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Chapter 1
Introduction to Pediatric Cancer 
Immunotherapy

Aurélien Marabelle and Claudia Rossig

Abstract  Cancer immunotherapy comes of age for adult malignancies. Immune 
targeted antibodies aiming at disrupting immunosuppressive pathways such as the 
checkpoints PD-1/PD-L1 and CTLA-4/B7 are providing durable responses and 
overall survival benefits in multiple relapsing/refractory adult cancer types. Novel 
immunotherapies such as oncolytic viruses and adoptive CAR-T cells are also 
becoming approved immune therapies and revolutionize the world of drug develop-
ment. These therapeutic innovations are currently fostering an unprecedented 
research effort in adult tumor immunology. Pediatric cancers have major histologi-
cal, biological and developmental differences with adult cancers. Although the fun-
damental immunological rules remain the same between adults and children, the 
limited data currently available suggest that the immune cells and the immunosup-
pressive pathways that are at stake in pediatric cancers might be different than the 
ones acting in adult cancers. Clinical results of passive immunotherapy with tumor 
targeting antibodies, cytokines, bispecific T-cell engaging antibodies and CAR-T 
cells have recently demonstrated that pediatric cancers can be treated with immuno-
therapy. However, the benefits of these novel treatments are limited to a small frac-
tion of pediatric cancers. Fundamental and translational research efforts are currently 
eagerly needed to better decipher what drives the immune surveillance and editing 
of pediatric cancers.

Keywords  Pediatric tumors • Pediatric cancer • Immunotherapy • Immune system 
• Immune cells
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1.1  �Introduction

During their evolution over the last 3 billion years, multicellular organisms have 
developed tissues and organs with refined specificities to allow better survival and 
interbreeding. Among the subsets of tissues which compose a vertebrate living 
organism, the immune system can be defined as the subsets of cells that are pro-
duced by the hematopoietic stem cells in the bone marrow but do not belong to the 
red blood cell and platelet lineages. These so called “white blood cells” or leuco-
cytes are present throughout the body, either staying in tissues as resident cells 
since the early embryogenesis, or circulating through the tissues, blood vessels and 
lymphatic vessels of the body. They can directly contribute to the structure of spe-
cific organs of the body known as the primary and secondary lymphoid organs. 
Primary lymphoid organs include the bone marrow and the thymus where immune 
cells (lymphocytes for the thymus) are formed and mature. Secondary lymphoid 
organs include structures such as lymph nodes, tonsils, spleen, Peyer’s patches and 
mucosa associated lymphoid tissue (MALT). These white blood cells, their protein 
products (cytokines, chemokines, antibodies), and their related organs are key ele-
ments of mammalians natural defenses against pathogens (virus, fungus, 
bacteria).

1.2  �Overview of the Components of the Immune System

Immune cells can be divided in two subsets of cells: the innate immune cells and 
the adaptive immune cells (Fig. 1.1). Innate immune cells are granulocytes (neu-
trophils, basophils and eosinophils), monocytes/macrophages, mast cells and 
dendritic cells. They can react fast against pathogens in a stereotypic, pathogen 
non-specific manner and are devoid of memory features. Adaptive immune cells 
are B-cells and T-cells. These lymphocytes react more slowly than innate 
immune cells. They have memory features which allow them to react in a patho-
gen specific manner, and to increase this reaction over time. Some immune cells 
such as γδ T-cells and NK-T cells share some common features of both the 
innate and adaptive immune system as they can respond in an antigen specific 
and non-specific manner. All these immune cells act in coordination with each 
other over time and at the different sites of the body in order to maintain the 
homeostasis of the host. Communications between immune cells and other cel-
lular components of the body is performed through cell-cell interactions, cyto-
kines and chemokines. Detailed aspects of the composition and function of the 
immune system have been extensively reviewed in the literature, notably in the 
context of cancer [1].

