcal scalded skin syndrome
STEC	Shiga toxin-producing strains of <i>Escherichia coli</i>
STR	Short tandem repeat
Т	Tetanus toxoid
TACO	Transfusion associated volume overload
ТА-ТМА	Transplant-associated thrombotic microangiopathy
TBI	Total body irradiation
TCE	T-cell epitopes
TCR	T-cell receptor
ΤCRαβ	Alpha/beta T-cell receptor
ΤCRγδ	Gamma/delta T-cell receptor
Tdpa	Tetanus-diphtheria-acellular pertussis with reduced con-
.1.	tent of diphtheria an pertussis antigens
TEN	Toxic epidermal necrolysis
TG	Triglyceride
Th1	T helper 1
Th17	Thelper 17
Th2	Thelper 2
TIA	Transient ischemic attack
TIV	Trivalent influenza vaccine
TKI	Tyrosine kinase inhibitor
ТМА	Thrombotic microangionathy
TORCH	Toxoplasmosis other (syphilis varicella-zoster parvovi-
ronom	rus B19) rubella cytomegalovirus and herpes
TPMT	Thiopurine S-methyltransferase
TPN	Total parenteral nutrition
TPO	Thyroid peroxidase
TRALI	Transfusion-associated lung injury
TREC	T-cell receptor excision circles
UA	Urinary analysis
UC	Ulcerative colitis
~~	Citerative evility

UCB	Umbilical cord blood
UNOS	United Network for Organ Sharing
UP	Urticaria pigmentosa
URI	Upper respiratory tract infection
UV	Ultraviolet
UVA-1	Ultraviolet-A1
V(D)J	Variable, diversity, joining
Var	Varicella vaccine
VASI	Vitiligo Area Severity Index
VETF	Vitiligo European Task Force
VIDA	Vitiligo Disease Activity Score
VOD	Veno-occlusive disease
VZIG	Varicella-zoster immune globulin
VZV	Varicella zoster virus
WAS	Wiskott-Aldrich syndrome
WBC	White blood cell
WES	Whole-exome sequencing
XLP	X-linked lymphoproliferative disease
XLP1	X-linked proliferative disorder type I
Z	Pyrazinamide

Contents

1	Introduction to Autoimmunity, Secondary Immunodeficiency, and Transplantation Terry Harville, Soumya Pandey, Piyush Kumar, Marco Antonio Yamazaki-Nakashimada, Larry Ngek Tangie, Farzaneh Rahmani, and Nima Rezaei	1
2	Fever and Cervical Lymphadenopathy Berenise Gamez-Gonzalez and Marco Antonio Yamazaki-Nakashimada	17
3	Prolonged Refractory High Fever Ross Petty and Farhad Salehzadeh	25
4	Pain in Both Knees	31
5	Challenging Pain in Knee and Ankle Peter Jandus	35
6	Fever and Urticarial Rash	43
7	Knee Swelling and Rash Ross Petty and Farhad Salehzadeh	47
8	Malaise, Weight Loss and Intermittent Fever Ross Petty, Farhad Salehzadeh, and Marco Antonio Yamazaki-Nakashimada	53
9	Anemia, Microhematuria and Proteinuria Živanović S. Snežana, Ivana Djuric-Filipovic, and Zorica Živković	57
10	Fever, Anasarca and Arthralgia Erika Sifuentes-Rodriguez, Francisco Rivas-Larrauri, and Marco Antonio Yamazaki-Nakashimada	61

11	Bradycardia in a Neonate	65
12	Annular Rash in a Neonate Yan Ling Kong and Emily Yiping Gan	71
13	Itchy Facial Rash. Yan Ling Kong and Emily Yiping Gan	77
14	Muscle Weakness and Fever. Piyush Kumar and Anupam Das	85
15	Pruritic Erythematous Rashes on Face and Eyelids Selcen Kundak and Malik Ergin	91
16	Edema of Hands and Hypopigmented Lesions on Her Neck	
	and Cheeks. Ana Luisa Rodríguez-Lozano and Marco Yamazaki-Nakashimada	97
17	Asymptomatic Atrophic Plaque on the Face	103
18	Morbiliform Rash and Fever Luciana Paula Samorano, João Avancini, and Marcella Soares Pincelli	109
19	Recurrent Interstitial Keratitis and Audiovestibular Dysfunction Kristina A. Dzhuma, Oleg B. Iaremenko, and Maksym I. Situkho	115
20	Breathlessness and Weight Loss	121
21	Neck Swelling and Fever Sowmya Shashidhara, H. Koushik, and Sangita Trivedi	127
22	Puffy Face and Abdominal Distension Sowmya Shashidhara, H. Koushik, and Sangita Trivedi	133
23	Hematuria and Abdominal Mass. Sowmya Shashidhara, H. Koushik, and Sangita Trivedi	139
24	Pitting Edema and Desquamation Sowmya Shashidhara, H. Koushik, and Sangita Trivedi	143
25	Fever and Cutaneous Nodules	149
26	Neck Stiffness and Fever Tangie Ngek Larry and Derrick Tembi Efie	153
27	Rash and Generalized Body Pains.Tangie Ngek Larry and Derrick Tembi Efie	157

