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1Acute Kidney Injury: Definitions 
and Epidemiology

Neziha Celebi and Ayse Akcan Arikan

Case 1
An 11-year-old female with history of acute myeloid leukemia who under-
went bone marrow transplant 34  days ago developed fever to 104  °F; her 
blood pressure was 50/20 and heart rate was 180 beats/min. On physical exam 
she appeared lethargic, pale, and cold to touch. She was empirically started on 
broad-spectrum antibiotics and underwent emergency resuscitation with mul-
tiple fluid boluses ultimately requiring intubation and pressor support. Her 
urine output was previously reported as 1 ml/kg/day; however, she made only 
30  ml of urine in 6  h after admission to the intensive care unit (ICU). 
Laboratory studies on ICU admission demonstrated that the electrolytes were 
normal, the blood urea nitrogen was 50 mg/dl, and creatinine was 0.9 mg/dl 
(creatinine was 0.6 mg/dl 2 days ago). The urinalysis was unremarkable.
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1.1  Acute Kidney Injury: Definition

Acute kidney injury (AKI) is defined as a rapid decline in glomerular filtration rate 
(GFR) leading to accumulation of waste products. AKI is common, affecting one 
third of the children admitted to intensive care unit (ICU) and is associated with 
poor outcomes including increased mortality and morbidity among critically ill 
children [1]. Severity and progressions of AKI is directly associated with stepwise 
increase in mortality and other adverse outcomes. Therefore, a standardized defini-
tion of AKI is particularly important to diagnose AKI and stratify AKI severity, in 
order to manage these patients better. In the past, available literature included mul-
tiple definitions for renal failure based on different thresholds of serum creatinine or 
blood urea nitrogen, with or without contribution from urine output, or requirement 
of renal replacement therapy, which made detection, diagnosis, classification, and 
study of AKI rather difficult. In an effort to better define AKI, three standardized 
consensus classifications have been proposed: (1) RIFLE (Risk, Injury, Failure, 
Loss, End-stage kidney disease) criteria was developed by the Acute Dialysis 
Quality Initiative (ADQI) in 2004 for adult patients by using changes in serum cre-
atinine levels from baseline and/or decrease in urine output (Table 1.1) [2]. RIFLE 
definition was adapted for children by using change in estimated creatinine clear-
ance from baseline, which is referred to as pediatric RIFLE (pRIFLE) definition 
(Table 1.1) [3]. In an adult study, increase of serum creatinine 0.3 mg/dl was found 
to be associated with 70% increase in risk of death; those results were replicated 
later in a pediatric study where increase of serum creatinine of 0.3 mg/dl was associ-
ated with increased mortality risk in a population with decompensated heart failure 
[4, 5]. (2) Further refinement of RIFLE criteria was developed by acute kidney 
injury network (AKIN) in 2007 which included the additional criterion of 0.3 mg/dl 
increase in serum creatinine in less than 48 h (Table 1.2) [6]. (3) Finally, in 2012 
several aspects of RIFLE, pRIFLE, and AKIN criteria were integrated into a single 
definition for pediatric and adult patients by the Kidney Disease Improving Global 
Outcomes (KDIGO) classification (Table 1.3) [7].

Case 2
A 14-year-old previously healthy male presented to emergency department 
for complaints of lower back pain and malaise for which he reported taking 
ibuprofen in appropriate doses daily last week. Otherwise he did not have 
fever and reported unchanged amount of urine output. On physical examina-
tion the height and weight were normal, the blood pressure was 117/75, and 
he appeared pale. Laboratory studies demonstrated that the electrolytes were 
normal, the blood urea nitrogen was 57 mg/dl, and creatinine was 3.2 mg/dl. 
The urinalysis was unremarkable. Renal ultrasonography demonstrated nor-
mal sized kidneys with increased echogenicity and loss of corticomedullary 
differentiation.