A. Marabelle and C. Rossig
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1.3  �Role of the Immune System in Cancer Biology

1.3.1  �Tumor Infiltrating Immune Cells and Immune-Editing

Besides cancer cells and stromal cells, the tumor micro-environment can be infil-
trated by subsets of immune cells. Some of these immune cells can contribute to the 
anti-tumor immune response against cancer cells. These effector cells can be cyto-
toxic CD8+ T-cells, type 1T-helper cells (so called “Th1”), type 1 macrophages (so-
called “M1”), B-cells (including differentiated, antibody producing, plasmocytes), 
natural killer cells (NK cells), NKT-cells, and γδ T-cells. Our understanding of can-
cer biology has evolved over the last 15 years thanks to the description of subsets of 
immune cells which protect cancer cells from anti-tumor “auto-reactive” immune 
cells. Indeed, because cancer cells “belong to the immunological “self”, they can 
evade the immune system by using pathways and effectors that generate immune 
tolerance. Tolerogenic immune effectors are regulatory FOXP3-positive CD4+ 

Cytokines, Chemokines, AntibodiesBlood

Innate AdaptativeMarrow

Dendritic cell

Macrophage

Mast cell

Natural killer cell

Complement
protein

Basophil

Eosinophil

Neutrophil

Granulocytes

Natural
killer T cell

γδ T cell

B cell

T cell

Antibodies
CD4+

T cell
CD8+

T cell

Fig. 1.1  Components of the immune system. The main effectors of the immune system have been 
described in the blood and bone marrow although specific tissue resident immune cells are not 
present in these compartment (e.g. some subsets of gamma deltaT-cells). Innate immune cells have 
rapid, stereotypic responses to dangers signals such as pathogens but are devoided of memory 
features. Alternatively, it takes a couple of weeks to the adaptive immune cells to generate a novel 
antigen-specific response, but its memory features provides more rapid and potent responses upon 
subsequent exposures
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T-cells (Tregs), type 2 macrophages (so-called “M2”), and other types of more undif-
ferentiated myeloid cells also called myeloid derived suppressor cells (or “MDSC”). 
The balance between immune rejection and immune tolerance of cancer cells, and 
the subsequent Darwinian pressure of selection of the fittest sub-clones of cancer 
cells over time has been coined with the concept of tumor “immuno-editing” [2]. 
Pediatric tumors typically have only sparse infiltrates of lymphocytes [3], but CD8+ 
T cells capable of effector memory responses were found e.g. in neuroblastomas [4].

1.3.1.1  �Tumor Antigens and Immunogenicity of Pediatric Tumors

Although tumor cells are immunologically “self”, they can differ from healthy cells 
by the aberrant expression of molecules that can be recognized by the immune sys-
tem (Fig. 1.2). On the other hand, they can secrete molecules or express ligands 
which can hamper immune cell functions.

1.3.1.2  �Tumor-Specific Antigens of Pediatric Tumors

Somatic point mutations in the cancer cell DNA can lead to the expression of aber-
rant proteins. Peptides from these proteins can behave as neo-antigens when they 
become presented to T-cells via MHC molecules. Such neo-epitopes are 

Cross reactivity
with pathogens?

CEA, MAGE,
NY-ESO-1,...

IL10, TGFb,
PD-L1,...

b2mglob,...

Missing
Self

Immuno
Suppressive
Molecules

Tumor
Associated
AntigensTumor

Specific
Antigens

Constitutively
Activated
Pathways

MHC
Epigenetic

Modifications

Coding
Mutations

CANCER CELL

Fig. 1.2  Impact of genomic and epigenetic abnormalities on cancer cells immunogenicity. Cancer 
cells are “self” cells and can therefore use many physiological pathways to prevent an “auto” 
immune reaction (e.g. PD-L1 upregulation). However, the multiple genomic alterations happening 
in the cancer cell genome and the epigenetic changes have an impact on the overall immunogenic-
ity of tumors. Some alterations can increase the cancer cell immunogenicity (e.g. tumor specific 
antigens presented by the MHC molecules upon somatic point mutations in the cancer cell 
genome). Others can dampen the recognition of cancer cells by the immune system (e.g. mutations 
in the beta2-microglobulin preventing functional presentation of MHC-I molecules)
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tumor-specific antigens (TSA) and can generate tumor-specific T-cell responses. 
This phenomenon has been recently well described, and seems to play a significant 
role in the response to checkpoint blockade (CTLA-4, PD-1) immunotherapy in 
some adult cancers but also in biallelic mismatch repair deficiency hypermutant 
pediatric glioblastoma [5–8]. However, we do not know if it plays a significant role 
in the immunogenicity of other pediatric cancers. Pediatric cancers often carry chro-
mosome rearrangements [9, 10], but generally have a low frequency of somatic point 
mutations [11–13]. Still, in some subsets of patients, notably of poor prognosis, the 
mutation rate can be higher. Indeed, it has been recently demonstrated that high-risk 
neuroblastomas have a higher level of somatic point mutations than neuroblastomas 
with a good prognosis [14]. Specifically, the neuroblastoma genome can undergo 
chromothripsis, a phenomenon where some areas of a given genome can undergo 
thousands of chromosome rearrangements in limited regions of some chromosomes 
[14]. Besides somatic point mutations, the analysis of pediatric tumor genomes has 
also revealed that they have frequent chromosome rearrangements [9, 10]. These 
chromosome rearrangements could in theory generate truncated or translocated 
abnormal proteins which could become TSA. This hypothesis remains to be explored.