28	Positive HIV and Violet Macular RashTangie Ngek Larry and Derrick Tembi Efie	161
29	Weight Loss and Tuberculin Skin Test Anergy Léila Dangou, Medeton Grâce Hounkpe, Josephiel Fortunato, and Crescent Darius Cossou-Gbeto	165
30	Edema on Lower Limbs Medeton Grâce Hounkpe, Léila Dangou, Josephiel Fortunato, and Crescent Darius Cossou-Gbeto	169
31	Asthenia and Fatigue Dominique M. A. Bullens and Isabelle Meyts	173
32	Infections, Whitish Skin Papules and Subcutaneous Nodules Delara Babaei	179
33	Recurrent Pneumonia and History of Transplantation Sonia de Arriba-Méndez, Eva Macías, and Ignacio Dávila	185
34	Painful Skin Nodules, Prolonged Fever and CervicalLymphadenopathyMichelle N. G. Ying, Emily Yiping Gan, and Jean Aan Mark Koh	189
35	Malaise, Laryngitis and Fever Claus-Philipp Maier and Dominik Schneidawind	197
36	Acute Myeloid Leukemia Requiring Hematopoietic Stem Cell Transplantation Soumya Pandey and Terry Harville	203
37	Discrepant Cytomegalovirus Serology Between Donor and Recipient in Hematopoietic Stem Cell Transplantation Soumya Pandey and Terry Harville	207
38	Suspected Immunodeficiency.	211
39	Linkage Disequilibrium Between HLA Alleles in Hematopoietic Stem Cell Transplantation Soumya Pandey and Terry Harville	217
40		000
	T-Lymphoblastic Lymphoma Soumya Pandey and Terry Harville	223
41	T-Lymphoblastic Lymphoma Soumya Pandey and Terry Harville No Lymphocytes in an Infant. Beatriz Morillo-Gutierrez and Mary Slatter	223
41 42	T-Lymphoblastic Lymphoma Soumya Pandey and Terry Harville No Lymphocytes in an Infant. Beatriz Morillo-Gutierrez and Mary Slatter DOCK8 Deficiency and No Matched Donor. Beatriz Morillo-Gutierrez and Mary Slatter	223 229 237

44	Follow-Up of a Severe Combined Immunodeficiency, Who Received Bone-Marrow Transplantation Four Decades Ago Romina Dieli-Crimi and Teresa Español	247
45	Nonalcoholic Steatohepatitis Referred for Liver Transplantation Laura Cooling	251
46	Acute Respiratory Distress During Stem Cell Infusion Laura Cooling	255
47	Acute Dyspnea After Platelet Transfusion Laura Cooling	259
48	Requiring Immunization After Rescue Autologous HSCT Darko Richter	265
49	Fever and Abdominal Pain . Esraa M. Eloseily and Randy Q. Cron	273
50	Prolonged Fever, Rash and Mucosal Bleeding Beata Derfalvi	281
51	Recurrent Infections, Diarrhea and Hypereosinophilia	289
52	Liver Transplantation Who Developed Pancytopenia Post-transplantation	295
53	Kidney Transplant Candidate Showing Presence of Pre-formed Donor-Specific Antibodies Against a Prospective Living DonorLiving DonorSoumya Pandey and Terry Harville	305
54	Heart Transplant Candidate Who Required Extra-CorporalMembrane Oxygenation (ECMO)Soumya Pandey and Terry Harville	311
55	Acute Antibody-Mediated Rejection of Transplantation with Negative Prospective Crossmatch Results Soumya Pandey and Terry Harville	319
56	Kidney Transplantation in a Patient with End Stage Renal Disease (ESRD) Secondary to Focal Segmental Glomerulosclerosis Soumya Pandey and Terry Harville	325
57	Itchy Violaceous Plaques Yan Ling Kong and Emily Yiping Gan	329
58	Photosensitivity and Bullous Lesions Ashi and Piyush Kumar	337

