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Preface

It is nearly 40 years since I wrote the preface to the first 
edition of this book. There have not been fundamental 
changes in the clinical practice of pediatric endocrinol-
ogy during those years but the era of molecular biology 
has changed completely the understanding of the causa-
tion of many of the disorders seen and described in this 
edition of the book. In years to come it will impinge on 
clinical practice.

Major changes have occurred in the access to informa-
tion through the internet and also in the ways that a book 
is now assembled, prepared and printed in different parts 
of the world. The ready access to original literature 
seemed likely to make text books like this redundant but 
the plethora and complexity of the information available 
makes even more relevant the authoritative digestion of 
data and their presentation in a clinically useful format. 
This has always been the aim of the book.

One loss with the internet is the close personal relation-
ships which used to exist between editors, authors and 
their publisher; so many people are now involved in the 
actual production of a book that it is no longer possible to 
identify exactly who does what. Nevertheless I thank our 
authors and all at Wiley for their endeavours.

Although I have claimed the right to be the sole author 
of the preface for this edition of Clinical Pediatric 
Endocrinology (which will be the last in which I shall be 
involved), it will be clear that the brains behind the book 
are those of my long‐term colleague, now mentor and 
friend, Mehul T. Dattani. His time in many roles in what 
was my department and is now his spans 30 years. I and 
many others respect and admire his achievements and this 
 edition would never have seen the light of day without 
him. My contribution has been trying to make the book 
readable, which is not always an easy task.

The number of practitioners of clinical pediatric endo-
crinology worldwide has increased by at least two orders 
of magnitude since 1981 and so no longer is this edition 
dedicated to just the European Society for Paediatric 
Endocrinology and the Lawson Wilkins Pediatric 
Endocrine Society but to all who strive to advance our 
field. Lastly, I should acknowledge with love and gratitude 
the way my wife Catherine has put up with this cuckoo in 
our nest for so many years.

Charles G. D. Brook
Hadspen Farm, Somerset, UK
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 Introduction

The Human Genome Project was completed in 2003 but it 
is only now that we are truly in the genomic era. Next‐
generation sequencing (NGS), which allows genome‐
wide detection of variants, is transforming on an 
unprecedented scale our understanding of pediatric and 
endocrine diseases by identifying mutations that are 
pathogenic or confer disease risk: new genes that cause 
human disease are being identified at the rate of 3 per 
week. We all differ in our DNA sequence and medical 
geneticists aim to understand the significance of this 
genetic diversity in health and disease, which has led to 
the age of genomic medicine.

Understanding genetic diversity is essential to under‑
standing the biology of diseases of various kinds, from 
simple Mendelian or monogenic disorders to more com‑
plex multifactorial disease, and how we respond to treat‑
ment at both population and individual levels. We have 
the capacity to study the human genome as an entity 
rather than one gene at a time and medical and clinical 
genetics has become part of the broader field of genomic 
or precision medicine, which seeks to apply a large‐scale 
analysis of the human genome to provide an individual 
and knowledge‐based approach to medical care.

Many web resources and web‐based tools have been 
developed to help the clinicians navigate and interpret 
the tremendous amount of genomic data that are being 
generated (Table 1.1).

The term ‘‐omics’ aims at the collective characteriza‑
tion and quantification of pools of biological molecules 
that translate into the structure, function and dynamics 
of an organism. Genomics can be divided into compara-
tive genomics, the study of the relationship of genome 
structure and function across different biological species 
or strains; functional genomics, which describes gene and 
protein functions and interactions; metagenomics, the 

study of genetic material recovered directly from envi‑
ronmental samples; and epigenomics, which is the study 
of the complete set of epigenetic modifications on the 
genetic material of a cell, known as the epigenome.

 Basic Concepts in Human Genetics 
and Genomics

Genes and Chromosomes

Genetic information is stored in DNA in the chromo‑
somes within the cell nucleus. DNA is a polymeric 
nucleic acid macromolecule composed of a five‑carbon 
sugar (deoxyribose), a nitrogen‐containing base and a 
phosphate group. The bases are of two types, purines 
and pyrimidines. In DNA, there are two purine bases, 
adenine (A) and guanine (G), and two pyrimidine bases, 
thymine (T) and cytosine (C). DNA is organized in a 
helical structure in which two polynucleotide chains run 
in opposite directions, held together by hydrogen bonds 
between pairs of bases, A of one chain pairing with T of 
the other and G with C. In the coding sequences of a 
gene, each set of three bases constitutes a codon that 
encodes for a particular amino acid. Genome refers to the 
totality of genetic information carried by a cell or an 
organism, whereas genotype is the genetic constitution of 
an individual cell or organism. With the exception of 
cells that develop into gametes (the germline), all cells 
that contribute to the body are termed somatic cells.