N. Celebi and A. A. Arikan
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All three definitions have subtle differences and different advantages. Baseline 
creatinine interpretation differs among definitions; most notably, AKIN uses first 
creatinine available as the baseline creatinine, whereas pRIFLE requires height to 
calculate eCCL. Thus, pRIFLE, AKIN, and KDIGO result in different AKI epide-
miology. pRIFLE is more sensitive to detect mild AKI. AKIN is less sensitive but 
more specific to diagnose severe AKI; whereas, pRIFLE and KDIGO detect severe 
AKI similarly. Since KDIGO is applicable to both pediatric and adult population it 
has come into wide use. Overall, all three definitions highly correlate with staging 
of AKI and outcomes [8, 9].

Table 1.1 RIFLE/pRIFLE criteria for acute kidney injury

Cr/GFR criteria Urine output criteria
Risk (R) Increased Cr × 1.5 or decreased GFR by 25%

eCCl decrease by 25%a

Urine output <0.5 ml/
kg/h × 6 h
Urine output <0.5 ml/
kg/h × 8 ha

Injury (I) Increased Cr × 2 or decreased GFR by 50%
eCCl decrease by 50%a

Urine output <0.5 ml/
kg/h × 12 h
Urine output <0.5 ml/
kg/h × 16 ha

Failure (F) Increased Cr × 3 or decreased GFR by 75% or 
Cr >4 mg/dl (with acute rise of >0.5 mg/dl)
eCCl decrease by 75% or Cl <35 ml/
min/1.73 m2a

Urine output <0.3 ml/
kg/h × 24 h or Anuria × 12 h

Loss (L) Persistent failure—complete loss of renal function for >4 weeks
ESRD (E) End-stage renal disease-persistent failure >3 months

apRIFLE criteria; eCCL estimated creatinine clearance, Cr creatinine

Table 1.2 AKIN criteria for acute kidney injury

Cr/GFR criteria Urine output criteria
Stage 1 Increased Cr × 1.5–1.9 from baseline or 

increase by ≥0.3 mg/dl
Urine output <0.5 ml/kg/h × 6 h

Stage 2 Increased Cr × 2–2.9 from baseline Urine output <0.5 ml/kg/h × 12 h
Stage 3 Increased Cr × ≥3 or sCr ≥4 mg/dl with 

acute rise of ≥0.5 mg/dl
Urine output < 0.3 ml/kg/h × 24 h or 
Anuria × 12 h

Table 1.3 KDIGO criteria for acute kidney injury

Cr/GFR criteria Urine output criteria
Stage 1 Increased Cr × 1.5–1.9 from baseline or increase by 

≥0.3 mg/dl
Urine output <0.5 ml/
kg/h × 6–12 h

Stage 2 Increased Cr × 2–2.9 from baseline Urine output <0.5 ml/
kg/h × 12 h

Stage 3 Increased Cr × ≥3 or increase in sCr ≥4 mg/dl or 
initiation of renal replacement therapy or, in patients 
<18 years, decrease in GFR <35 ml/min/1.73 m2

Urine output <0.3 ml/
kg/h × 24 h or 
Anuria × 12 h

1 Acute Kidney Injury: Definitions and Epidemiology



6

The criteria for the diagnosis of AKI and staging of severity of AKI are based on 
changes in serum creatinine and urine output. The caveat here is that serum creati-
nine is a late marker of decreasing GFR. Additionally, serum creatinine concentra-
tions can be influenced by malnutrition, liver dysfunction, decreased muscle mass, 
and volume overload, which all can cause underestimation of the degree of renal 
dysfunction. On the other hand, changes in urine output usually precede the changes 
in serum creatinine [10]. If only creatinine criteria are used, up to 70% of AKI are 
missed [1]. However, relying on urine output solely will obviously miss nonoliguric 
AKI, such as presented in Case 2 in the beginning of the chapter. Since urine output 
may not be measured routinely in non-intensive care settings, early AKI might eas-
ily be missed. The worry for catheter associated urinary tract infection has led to a 
tendency of not placing indwelling bladder catheters or early removal in the inten-
sive care settings. Clinicians need to be aware of when closer monitoring is needed 
and order this simple intervention accordingly. All patients who get admitted in 
shock should receive an indwelling bladder catheter until shock is resolved.