59	Recurrent Bullous Lesions Santoshdev P. Rathod and Piyush Kumar	345
60	Refractory Blisters and Erosions Ziying Vanessa Lim and Emily Yiping Gan	349
61	Annular Blisters and Erosions. Soner Uzun and Aslı Bilgic-Temel	357
62	Vesicular Pruriginous Lesions Dario Didona and Biagio Didona	363
63	Widespread Vesiculobullous Rash Soner Uzun and Aslı Bilgic-Temel	369
64	Itchy Skin Rashes	375
65	Blisters on Back and Upper Extremities	381
66	Itchy Blisters	387
67	Sudden Onset Grouped Blisters	393
68	Pruritic Blisters	399
69	Widespread Depigmented and Hypopigmented Patches Piyush Kumar and Sunil K. Kothiwala	403
70	Whitish Patches. Gulsen Akoglu	409
71	Hyperpigmented Patches Yan Ling Kong and Emily Yiping Gan	415
72	Outbreaks of Erythematous and Necrotic Papules with Hemorrhagic Crusts	421
72	Selcen Kundak and Malik Ergin	107
13	Selcen Kundak and Malik Ergin	427
74	Yellow, Reddish Brown Skin Lesions	433
75	Erythroderma	435
76	Erythematous Scaly Plaques Sunil K. Kothiwala and Piyush Kumar	439

77	Multiple Circinate, Sterile, Flaccid, Relapsing Pustules Selcen Kundak and Malik Ergin	445
78	Purpuric Macules and Oral Erosions Dipak Kr. Agarwalla and Piyush Kumar	451
79	Diffuse Skin Rash and Mucosal Lesions	459
80	Painful Facial Ulceration Dario Didona and Biagio Didona	465
81	Patchy Hair Loss Anupam Das and Piyush Kumar	469
82	Concerning Weight Loss Over Three Weeks Farzaneh Rahmani and Nima Rezaei	475
83	Toddler with Bruising on Knees Farzaneh Rahmani and Nima Rezaei	479
Inde	ex	483

Contributors

Dipak Kr. Agarwalla Department of Dermatology, Gauhati Medical College and Hospital, Guwahati, Assam, India

Gulsen Akoglu, MD, MSc Gulhane Training and Research Hospital, Dermatology and Venereology Clinic, University of Health Sciences, Ankara, Turkey

Ashi Gauhati Medical College, Guwahati, Assam, India

João Avancini, MD Department of Dermatology, Hospital das Clínicas of the University of São Paulo Medical School, São Paulo, Brazil

Ikinciogullari Aydan, MD Department of Pediatric Allergy and Immunology, Ankara University School of Medicine, Ankara, Turkey

Delara Babaei, MD Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Wojciech Baran, MD, PhD Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wrocław, Poland

Aslı Bilgic-Temel, MD Seydisehir State Hospital, Dermatology Clinic, Konya, Turkey

Dominique M.A. Bullens, MD, PhD Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium

Islamoglu Candan, MD Department of Pediatric Allergy and Immunology, Ankara University School of Medicine, Ankara, Turkey

Laura Cooling, MD, MS Department of Pathology, University of Michigan, Ann Arbor, MI, USA

Crescent Darius Cossou-Gbeto, MD Internal Medicine, Hematology and Oncology Department, Aix-en-Provence Hospital Center, Aix-en-Provence, France

Randy Q. Cron, MD, PhD Division of Rheumatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA

Léila Dangou, MD Pediatric Department, Bethesda Hospital in Cotonou, Cotonou, Benin

Anupam Das Department of Dermatology, KPC Medical College, Kolkata, West Bengal, India

Ignacio Dávila, MD, PhD Faculty of Medicine, Department of Biologic and Diagnostics Sciences, University of Salamanca, Salamanca, Spain

Allergy Service, University Hospital of Salamanca, Salamanca, Spain

Sonia de Arriba-Méndez, MD, PhD Pediatric Service, University Hospital of Salamanca, Salamanca, Spain

Faculty of Medicine, Department of Biologic and Diagnostics Sciences, University of Salamanca, Salamanca, Spain

Beata Derfalvi, MD, PhD Department of Pediatrics, Dalhousie University/IWK Health Centre, Halifax, NS, Canada

Biagio Didona, MD First Division of Dermatology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy

Dario Didona, MD Department of Dermatology and Allergology, Philipps University, Marburg, Germany

Romina Dieli-Crimi, MD, PhD Clinical Immunologist, Immunology Unit, Hospital Universitario Vall d'Hebron, Barcelona, Spain

Ivana Djuric-Filipovic, MD, PhD Children's Hospital for Lung Diseases and Tuberculosis, Medical Center "Dr Dragiša Mišović", Belgrade, Serbia