1.3.1.3  �Tumor-Associated Antigens of Pediatric Tumors

Besides somatic genome aberrations, cancer cells can undergo epigenetic modifica-
tions which can result to the aberrant expression of some molecules. For instance, 
cancer cells can express high levels of proteins that are usually only expressed dur-
ing embryonic development or in limited subsets of cells related to germ cells. 
These so called “carcino-embryonic” or “cancer-testis” antigens, such as NY-ESO-1, 
CEA, MAGE, and many others (see [15] for review) can be highly expressed on 
cancer cells, either by membrane expression of the full length protein (with possible 
alternate splicing), and/or via MHC presentation of peptides. T-cell or B-cell (anti-
body) specific responses to these TAA have been described in detail in adult cancers 
over the last 20 years. Interestingly, IgG antibodies against NY-ESO-1 as well as 
CD4/CD8 T-cell specific responses to HLA-A2-restricted peptide NY-ESO-1157–167 
were found in children with NY-ESO-1 positive neuroblastoma [16]. Also, immuni-
zation with an autologous interleukin-2 gene transduced neuroblastoma tumor cell 
vaccine has been shown to generate specific antibody responses against 
neuroblastoma cells [17].

Epigenetic changes in cancer cells can also end up in modifications of ganglio-
side expression. Gangliosides are sialic-acid-containing glycosphingolipids 
expressed on all vertebrate plasma membrane cells. Human healthy tissues usually 
do not express glycolylneuraminic acid containing gangliosides, but this molecule 
is expressed in tumors and in human fetal tissues [18]. Therefore, gangliosides are 
another type of onco-fetal TAA. Reminiscent of their neuroectodermal tissue origin, 
neuroblastomas express the ganglioside GD2 at high density. GD2 can also be over-
expressed in Ewing sarcomas [19–21]. GD2 expression in neuroblastoma cells was 
suggested to contribute to tumor immune escape by negatively affecting the differ-
entiation and capacity of dendritic cells to prime the proliferation of T-cells [22]. 

1  Introduction to Pediatric Cancer Immunotherapy
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Anti-GD2 antibody therapy has been developed in the clinic and is becoming part 
of the standard of care of high-risk neuroblastoma [23–25]. More recently, GD2 is 
evaluated as an immune target also of redirected T cells (see Chap. 10).

Genetic and epigenetic changes in cancer cells can also result in the aberrant 
expression of intra-cellular proteins which can become TSA while being presented 
through the physiological MHC-I route. For instance, genomic alterations such as 
p53 inactivation can result in the upregulation of an intracytoplamic anti-apoptotic 
molecule called survivin. Interestingly, survivin-specific CD8+ T-cells have been 
detected in the blood of children with high risk neuroblastoma [26]. However, very 
few tumor infiltrating T-cells were found in the same patients, suggesting that 
immune cell infiltration into pediatric tumors may be a critical limitation to effec-
tive anticancer immune responses [26].

1.3.1.4  �Immune Tolerance of Pediatric Cancer Cells

MHC Expression

Besides TSA and TAA, cancer cells can express molecules with immune-inhibitory 
function which contribute to their overall low immunogenicity. First, the downregu-
lation or absence of expression of MHC-I molecules has been a classical mecha-
nism of immune escape by preventing cancer cells to be recognized by CD8+ 
cytotoxic T-cells. Low or no MHC-I expression has been widely described in pedi-
atric cancers [27]. However, downregulation of MHC-I is often reversible, and 
inflammatory conditions such as exposure to interferon-γ can upregulate MHC-I in 
most pediatric cancer cell lines [27, 28]. Sometimes, the absence of expression of 
MHC-I is a consequence of mutations in the beta-2 microglobulin, a protein which 
is part of the MHC-I complex. For instance, this has been recently described in 
about 70% of Hodgkin lymphomas [29]. The absence of MHC-I expression should 
in theory activate NK cells (“missing self” theory). Indeed, in neuroblastoma, where 
MHC-I molecules are often not expressed, NK cells were suggested to play a sig-
nificant role in immune surveillance. One example is the recent finding that expres-
sion of distinct isoforms of the NK receptor NKp30, which can functionally interact 
with B7-H6 present in the serum of the patients in its soluble form and at the surface 
of tumor cells, is associated with survival in high-risk neuroblastoma patients [30].