Definition of AKI in critically ill neonates has lagged behind that in older popu-
lations. Serum creatinine is difficult to interpret in newborns since it may reflect 
maternal creatinine during first week of life in term neonates and may persist at 
maternal levels up to 2–3 weeks in preterm infants. Monitoring the trend of the 
serum creatinine may be more helpful. Progressive increase in serum creatinine or 
failure to decrease is consistent with decreased renal function. KDIGO AKI defini-
tion was adapted and used for study purposes in the neonatal population (Table 1.4). 
The overall incidence of AKI in neonates and infants is about 30% and is associated 
with poor outcomes including higher mortality, similar to other age groups [11].

1.2  Acute Kidney Injury: Epidemiology

Although precise incidence of pediatric AKI is not known, overall incidence of AKI is 
thought to be increasing and depends on the clinical setting and patient’s clinical condi-
tion. An administrative dataset screening for physician coding revealed AKI rate of 3.9 
per 1000 at-risk pediatric hospitalizations [11]. Twenty seven percent of the critically 
ill children at pediatric intensive care unit (PICU) developed AKI with 10% of them 
developing severe AKI (AKI stage 2 and stage 3), and 1% requiring renal replacement 
therapy. Twelve percent of severe AKI develops within 7 days after ICU admission [1]. 

Table 1.4 Modified KDIGO criteria for neonatal acute kidney injury

Cr/GFR criteria Urine output criteria
Stage 0 No change in sCr or rise <0.3 mg/dl Urine output >1 ml/kg/h
Stage 1 sCr rise ≥0.3 mg/dl within 48 h or sCr rise ≥1.5 to 

1.9 × reference sCra within 7 days
Urine output >0.5 ml/kg/h 
and ≤1 ml/kg/h

Stage 2 sCr rise ≥2 to 2.9 × reference sCr Urine output >0.3 ml/kg/h 
and ≤0.5 ml/kg/h

Stage 3 sCr rise ≥3 × reference SCr or sCr ≥2.5 mg/dl or 
receipt of dialysis

Urine output ≤0.3 ml/kg/h

aReference serum creatinine, defined as the lowest previous serum creatinine value available

N. Celebi and A. A. Arikan
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Multiorgan dysfunction, need for mechanical ventilation, documented infection, extra-
corporeal membrane oxygenation, and nephrotoxic medication exposure are identified 
as risk factors for developing AKI in critically ill children, while nephrotoxic medica-
tion exposure has the greatest independent risk [12, 13]. Development of AKI is associ-
ated with higher mortality, PICU length of stay, and duration of mechanical ventilation 
[13, 14]. Severe AKI (stage II or III) has the highest association with mortality. Patients 
with resolved AKI or those who have improvement in their severity of AKI stage tend 
to have lower mortality; however, patients with any degree of AKI, even mild, despite 
complete resolution, still have higher rates of mortality than patients who do not 
develop AKI at all in the ICU setting [15]. Outside of the PICU, 25% of the non-criti-
cally ill children who are exposed to three or more nephrotoxic medications developed 
AKI [16, 17]. AKI rates of 30% have been reported in infants; whereas, 48% of 
extremely preterm infants (less than 28 weeks of gestation) develop AKI [18]. The 
incidence increases to 40–65% in the infants undergoing cardiac surgery depending on 
the definition used, the rate increasing with lower age at surgery, longer cardiopulmo-
nary bypass, type of repair, and lower gestational age [19, 20] (Table 1.5).