Kristina A. Dzhuma, MD Bogomolets National Medical University, National Specialized Children's Hospital, Kyiv, Ukraine

Derrick Tembi Efie, MD Tokombere District Hospital, Tokombere, Cameroon Health and Human Development Research Network, Douala, Cameroon

Esraa M. Eloseily, MD, MRCPCH Division of Rheumatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA

Division of Rheumatology, Department of Pediatrics, Assiut University Children's Hospital, Assiut, Egypt

Malik Ergin, MD Department of Pathology, Dr. Behçet Uz Children's Hospital, İzmir, Turkey

Teresa Español, MD, PhD Clinical Immunologist, Immunology Unit, Hospital Universitario Vall d'Hebron, Barcelona, Spain

Josephiel Fortunato, MD Pediatric Department, Goho Hospital Center of Abomey, Abomey, Benin

Berenise Gamez-Gonzalez, MD Hospital Infantil de Especialidades de Chihuahua, Chihuahua, Mexico

Emily Yiping Gan, MBBS, MRCP, MD Dermatology Service, KK Women's and Children's Hospital, Singapore, Singapore

National Skin Centre, Singapore, Singapore

Terry Harville, MD, PhD Departments of Pathology and Laboratory Services, Pediatrics, and Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA

Medeton Grâce Hounkpe, MD ENT Department, University Hospital Hubert Koutoucou Maga of Cotonou, Cotonou, Benin

Oleg B. Iaremenko, MD, PhD Department of Internal Medicine, Bogomolets National Medical University, Kyiv, Ukraine

Peter Jandus, MD Division of Immunology and Allergology, Department of Medicine, University Hospital and Medical Faculty, Geneva, Switzerland

Mojgan Kianiamin, MD Chamran Medical Hospital, Tehran, Iran

Clinic of immunology and Allergy, Chamran General Hospital, Army Medical University, Tehran, Iran

Jean Aan Mark Koh, MB, BS Dermatology Service, KK Women's and Children's Hospital, Singapore, Singapore

Yan Ling Kong, MBBS National Skin Centre, Singapore, Singapore

Sunil K. Kothiwala, MD SkinEva Clinic, Jaipur, Rajasthan, India

H. Koushik, MBBS, MD Department of Pediatrics, Kasturba Medical College, Manipal University, Manipal, Karnataka, India

Piyush Kumar, MD Department of Dermatology, Katihar Medical College, Katihar, Bihar, India

Selcen Kundak, MD Department of Dermatology, Dr. Behçet Uz Children's Hospital, İzmir, Turkey

Tangie Ngek Larry, MD Faculty of Medicine and Biomedical Sciences, University of Yaounde 1, Yaounde, Cameroon

Ziying Vanessa Lim, MBBS, MRCP (UK), M.Med (Int Med) National Skin Centre, Singapore, Singapore

Eva Macías, MD, PhD Faculty of Medicine, Department of Biologic and Diagnostics Sciences, University of Salamanca, Salamanca, Spain

Allergy Service, University Hospital of Salamanca, Salamanca, Spain

Claus-Philipp Maier, MD Department of Internal Medicine II, University Hospital Tuebingen, Tuebingen, Germany

Isabelle Meyts, MD, PhD Inborn Errors of Immunity, KU Leuven, Leuven, Belgium

Beatriz Morillo-Gutierrez, MD Translational Paediatrics and Infectious Diseases Unit, Santiago de Compostela University Hospital, Santiago de Compostela, Spain

Soumya Pandey, MD Department of Pathology and Laboratory Services, University of Arkansas for Medical Sciences, Little Rock, AR, USA

Ross Petty, MD, PhD Pediatric Rheumatology, University of British Columbia, Vancouver, BC, Canada

Marcella Soares Pincelli, MD Department of Dermatology, Hospital das Clínicas of the University of São Paulo Medical School, São Paulo, Brazil

Farzaneh Rahmani, MD, MPH Students Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran

NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran

Santoshdev P. Rathod Department of Dermatology, Smt. NHL Municipal Medical College, Ahmedabad, Gujarat, India

Nima Rezaei, MD, PhD Department of Immunology, School of Medicine, Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran

Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran

Darko Richter, MD, PhD Pediatric Allergy and Clinical Immunology, University Hospital Center Zagreb, Zagreb, Croatia

Outpatient and Emergency Service, Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia

Francisco Rivas-Larrauri, MD Clinical Immunology Department, Instituto Nacional de Pediatría, Mexico City, Mexico

Ana Luisa Rodríguez-Lozano, MD, MSc Clinical Immunology Department, Instituto Nacional de Pediatria, Mexico City, Mexico