Cytokines and Chemokines Expression

Cancer cells can further secrete cytokines either in an autocrine or paracrine manner 
which create a pro-tumoral inflammatory micro-environment. For instance, inter-
leukin-6 (IL-6) has been found to be expressed by glioblastoma and neuroblastoma 
cells [31] but also by stromal cells in metastatic niches such as the bone marrow [32, 
33]. IL-6 receptor (IL-6R) can also be expressed by neuroblastoma cells, and IL-6 
from either cancer cells or metastatic bone-marrow on IL-6R positive 
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neuroblastoma cells can sustain their proliferation and prevent them from chemo-
therapy (etoposide)-induced apoptosis [33]. Also, IL-6 acts on myeloid derived 
osteoclast cells which can contribute to the development of metastatic bone marrow 
sites [33]. Accordingly, the circulating blood levels of IL-6 have been shown to be 
significantly higher in high-risk neuroblastoma [34], and the single nucleotide poly-
morphism rs1800795 in the promoter of the IL-6 gene (also known as the as the 
IL-6 “174” polymorphism) has been shown to have a prognostic value both in 
event-free and overall survival in children with high-risk neuroblastoma [35]. Also, 
interleukin-8 seem to play a role in neuroblastoma as both IL-8 and its receptor can 
be expressed on cancer cells [36]. Interestingly, treatment of neuroblastoma cells by 
retinoic acid (which is part of the standard of care of high risk neuroblastoma) 
stimulates IL-8 secretion by neuroblastoma cells and promote neutrophil and lym-
phocyte chemotaxis [37]. Both G-CSF and its receptor have been shown to be 
expressed by Ewing tumors, and osteosarcoma, and G-CSF has been shown to sup-
port Ewing xenograft tumor growth through both angiogenesis and leukocyte 
recruitment into tumors [38, 39]. However this data has been generated in immuno-
compromised xenograft models and might not be physiological. Subsequent con-
cerns that G-CSF administration to promote granulocyte recovery post chemotherapy 
may be unsafe in Ewing sarcoma patients have not been substantiated, arguing 
against a relevant role of this pathway and GCSF remains part of the supportive care 
of Ewing sarcoma [40].

Chemokines can be critical for the infiltration of immune cells into the tumor 
microenvironment. In Ewing sarcoma, chemokine and chemokine receptor profiling 
revealed an association between an inflammatory immune microenvironment with 
infiltration by CD8+ T cells [41]. Genomic changes occurring in cancer cells can 
affect expression of chemokines. E.g., the oncogene MYCN, a hallmark of high-risk 
neuroblastoma, has been shown to repress the expression of CCL2 by neuroblas-
toma cells, a chemokine that can attract immune effector cells [42].

1.3.1.5  �Immunosuppressive Pathways

Immunosuppressive ligands can be expressed on cancer cells. These so-called 
“immune checkpoints” can interact specifically with molecules expressed by 
immune cells and block their activation, induce tolerance and exhaustion. 
Programmed-death ligand-1 (PD-L1) is the most extensively studied immune 
checkpoint molecules in adult cancers. It interacts with the co-inhibitory receptor 
PD-1 which is expressed on lymphocytes. PD-L1 expression was also found in 
pediatric cancers such as neuroblastoma, nephroblastoma (Wilms tumor) and osteo-
sarcoma [43–46]. Another potential tolerogenic immune checkpoint called B7-H3, 
and its isoform 4Ig6B7-H3, have been shown to be expressed in osteosarcoma and 
neuroblastoma, respectively [47, 48].

Tryptophane is a critical amino acid for the metabolism of immune cells, nota-
bly T-cells. The enzyme indoleamine 2,3-dioxygenase (usually called IDO) 
depletes tryptophan in the tumor micro-environment, and IDO expression has been 
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described as a key immunosuppressive pathway in many adult cancer types, nota-
bly under interferon-γ exposure. IDO has been shown to be expressed by osteosar-
coma cell lines exposed to IL-12 and IL-18, suggesting a possible role in that 
pediatric cancer [49].