Table 1.5 Risk factors associated with AKI [21]

Critical illness
    Sepsis
    Shock—hypotension, vasopressor requirement
    Mechanical ventilation
    Extracorporeal membrane oxygenation
Preexisting renal, hepatic, cardiac, neurologic, or respiratory disease
Oncologic disease
Neonates
    Low gestational age
    Low birth weight
    Perinatal asphyxia
    Congenital diaphragmatic hernia
    Bronchopulmonary dysplasia
    Maternal exposure to angiotensin-converting enzyme (ACE) inhibitors
Solid organ transplants
Bone marrow transplants
Intravascular volume depletion—diabetic ketoacidosis, nephrotic syndrome, diarrhea, 
vomiting
Venous congestion—congestive heart failure, right heart failure, pulmonary hypertension
Post cardiac surgery—prolonged cardiopulmonary bypass
Nephrotoxic medication exposurea

    Aminoglycosides
    Vancomycin
    Piperacillin/tazobactam
    Amphotericin B
    Chemotherapeutics
    Immune modulators
    Non-steroidal anti-inflammatory drugs
    ACE inhibitors
    Intravenous contrast media

aList in not exhaustive

1 Acute Kidney Injury: Definitions and Epidemiology
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1.3  Acute Kidney Injury: Pathophysiology

1.3.1  Functional AKI

Functional (prerenal) AKI is caused by decreased renal perfusion due to decrease in 
either absolute or effective circulating volume. Hypotension, decreased cardiac 
function, renovascular compromise, and volume depletion can all lead to functional 
AKI. The hallmark is the improvement of renal function with correction of underly-
ing problem, hence the term functional. Systemic hypoperfusion triggers the activa-
tion of sympathetic nervous system, renin-angiotensin axis, and nonosmotic 
antidiuretic hormone secretion leading to compensatory mechanisms that raise 
blood pressure. GFR is initially preserved by several intrarenal autoregulatory 
mechanisms including generation of intrarenal vasodilatory prostaglandins and 
intrinsic myogenic mechanisms [22]. Prolonged duration and increased severity of 
the trigger lead to decrease in GFR, manifested as functional AKI.  During this 
phase, subclinical intrinsic renal injury may be demonstrated by novel biomarkers, 
which typically are proteins expressed in cellular stress and repair. Longer duration 
of this phase can easily transition into intrinsic injury.

1.3.2  Intrinsic Renal Injury

Prolonged duration of processes leading to functional AKI, exposure to nephrotox-
ins, or sepsis, among other causes, can lead to intrinsic AKI, especially in the setting 
of critical illness. Though traditionally referred to as acute tubular necrosis (ATN), 
histological evidence of ATN is exceedingly rare in the critically ill patients suffer-
ing from AKI. Endothelial cell injury can promote the initiation and extension of 
intrinsic AKI via disrupting the microvascular blood flow. Straight segment (S3 
segment) of proximal tubule and medullary thick ascending limb of Henle are par-
ticularly sensitive to ischemic changes given inherent high cellular energy needs 
and relative low oxygen tension in the adjoining renal medulla. Cellular injury leads 
to cell sloughing from disrupted adhesion molecules and cell necrosis which may 
further cause tubular obstruction with leakage of proteinaceous material (Tamm–
Horsfall protein). Inflammatory processes also contribute to the sequence of events 
in intrinsic AKI [22].

1.3.3  Postrenal AKI/Obstructive Nephropathy

Anatomic abnormalities of the genitourinary system (for example, posterior ure-
thral valves), functional problems (for example, neurogenic bladder, dysfunctional 
bladder, or other voiding dysfunction), obstruction at the bladder outlet or bilateral 
ureters, or blockage of tubules with protein and crystals can lead to urinary retention 
and AKI.  Obstruction affecting bilateral collecting systems is the hallmark of 
obstructive AKI. Backward pressure from obstruction is transmitted up through the 

N. Celebi and A. A. Arikan
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urinary system, which counteracts the hydrostatic pressure for filtration at the glom-
erulus. When it eventually overcomes the hydrostatic pressure in the glomerulus, 
glomerular filtration stops and AKI occurs [22].