Farhad Salehzadeh, MD Pediatric Rheumatology, Bouali Children's Hospital, ARUMS, Ardabil, Iran

Luciana Paula Samorano, MD Department of Dermatology, Hospital das Clínicas of the University of São Paulo Medical School, São Paulo, Brazil

Dominik Schneidawind, MD Department of Internal Medicine II, University Hospital Tuebingen, Tuebingen, Germany

Alireza Shafiei Bahrami Children's Hospital, Tehran, Iran

Sowmya Shashidhara, MBBS, MD Department of Pediatrics, Kasturba Medical College, Manipal University, Manipal, Karnataka, India

Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Manipal, Karnataka, India

Erika Sifuentes-Rodriguez, MD Clinical Immunology Department, Instituto Nacional de Pediatría, Mexico City, Mexico

Maksym I. Situkho, MD, PhD O. Kolomijchenko Otolaryngology Institute, Kyiv, Ukraine

Mary Slatter, MD Department of Paediatric Immunology, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle upon Tyne, UK

Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK

Živanović S. Snežana, MD, PhD Pediatric Internal Diseases Clinic, Clinical Center of Nis, Faculty of Medicine, University of Nis, Nis, Serbia

Haskologlu Sule, MD Department of Pediatric Allergy and Immunology, Ankara University School of Medicine, Ankara, Turkey

Jacek Szepietowski, MD, PhD Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wrocław, Poland

Larry Ngek Tangie, MD Faculty of Medicine and Biomedical Sciences, University of Yaounde, Yaounde, Cameroon

Marzieh Tavakol, MD Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran

Department of Allergy and Clinical Immunology, Shahid Bahonar Hospital, Alborz University of Medical Sciences, Karaj, Iran

Sangita Trivedi, MBBS, MD Department of Pediatrics, Government Medical College, Veer Narmad South Gujarat University, Surat, Gujarat, India

Soner Uzun, MD Department of Dermatology and Venereology, School of Medicine, Akdeniz University, Antalya, Turkey

Marco Antonio Yamazaki-Nakashimada, MD Clinical Immunology Department, Instituto Nacional de Pediatría, Mexico City, Mexico

Michelle N.G. Ying, MB, BS Dermatology Service, KK Women's and Children's Hospital, Singapore, Singapore

Zorica Živković, MD, PhD Children's Hospital for Lung Diseases and Tuberculosis, Medical Center "Dr Dragiša Mišović", Belgrade, Serbia

Faculty of Pharmacy, University Business Academy in Novi Sad, Novi Sad, Serbia

Chapter 1 Introduction to Autoimmunity, Secondary Immunodeficiency, and Transplantation

Terry Harville, Soumya Pandey, Piyush Kumar, Marco Antonio Yamazaki-Nakashimada, Larry Ngek Tangie, Farzaneh Rahmani, and Nima Rezaei

This book is a constellation of case discussions on pediatric autoimmune disorders, rheumatological diseases, secondary immunodeficiency disorders, and case discussions on hematopoietic stem cell and solid organ transplantations. The following is an overview and head start of the content related to each topic.

T. Harville (⊠)

S. Pandey

Department of Pathology and Laboratory Services, University of Arkansas for Medical Sciences, Little Rock, AR, USA

P. Kumar

Department of Dermatology, Katihar Medical College, Katihar, Bihar, India

M. A. Yamazaki-Nakashimada Clinical Immunology Department, Instituto Nacional de Pediatría, Mexico City, Mexico

L. N. Tangie Faculty of Medicine and Biomedical Sciences, University of Yaounde, Yaounde, Cameroon

F. Rahmani Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran

NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran

N. Rezaei

Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran

© Springer Nature Switzerland AG 2020

Departments of Pathology and Laboratory Services, Pediatrics, and Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA e-mail: harvilleterryo@uams.edu

Department of Immunology, School of Medicine, Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran

F. Rahmani, N. Rezaei (eds.), *Pediatric Autoimmunity and Transplantation*, https://doi.org/10.1007/978-3-030-26280-8_1

Human immune system is trained to recognize self from non-self-tissue. Adaptive or pathologic changes in self-antigens, acquired functions in the immune system or lack of proper initial training to the immune system, can all result in **autoimmunity**. Clinical manifestations depend on the organ(s) affected, which in turn depends on nature and type of autoimmunity reaction, autoantibodies and autoreactive T cells.

Pediatric **rheumatologic disorders** are good examples of autoimmune disease in childhood that bear substantial health burden considering the high prevalence of systemic manifestations and the more severe course in this age group. The hallmark pathology of rheumatological disorders is "inflammatory response against selfantigens", the same as other autoimmune disorders. Unfortunately, chronicity might leave a full picture of the disease only to be revealed during adulthood and presents early diagnosis in pediatric patients.