1.4  �Conclusion

Overall, although the level of somatic point mutations remains low in pediatric can-
cer cell genomes, the cells can be immunogenic by other genomic and epigenetic 
alterations. Future research will have to identify the most relevant immune escape 
mechanisms in the biology of pediatric cancers to allow for effective intervention by 
immunotherapy. The subsequent chapters of this book will detail the immune con-
texture of pediatric cancers, the prognostic role of the different immune subsets and 
how they differ from adult cancers. Also, this book will provide a comprehensive 
overview of the various immunotherapy strategies under current development that 
aim to exploit the immune system to treat pediatric cancers.
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Chapter 2
Overcoming Immune Suppression 
in the Tumor Microenvironment:  
Implications for Multi-modal Therapy

Theodore S. Johnson and David H. Munn

Abstract  Effective immunotherapy, whether by checkpoint blockade, vaccines or 
adoptive cell therapy, is limited in most patients by a fundamental barrier: the 
immunosuppressive tumor microenvironment. This problem is more than just the 
suppression of effector T cells, but also includes profound defects in the inflamma-
tory milieu and immunogenic antigen-presenting cells that are required to drive T 
cell activation. To date, much of the field of immunotherapy has focused on down-
stream checkpoints that regulate activated T cells, or on vaccination and T cell 
adoptive transfer to expand the T cell pool. Relatively less attention has been given 
to regulatory pathways that govern cross-presentation and response to endogenous 
tumor antigens. But these “upstream” pathways become particularly important in 
settings where immunotherapy is combined with standard-of-care chemotherapy 
or radiation therapy, both of which release a wave of tumor antigens. The choice 
of whether to treat these antigens as tolerizing or immunizing is fundamental to 
generating an effective immune response against the tumor. In this chapter we 
consider immunosuppressive mechanisms in the tumor microenvironment from 
the perspective of factors that that may impact the response to antigens from dying 
tumor cells.
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2.1  �Introduction

In this chapter, we will focus on two aspects of tumor immunotherapy that are par-
ticularly relevant to pediatrics, but which often receive somewhat less attention in 
the field. First, our emphasis will be less on the downstream checkpoints that affect 
activated T cells, and more on the fundamental upstream factors that control the 
cross-presentation of tumor antigens to T cells in the first place. It is increasingly 
being realized that this key endogenous antigen-presentation step needs to elicit 
robust T cell immunity in order for immunotherapy to be successful [1]. 
Unfortunately, however, the default response in the tumor is frequently T cell sup-
pression and tolerance, rather than an aggressive response to tumor antigens. Thus, 
one of the important goals of tumor immunotherapy must be to re-configure the 
suppressive and tolerogenic tumor microenvironment so that it becomes robustly 
immunogenic for tumor antigen [2, 3].

The second, and conceptually related, focus of this chapter will be on ways in 
which immunotherapy can be integrated with standard-of-care chemotherapy and 
radiation-therapy treatment. In adult oncology, the combination of immunotherapy 
with chemo/radiation therapy is increasingly recognized as a potential opportunity 
(although currently under-utilized) for achieving valuable synergy [2, 4–6]. In pedi-
atrics, however, it is virtually a requirement that immunotherapy be integrated in 
combination with the existing standard-of-care treatments. This is because in pedi-
atrics the standard-of-care therapies are often highly effective, and even in relapsed 
or high-risk disease can still offer significant (albeit reduced) benefit. Thus, if 
immunotherapy is going to have a major near-term impact on the treatment of chil-
dren, it will need to extend and enhance the efficacy of our existing treatments, not 
attempt to replace them. Fortunately, emerging preclinical evidence suggests that 
both chemotherapy and radiation are not only feasible for combination with immu-
notherapy, but can be highly synergistic.