1.4  Differentiation of Functional and Intrinsic AKI

Urinary indices are derived from the assumption that tubular integrity is maintained 
in the setting of functional AKI. In prerenal/functional AKI state, sodium-retaining 
mechanism is activated, reducing the urinary sodium; whereas tubular cell damage 
of ATN causes impaired resorptive capacity of proximal tubule leading to urinary 
sodium rise. Thus, urine sodium is used as an indicator of volume status and renal 
tubular integrity. Fractional excretion of sodium (FeNa) evaluates urinary sodium 
excretion. However, diuretic use limits sodium reabsorption and makes FeNa calcu-
lation unreliable in patients who have received diuretics. Fractional excretion of 
urea (FeUrea), based on the same principal, can be used in these instances 
(Table 1.6).
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2.1  Clinical Case

NB is a 4-month-old male with hypoplastic left heart syndrome who underwent a 
cardiac repair procedure requiring cardiopulmonary bypass 3  days ago. He has 
made no urine postoperatively despite aggressive dosing of furosemide and 
bumetanide. His serum potassium has been trending 6.1–6.3  mEq/L and serum 
bicarbonate 15–18 mEq/L. He remains intubated and has not tolerated weaning of 
respiratory support or vasoactive drips. NB is currently 8% fluid overloaded and 
appears mildly edematous on exam. The team would like to provide full parenteral 
nutrition to this postoperative patient but they are concerned that he will not tolerate 
the volume needed.

Outcome 1 The team decides to initiate renal replacement therapy. Because of pre-
vious abdominal procedures, NB is not a candidate for peritoneal dialysis; there-
fore, a central line is placed and he receives three sessions of daily hemodialysis. 
Subsequent laboratory tests suggest renal recovery, and no further dialysis is 
performed.

Outcome 2 The team has been trending NGAL, a non-invasive, inexpensive labora-
tory test marker of structural acute kidney injury, which demonstrates that the kid-
ney injury is improving, although other labs and urine output remain unchanged. 
Fluid restriction is maintained and electrolyte abnormalities are managed medically. 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2276-1_2&domain=pdf
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The next day, NB begins producing small amounts of urine and within 48 h all fluid 
and electrolyte restrictions are discontinued. The increased cost and morbidity of 
renal replacement therapy are avoided.

Which outcome would you prefer for your patient?

2.2  The Unmet Need for Acute Kidney Injury Biomarkers

Acute kidney injury (AKI) is common in hospitalized children and is a significant 
cause of morbidity and mortality. Approximately one-third of all pediatric patients 
worldwide develop AKI during hospital admission [1]. Over 25% of critically ill 
children develop AKI and over 10% of these cases can be classified as severe, which 
is defined as Stage 2 or 3 AKI by the Kidney Disease Improving Global Outcomes 
Work Group staging system [2, 3]. Severe AKI has been shown to confer increased 
risk of mortality [2, 4], longer hospital stay [3], and heightened risk of developing 
chronic kidney disease [5, 6].

Traditionally, clinicians have utilized functional indicators to assess a patient’s 
renal status. The most common of these functional markers, serum creatinine and 
urine output, have several significant limitations, particularly in children. Serum 
creatinine is a delayed marker of renal impairment, with levels only rising hours to 
days following kidney insult. Early recognition of structural kidney injury is limited 
given that a baseline healthy kidney’s functional reserve requires a significant injury 
and functional loss prior to creatinine elevation. It also can be unreliable in several 
specific clinical contexts, such as variable muscle mass and fluid overload. A large 
prospective, multinational observational study of pediatric intensive care patients 
confirmed the inadequacy of serum creatinine for AKI diagnosis, since 67.2% of 
patients with oliguria-diagnosed AKI would not have been recognized using 
creatinine- based definitions alone [2]. Unfortunately, urine production is a difficult 
measure to obtain with high accuracy, particularly in young children without 
indwelling urinary catheters and patients in non-ICU settings. Furthermore, urine 
output can be confounded by the hydration status as well as the common use of 
diuretics in critically ill children.

In contrast to these functional indicators, the use of a structural AKI bio-
marker improves diagnostic and therapeutic patient care by allowing earlier 
detection of tissue injury at a time when inciting factors can still be modified and 
response to interventions trended in real-time [7]. A good biomarker is expected 
to be valid, reliable, and clinically useful, with biomarker results being both 
clearly actionable and promptly available to effectively drive clinical care. Non-
invasive technique, cost-effectiveness, and the ability to process the biomarker 
ubiquitously in hospital clinical laboratories or even at the bedside are additional 
features that render a biomarker more generalizable across a spectrum of patient 
populations.