Practice of adult rheumatologic disorders in the pediatric population puts forward a number of special health issues related to this age group. As an example, the higher prevalence of certain complications such as uveitis in children with juvenile idiopathic arthritis, mandates close follow-up with ophthalmologic consult, and growth problems associated with treatment side-effects might restrict the use of corticosteroids and biologic agents in children with rheumatologic disorders.

Juvenile idiopathic arthritis (JIA) is a chronic inflammatory disease and a prototype of rheumatic disorders in pediatric patients [1]. Systemic-onset juvenile idiopathic arthritis is now classified as an autoinflammatory disorder and discussed in volume II of this series. Henoch-Schönlein purpura (HSP) and Kawasaki disease (KD) are two prototypic childhood vasculitides. Frequency of Kawasaki disease has been increasing worldwide over the years, raising serious concern knowing that up to 50% of untreated infants and toddlers face the threat of developing coronary artery aneurysms, a serious condition with lifelong morbidity and mortality. It is worth mentioning that 20% percent of patients with systemic lupus erythematosus (SLE) first manifest during childhood, often by cutaneous symptoms, making it crucial to make an early diagnosis. JIA, HSP, KD and SLE along with a number of other pediatric rheumatologic disorders are given special attention in the first chapters of this volume (Chapters 1-19, 82 and 83). Examples of autoimmune conditions that affect the skin as a single organ system such as vitiligo, alopecia areata, and pemphigus, or cutaneous manifestations of the more common multi-systemic autoimmune conditions such as SLE or dermatomyositis [2], are discussed the final chapters of the book (Chapters 57-81).

Right before getting through chapters describing patients with hematopoietic cell transplantation, we have gathered a series of case discussion of patients with **secondary immunodeficiency disorders** (Chapters 20–34). Immune defects observed in secondary immunodeficiency are usually heterogeneous in their clinical presentation, and their prognosis depends on the severity of the primary condition [3]. Secondary immunodeficiency conditions could be classified into three broad classes based on the etiologic factor:

 Immunosuppression combined with non-immune disorders: malnutrition, cancer and infection are three major factors that cause secondary immunodeficiency in children. There are strong evidence that malnutrition can adversely impact immune system. Childhood malignancies such as Hodgkin's disease often destroy cell mediated and humoral immunities, thereby reducing the capacity of the immune system to fight infections. All infective agents, from *Mycobacterium tuberculosis* to HIV virus can give rise to secondary immunodeficiency.

- 2. Iatrogenic factors: immunosuppressive agents are the most common cause of iatrogenic immunodeficiency. Two most common indication are treatment of autoimmune disorders or prevent transplant rejection.
- 3. Physiological factors: physiological factors such as immaturity of the immune system in preterm infants, could predispose to secondary immunodeficiency.

Worldwide, protein-calorie malnutrition is the leading cause of secondary immunodeficiencies, considering more than 200 million children being wasted or stunted in WHO reports in 2016 [4, 5]. Unfortunately, limited access to food sources in the main etiology of malnutrition, followed by chronic diseases that induce cachexia, chronic infections and neoplastic conditions.

HIV infection is a global challenge, and among leading causes of secondary immunodeficiency in children and adolescents. HIV infection follows the inevitable course eventually leading to acquired immunodeficiency syndrome (AIDS) state that is characterized by combined immunodeficiency, lymphopenia, increased susceptibility to infections with opportunistic pathogens. Something about 1,990,000 children under 15 years old need anti-retroviral therapy worldwide, less than 30% of which are currently under coverage [6].

Immune defects, aberrations in laboratory tests, and clinical presentation of secondary immunodeficiencies are heterogeneous in nature. Fortunately the immune impairment generally improves with the resolution of the primary condition. A series of case presentations regarding conditions associated with secondary immunodeficiency are presented and discussed in Chapters 20–34.

Hematopoietic Cell Transplantation (HCT) (originally known as Bone Marrow Transplantation or BMT, and also been known as Hematopoietic Stem Cell Transplantation or HSCT) began as a successful endeavor in 1968, by Dr. Robert A Good in an infant with severe combined immunodeficiency (SCID). Several things had to come to pass to allow for this. A better understanding of human leukocyte antigens (HLA), and in particular the ability to "type" patients and donors were the foremost essentials for appropriate donor selection [7]. Dr. Paul Terasaki developed a cellular-based typing system, in part based on the work of Dr. Bernard Amos, who had led the way for a better understanding of HLA in the 1950s and early 1960s [8–21]. In the following paragraphs of this writing readers are provided with a head start introduction on HLA and the complex donor selection process for HCT. The aim is to provide prerequisite knowledge for the reader to get ready for the real-life examples of donor-patients selection for HCT presented in Chapters 35–51 of this volume.