2.2  �Exploiting Immunotherapy to Create Synergy 
with Cytotoxic Therapy

2.2.1  �Chemo-Immunotherapy: Beyond Synergy to True 
Synthetic Lethality

For a number of years it has been recognized that chemotherapy creates effects that 
can be exploited to enhance the immune response to tumors [7]. One obvious effect 
is the release of tumor antigens from dying cells; but, in addition, certain chemo-
therapy drugs may deplete regulatory T cells [8], or create lymphopenic conditions 
that favor T cell proliferation and expansion [9]. However, these effects are essen-
tially passive: creating a general milieu in which vaccines or other immunotherapy 
may work better. A more active role for chemotherapy was revealed with the discov-
ery of so-called “immunogenic cell death” (ICD) [10–12]. When certain preclinical 
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mouse tumor models are treated with particular chemotherapy drugs, the tumor 
cells die in a fashion that triggers a spontaneous immune response. Not only does 
this help prime the immune system against the tumor, but (at least in these particular 
model/drug combinations) a substantial component of the efficacy of the chemo-
therapy itself is actually contributed by the immune system [12]. While this was a 
ground-breaking discovery, in practical terms there are relatively few drugs that 
elicit ICD, and the effect is highly model-dependent [13]. Thus, while the underly-
ing concept is important, the high-impact clinical role for immunogenic cell death 
is likely to be in combination with immunomodulatory agents that can enhance and 
exploit the effect [14]. As we will discuss, when the underlying inhibitory pathways 
are removed by active immunotherapy, then many chemotherapy drugs may prove 
to be immunogenic [4].

Ultimately, the goal in combining immunotherapy with chemotherapy is not 
merely “synergy” in the pharmacologic sense, but rather to generate authentic syn-
thetic lethality by the combination. Synthetic lethality describes a combination in 
which the two agents together recruit an entirely new set of molecular mechanisms, 
which would not come into play with either agent alone [15, 16]. Thus, for example, 
in pre-clinical models, our own group has shown that combining a normally ineffec-
tive dose of chemotherapy with a specific immune-activating agent (i.e., an agent that 
blocks a tolerogenic checkpoint to dying tumor cells), allows the ineffective chemo-
therapy to now cause potent and rapid tumor regression [17]. The mechanism of anti-
tumor effect was almost entirely immunologic (T cell dependent), but these immune 
mechanisms were only triggered if the tumor was also treated with chemotherapy.

2.2.2  �The Importance of Endogenous Tumor Antigens

One of the surprising findings of the past several years has been the importance of 
endogenous tumor antigens in cancer immunotherapy [18]. Prior to the advent of 
checkpoint-blockade agents, the focus of immunotherapy was often on supplying 
antigens and T cells exogenously—e.g., via defined vaccines, TIL infusions, TCR-
transgenic T cells, or CAR T cells. However, as increasing numbers of patients have 
been treated with blockade of the CTLA-4 and PD-1/PD-L1 pathways, it has 
become evident that the best responses are seen in those patients who have many 
mutational neoantigens in the tumor, and who already have a robust spontaneous 
immune response prior to treatment [19, 20].

In part this may simply be an artifact of early trials, which use only single-agent 
checkpoint blockade. In this setting, it is perhaps logical that only those patients 
who were already spontaneously pre-activated could respond to removing a single 
checkpoint. This effect may disappear as more powerful combination regimens are 
employed [21]. But the key take-home point is that the tumor’s own endogenous 
antigens, cross-presented by the patient’s own APCs to the endogenous T cell 
repertoire, were the critical factor that drove the anti-tumor response. This empha-
sizes the importance of endogenous tumor antigens, and the ability to cross-present 
them in an immunogenic fashion.

2  Overcoming Immune Suppression in the Tumor Microenvironment
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This has obvious importance for the immune response to chemotherapy or radia-
tion, which release a wave of endogenous tumor antigens. But even in the case of an 
exogenous immune intervention, such as an antigen-specific vaccine or T cell 
adoptive transfer (CAR T cells, etc.), a successful long-term outcome may still 
depend on generating a response to endogenous tumor antigens [1]. Transferred T 
cells or defined vaccines are directed against just one or a few antigens. The initial 
response may be dramatic, but eventual emergence of escape variants is almost 
inevitable. If, however, during the initial period of robust inflammation and tumor 
killing, the endogenous host immune system becomes primed to endogenous 
tumor antigens, then the danger of escape variants is minimized, and long-term 
tumor control becomes a possibility.

2.2.3  �Immunogenic Cell Death Versus Tolerogenic Cell Death: 
Overcoming Natural Pathways of Tolerance

The preceding general discussion does not tell us how—specifically—to render 
chemotherapy immunogenic in the clinic. In part this reflects the fact that much still 
needs to be discovered about the molecular mechanisms of combination chemo-
immunotherapy. Also, our current options for immune intervention in the clinic are 
still somewhat limited, comprising primarily blocking agents against CTLA-4 or 
the PD-1/PD-L1 pathways, and blockade of the indoleamine 2,3-dioxygenase (IDO) 
pathway. However, the field is expanding rapidly and the armamentarium is quickly 
increasing. Thus, a better understanding of the molecular events that regulate the 
immune response following chemotherapy, in order to exploit this for therapy, has 
become a subject of some urgency.