E. Ciccia and P. Devarajan
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A number of promising structural biomarkers have been investigated in AKI 
research with varying degrees of clinical applicability ([8], Table 2.1). Of these, 
neutrophil gelatinase-associated lipocalin (NGAL) is the most well-established, 
validated in many patient populations, and is already being employed effectively in 
the clinical setting using widely available standardized clinical platforms [9, 10]; 
thus, NGAL will be primarily discussed further here.

2.3  Neutrophil Gelatinase-Associated Lipocalin (NGAL)

Neutrophil gelatinase-associated lipocalin (NGAL), also known as lipocalin-2, is a 
25 kDa glycoprotein released by epithelial tissues and as such can be increased in 
the systemic circulation in a number of human disease processes apart from AKI 
(Table 2.2). In the majority of these conditions, urinary NGAL remains low unless 
there is concomitant renal tubular injury that prevents any filtered NGAL from 
being efficiently reabsorbed. It is one of the most upregulated genes in the kidney 
following conditions of ischemic or toxic stress and is released directly into the 

Table 2.1 Urinary biomarkers in AKI

Biomarker Source Physiologic role Clinical utility
NGAL Distal tubule 

and collecting 
duct

Regulates iron 
trafficking, promotes 
tubule cell survival

•  Confirmed early marker of AKI 
severity, renal replacement need, 
mortality, and renal recovery

•  Standard clinical platforms widely 
available

• Results in 15–30 min
KIM-1 Proximal tubule Promotes epithelial 

regeneration, regulates 
apoptosis

•  Delayed marker of AKI compared 
with NGAL

• Awaits confirmatory studies
• No clinical assays available

IL-18 Proximal tubule Promotes tubule cell 
apoptosis and necrosis

• Predicts AKI in post-CPB
• No clinical assays available

L-FABP Proximal tubule Antioxidant, suppresses 
tubulo-interstitial 
damage

• Awaits confirmatory studies
• No clinical assays available

TIMP-2, 
IGFBP7

Proximal tubule Limits proliferation of 
damaged tubule cells

•  Delayed marker of AKI compared 
with NGAL

•  AUC comparable to NGAL for 
predicting AKI

•  Requires specialized testing 
platform

Abbreviations: AKI acute kidney injury, NGAL neutrophil gelatinase-associated lipocalin, KIM-1 
kidney injury molecule-1, IL-18 interleukin-18, CPB cardiopulmonary bypass, L-FABP liver-type 
fatty acid-binding protein, TIMP-2 tissue inhibitor of metalloproteinases-2, IGFBP7 insulin-like 
growth factor-binding protein 7, AUC area under the curve

2 Biomarkers in Pediatric Acute Kidney Injury
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urine by kidney tubule cells, where its role in the iron-chelation process assists in 
renal protection and tubule cell recovery and proliferation [11]. Following AKI, the 
released NGAL is also partially reabsorbed into the circulation, thus contributing to 
the systemic NGAL pool.

NGAL remains stable when stored at 4 °C for up to 24 h in urine and up to 48 h 
in plasma/serum [12, 13]. While both urine and plasma NGAL levels have been 
shown to increase within 2–4 h of intrinsic structural AKI, data utilizing urine 
NGAL is overall more prevalent in the available pediatric clinical and research 
AKI literature. There are currently three clinical platforms available for testing 
NGAL levels, one of which is easily adaptable to most standard clinical labora-
tory platforms and is already in routine clinical use in several institutions 
worldwide.

Clinically, NGAL has been extensively validated to predict and differentiate 
intrinsic structural AKI from functional AKI (previously referred to as a prerenal 
state) and to predict the adverse outcomes of AKI. Several groups have completed 
systemic analyses of the extensive published literature to date looking at the accu-
racy of NGAL in predicting AKI diagnosis and prognosis across a variety of clinical 
settings.