The HLA gene locus found on chromosome 6p21, can be divided into Class I (A, B, and C Loci) and Class II (DR, DQ, and DP Loci) (Figs. 1.1, 1.2, 1.3, 1.4, 1.5, and 1.6). Class I HLA are responsible for presenting "endogenous" antigens to CD8⁺ T lymphocytes and are found to be expressed on essentially all nucleated cells in

Fig. 1.1 HLA Gene Locus on Chromosome 6p21. Linkage disequilibrium is the concept that "the genes remain inherited together" more than expected form normal chromosome crossover events during meiosis and gametogenesis

Fig. 1.2 The ultrastructure of HLA Class I molecule (Image constructed from data from the RCSB Protein Data Bank (http://www.rcsb.org/pdb/protein) using RasWin. Components are labelled and discussed in the text. Most of the diversity resides in amino acid substitutions in the α -helices, with some in the β -pleated sheet. HLA class I is comprised of the polymorphic α -chain and the non-covalently attached non-polymorphic β 2-microglobulin. The antigen-binding groove resides between the α -helices on top of the β -pleated sheet between the α 1- and α 2-domains)

Fig. 1.3 The ultrastructure of HLA Class II molecule (Image constructed from data from the RCSB Protein Data Bank (http://www.rcsb.org/pdb/protein) using RasWin. Components are labelled and discussed in the Text. Most of the diversity resides in amino acid substitutions in the α -helices and some in the β -pleated sheet. HLA class II is comprised of the polymorphic β -chain and the non-covalently attached relative non-polymorphic α -chain, for DR, and two polymorphic α - and β -chains each for DQ and DP. The antigen-binding groove resides between the α -helices on top of the β -pleated sheet between the α 1- and β 2-domains)

Fig. 1.4 HLA Class I Gene Structure Organization (Exons and introns are shown for class I HLA. The corresponding protein domains are depicted, indicating the exon location. The polymorphisms in exons 2 and 3 (α 1 and α 2 domains, respectively) generate the main diversity of HLA class I)

humans. To "complete" the molecule for cell-surface expression, β 2-microglobulin is non-covalently complexed with HLA class I. Human RBCs do not express HLA, except for some "remnant" occasional expression. These are known as Bennett-Goodspeed (Bg) antigens (Bg^a, HLA-B7; Bg^b, HLA-B17; which includes B57 and B58 subtypes, and Bg^c, HLA-A28; which includes A68 and A69 subtypes). Importantly, platelets express class I HLA proteins. Class II are typically responsi-

Fig. 1.5 HLA Class II Gene Structure Organization (Exons and introns are shown for class II HLA, A and B gene components, α and β subunit proteins, respectively. The corresponding protein domains are depicted, indicating the exon location. The polymorphisms in exons 2 of the α and β protein subunits (α 1 and β 1 domains, respectively) generate the main diversity of HLA class II, for DQ and DP, and the β 1 domain for DR, since the α 1 domain of DR is not very polymorphic)

Fig. 1.6 Antigen-Binding Region of HLA: "Looking down" on the top of an HLA molecule, the view "seen" by the T cell receptor. The polymorphic regions include the α -helices and the β -turns of the β -pleated sheet. These are the areas "exposed", for which antibodies can be generated and can elicit T lymphocyte reactivity. These are the areas, which define the "name" of the specific HLA component present. These are the regions, which "must" be matched in order to have successful HCT

ble for presenting "exogenous" antigens to CD4⁺ T lymphocytes, and are found on the cell surface of "professional" antigen presenting cells (APC). Major APCs include dendritic cells, macrophage/monocytes and B lymphocytes. Also included are Kupffer cells in the liver, microglial cells in the brain, and renal peritubular and glomerular capillary cells in the normal human kidney. An additional consideration is that mesenchymal stem cells (Msc SC) express lower than normal levels of class I HLA and do not express detectable levels of class II HLA. Human hematopoietic stems cells (HSC) are thought to have variable amounts of HLA expression. Lower levels are thought to be present on undifferentiated HSC, with increasing levels as the cells become more differentiated. A progenitor cell may have as much as 80% of HLA expression as that of a fully-differentiated cells.

The diversity of HLA antigens is generated by polymorphisms primarily in the α -helices and β -pleated sheet of the $\alpha 1$ and $\alpha 2$ domains (exons 2 and 3) for class I HLA and the $\alpha 1$ and $\beta 1$ domains (exons 2 of the A and B gene products) for class II HLA (Figs. 1.2, 1.3, 1.4, 1.5, and 1.6).