In this regard, one fundamental insight emerging recently is the fact that the 
immune response to dying cells—even normal, non-malignant self cells—is not 
fixed and inherent. Rather, it reflects a combination of signals generated by the man-
ner in which the cells die (ICD, apoptosis, necrosis etc.), combined with signals 
from the milieu in which the dying cells are cross-presented by the immune system. 
These local environmental signals are a very active—and changeable—process. 
Blocking even one of the tolerogenic signals elicited by apoptotic cells may render 
dying cells suddenly immunogenic instead. Thus, for example, the tolerogenic IDO 
pathway is strongly up-regulated by exposure to apoptotic cells [22]. When chal-
lenged with apoptotic self cells, normal IDO-sufficient mice remained tolerant, but 
mice lacking the IDO1 gene rapidly developed lethal lupus-like autoimmunity 
against self antigens [22–24]. Thus, it was not the nature of the antigens themselves 
that determined immunity versus tolerance, nor the type of cell death; but rather the 
ability of the apoptotic cells to elicit the immunosuppressive IDO signal. If this IDO 
pathway was blocked, then the same cells, and the same self antigens, now became 
immunogenic.

The relevance of this concept for cancer treatment is that chemotherapy and radia-
tion release a wave of tumor antigens, many of which are potentially immunogenic 
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[18, 25]. The problem is that these antigens are released into a tumor milieu that is 
overwhelmingly dominated by immunosuppressive mechanisms. Thus, even though 
dying tumor cells are potentially immunogenic [6] the actual outcome is usually 
tolerance and anergy, due to these dominant suppressive mechanisms. If, however, 
the tolerogenic pathways used by the tumor (such as IDO, Tregs or others) can be 
identified and blocked at the time of chemotherapy, then the antigens thus released 
may be treated as immunizing instead of tolerizing. This concept is now well 
accepted in principle [1, 2], and relevant preclinical studies are beginning to emerge 
[17], but much of the underlying molecular machinery still remains to be discovered. 
However, even with our current limited state of knowledge, it is possible to begin to 
design clinical trials aimed at exploiting the immunogenicity of chemotherapy.

2.3  �Negative Regulation in the Tumor Microenvironment

In this section we will briefly discuss several of the key suppressive pathways oper-
ating in the tumor. Many of these are discussed in detail elsewhere in this volume, 
so our focus here is specifically how these inhibitory pathways may affect the cross-
presentation and immune response to tumor antigens.

2.3.1  �Regulatory T Cells: Recruitment and Activation

Regulatory T cells (Tregs) in tumors are an important suppressive population [26]. 
Physically depleting Tregs [27] or inhibiting the signals that they require [28] res-
cues anti-tumor immune surveillance. However, it is still unclear how Tregs exert 
their suppressive function. One important mechanism may be their ability to inhibit 
tumor-associated antigen-presenting cells [29, 30]. This would be a key leverage 
point for control of antigen cross-presentation to T cells.

One important unanswered question in the field is why Treg activity is so excessive 
in the tumor. Many of the Tregs in tumors appear to recognize the same self antigens 
as in normal tissues [31], but there is a greater degree of constitutive functional activa-
tion of Tregs in tumors [32]. Several upstream pathways are known to activate tumor-
associated Tregs, includes IDO [32] and neuropilin-1 [33]. Recently, it was shown 
that when Tregs are activated by IDO they up regulate the PD-1 receptor; PD-1 sig-
naling then maintains the suppressive Treg phenotype long-term, via activation of the 
downstream PTEN phosphatase [17]. Neuropilin-1 also activates PTEN in Tregs [33], 
and PTEN has been recently implicated in maintaining normal function and stability 
of Tregs in the normal immune system [34, 35]. Thus, PTEN may be a centrally-
positioned pathway in tumor-induced activation of Tregs. In tumor-bearing mice, 
ablation or inhibition of the PTEN pathway in Tregs prevented tumors from creating 
their usual immunosuppressive microenvironment, and this markedly enhanced the 
immune response to dying tumor cells following chemotherapy [17].

2  Overcoming Immune Suppression in the Tumor Microenvironment
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