A meta-analysis published by Haase et  al. in 2009 looked at 19 prospective, 
observational, single-center cohort studies investigating the diagnostic and prognos-
tic accuracy of NGAL to predict creatinine-based AKI, dialysis initiation, and in- 
hospital mortality [14]. These studies represent data from a total of 2538 patients (of 
which 663 were children) from 8 different countries. It was found that NGAL level 
accuracy improved with more severe AKI definitions and that an NGAL cut-off of 
>150 ng/mL using a standardized clinical platform provided optimal sensitivity and 
specificity to predict AKI with an area under the curve for the receiver-operating 
characteristic (AUC-ROC) of 0.83 (95% CI 0.741–0.918). Overall, the AKI predic-
tive value of NGAL in children was shown to be substantially high than in adults, 
with the diagnostic odds ratio (DOR) in children at 25.4 (AUC-ROC 0.93) versus 
10.6 (AUC-ROC 0.782) in adults. The predictive values of urine and plasma NGAL 
were similar (DOR 17.9, AUC-ROC 0.775 and DOR 18.6, AUC-ROC 0.837, respec-
tively). When used to prognosticate adverse outcomes of AKI in all-age pooled data 

Table 2.2 Clinical settings 
in which NGAL can be 
elevated independent of AKI

Urinary tract infection
Sepsis
Chronic kidney disease
Malignancy
Pancreatitis

Abbreviations: NGAL neutrophil gelatinase- associated lipo-
calin, AKI acute kidney injury
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evaluation, NGAL was shown to be useful, with DOR 12.9, AUC-ROC 0.782 for 
initiation of renal replacement therapy and DOR 8.8, AUC 0.706 for in-hospital 
mortality.

In a 2017 meta-analysis, Filho et al. looked at 13 studies (6 which overlapped 
with the Haase analysis) with a total of 1629 pediatric patients [15]. Through 
this analysis it was determined that NGAL was able to predict AKI development 
in children with a sensitivity of 0.76 (95% CI 0.62–0.86) in urine, 0.80 (95% CI 
0.64–0.90) in plasma and specificity of 0.93 (95% CI 0.88–0.96) in urine, 0.87 
(95% CI 0.74–0.94) in plasma. Overall, the DOR for AKI detection was 26 
(95% CI 8–82) and AUC 0.90 (95% CI 0.87–0.94), substantiating previous anal-
yses demonstrating NGAL to have good predictive value and discriminative 
power in predicting AKI in children. In particular, the negative predictive value 
of NGAL is especially high, such that a normal NGAL result effectively rules 
out true structural AKI (irrespective of the serum creatinine or the urine 
output).

Summative assessment of the NGAL literature to date has demonstrated that 
AKI risk, severity stratification, and prognosis are dose-dependent. As such, NGAL 
level thresholds (Table 2.3) have been established for the standardized clinical labo-
ratory platforms, with cut-off levels derived during previous meta-analyses, and 
their effective application in pediatric clinical care has already been reported in the 
literature [9, 10]. One example of a clinical algorithm for use of NGAL in the hos-
pital setting is detailed in Fig. 2.1.

It is important to note that, as with every test ordered in patient care, the proper 
clinical application and interpretation of NGAL levels is only optimized when a 
patient’s clinical status, individual medical history, and AKI risk factors are taken 
into account. As such, it can be helpful to use a clinical risk stratification method to 
assist in deciding who should have NGAL testing done and how to act on the results. 
One example is the renal angina index, a scoring tool developed to identify patients 
at risk of AKI within the first 24 h of pediatric intensive care admission [16, 17] 
based on admission characteristics.

Table 2.3 AKI risk categories based on urinary NGAL level

AKI risk 
category

Urinary NGAL level 
(ng/mL) Interpretation

Low <50 Intrinsic structural AKI unlikely
Equivocal 50–149 Gray zone; clinical risk factors and repeat NGAL 

measurements needed to clarify
Moderate 150–300 Predicts intrinsic structural AKI
High >300 Predicts severe AKI and adverse outcomes

Abbreviations: AKI acute kidney injury, NGAL neutrophil gelatinase-associated lipocalin

2 Biomarkers in Pediatric Acute Kidney Injury
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