Originally, patients and donors were typed at serologic level determination of the HLA type, while now, molecular-level typing is being increasingly performed. The original typing was typically for a 6 of 6 HLA-A, HLA-B, and HLA-DR match which meant matching of both sets of alleles from the patient and the donor. This has expanded to 8 of 8 (HLA-A, -B, -C, and -DR), 10 of 10 (HLA-A, -B, -C, -DR, and -DQ), and finally 12 of 12 (HLA-A, -B, -C, -DR, -DQ, and -DP). As described below, some may consider 10 of 10 matching, with HLA-A, -B, -C, -DRB1, and -DPB1, since HLA-DQB1 mismatches are not believed to influence HCT outcomes, whereas HLA-DPB1 mismatching may influence the outcomes. The greater the extent of overall matching is thought the overall better are outcomes. Note that HLA-DRB3, -DRB4, and -DRB5 are not considered in the matching process.

Mendelian genetics predicts that 25% of sibling donors would be HLA-matched. Yet, in most programs, only 10–15% of patients have an HLA-identical sibling. To deal with issue, the National Marrow Donor Program (NMDP) was established to act as an entity to enroll potential non-related HLA-matched donors (matched-unrelated donors; MUD). More than seven million potential donors are in the registry. Additionally, there are registries in Europe and elsewhere in the world. Umbilical Cord Blood Registries (UCB) came into existence in the early 1990s, as an alternative source of HSC for MUD transplants.

The registries maintain information about the potential donors, including age, ethnicity, ABO status, CMV status, availability to donate, as well as, the HLA typing results. The donor typing results in the registry may be as little as HLA-A, -B, and -DR at the serologic designation, or may be a complete molecular type. When potential donors are selected from the registries, specimens are sent for typing and verification that the potential donor has the correct HLA type to be considered for the patient.

HLA Nomenclature

The original HLA typing by serologic techniques was developed by Amos and Terasaki in the 1950s and 1960s. However, as molecular biologic techniques were developed in the 1970s and 1980s, it became obvious that the serologic

determination was inadequate to fully define an individual HLA type. Newer, molecular based typing approaches began in the 1990s, but only came into wide-spread use after 2005.

Tables 1.1, 1.2, and 1.3 indicate the current numbers of alleles determined by gene sequencing for each of the HLA components. Since most amino acids have multiple triplet codons, "wobble", differences in the third base will produce different DNA sequences, but not changes in the protein structure. These genes will generate different names though, since the naming is based on the DNA sequence, although producing the same proteins. Therefore, a new nomenclature was developed to deal with these issues.

The original nomenclature was based on serologic determinations and names, for example, HLA-A2. The original "molecular" naming merely converted the values to a "four-digit" number, for example, HLA-A0201. Soon though, greater than 100 A2s were found, so that a new system was required.

The current nomenclature takes the same concept but uses digits in "fields" separated by colons (:), so that as many digits as needed could reside in a field between the colons. For example, A*0101 would become A*01:01 (Fig. 1.7), but A*01:714 is also allowed (http://hla.alleles.org/).

Currently, for transplantation purposes, only the Field 1 and Field 2 components are used in donor-patient selection (e.g. A*01:01). This is also known as "four-digit" in the old concept and "two-field" in the new concept.

The current nomenclature could produce a type such as HLA-A*01:01:01:01. As noted in Fig. 1.7, the first two digits or first field are derived from the original serow-

1			
	А	В	С
Number of alleles	3997	4859	3605
Number of null alleles	186	147	131
Number of proteins	2792	3518	2497

Table 1.1 Class I allele frequencies

http://www.ebi.ac.uk/ipd/imgt/hla/stats.html and http://www.allelefrequencies.net/

Table 1.2	Class I	I DR	allele	freq	uencies
-----------	---------	------	--------	------	---------

	DRA	DRB1	DRB3	DRB4	DRB5
Number of alleles	7	2122	145	66	54
Number of null alleles	0	52	4	7	3
Number of proteins	2	1532	119	52	48

http://www.ebi.ac.uk/ipd/imgt/hla/stats.html and http://www.allelefrequencies.net/

Table	e 1.3	Class	Π	DQ	and	DP	allele	freq	uencies
-------	-------	-------	---	----	-----	----	--------	------	---------

	DQA1	DQB1	DPA1	DPB1
Number of alleles	92	1152	56	942
Number of null alleles	3	31	0	22
Number of proteins	35	779	26	655

http://www.ebi.ac.uk/ipd/imgt/hla/stats.html and http://www.allelefrequencies.net/