The human genome contained in the nucleus of the 
somatic cells consists of 46 chromosomes arranged in 23 
pairs, 22 of which are common in both males and females 
and are termed autosomes, and the remaining pair being 
the sex chromosomes, two X chromosomes in females 
and an X and a Y chromosome in males. Homologous 
chromosomes refer to members of a pair of chromosomes 
which carry the same genes in a similar organization.

1

Genetics and Genomics
Anu Bashamboo and Ken McElreavey

Human Developmental Genetics, Institut Pasteur, Paris, France



Genetics and Genomics2

Table 1.1 Commonly used databases in human genetic and genomic analysis.

Site Content URL

National Center for 
Biotechnology 
Information

A portal that provides access to a wealth of biomedical 
and genomic information. Includes PubMed, OMIM, 
dbSNP, Clinvar, expression data sets. Suite of tools for 
data and sequence analysis (e.g. BLAST)

http://www.ncbi.nlm.nih.gov

Mendelian Inheritance in 
Man (MIM)

A comprehensive database of human genes and genetic 
disorders

http://www.ncbi.nlm.nih.gov/omim

ClinGen Authoritative central resource that defines the clinical 
relevance of genes and variants for use in precision 
medicine and research

https://www.clinicalgenome.org

Ensembl Genome browser for vertebrate genomes that supports 
research in comparative genomics, evolution, sequence 
variation and transcriptional regulation. Annotates 
genes, computes multiple alignments, predicts 
regulatory function and collects disease data

http://www.ensembl.org

University California, 
Santa Cruz (UCSC), 
genome browser

Genome browser offering access to genome sequence 
data from vertebrate and invertebrate species and major 
model organisms. Integrated with a large collection of 
analysis tools

https://genome.ucsc.edu

GeneCards Provides comprehensive information on all human 
genes. It integrates gene data from ~125 web sources, 
including genomic, transcriptomic, proteomic, genetic, 
clinical and functional information

http://www.genecards.org

Human Gene Mutation 
Database (HGMD)

Collates published gene lesions responsible for human 
inherited disease

www.hgmd.cf.ac.uk/ac

Mouse Genome 
Informatics at the Jackson 
Laboratories

International database resource for the laboratory 
mouse, providing integrated genetic, genomic, and 
biological data to facilitate the study of human health 
and disease

http://www.informatics.jax.org

DECIPHER database Collects clinical information about rare genomic variants 
and displays this information on the human genome map

https://decipher.sanger.ac.uk

Database of Genomic 
Variants (DGV)

A curated catalogue of human genomic structural 
variation

http://dgv.tcag.ca/dgv/app/home

Exome Aggregation 
Consortium (ExAC) 
browser

Exome data set >60,000 unrelated individuals. Provides 
both a reference set of allele frequencies and constraint 
metrics giving information on whether a gene is tolerant 
or intolerant to variation

http://exac.broadinstitute.org

ClinVar Aggregates information about genomic variation and its 
relationship to human health.

http://www.ncbi.nlm.nih.gov/clinvar

Sequence Variant 
Nomenclature

Provides guidelines for sequence variation nomenclature http://varnomen.hgvs.org

dbSNP Genetic variation within and across different species. 
Not limited to SNPs, it contains a range of molecular 
variation

http://www.ncbi.nlm.nih.gov/SNP

F‐SNP Provides integrated information about the functional 
effects of SNPs obtained from 16 bioinformatics tools 
and databases. Helps identify and focus on SNPs with 
potential pathological effect to human health

http://compbio.cs.queensu.ca/F‐SNP

Biological General 
Repository for Interaction 
Datasets (BioGRID)

Database of protein–protein interactions, genetic 
interactions, chemical interactions, and post‐
translational modifications

http://thebiogrid.org
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A gene is a sequence of DNA in the genome required 
for the expression of a functional product, including a 
polypeptide or RNA molecule (Figure 1.1). The majority 
of human genes are organized as coding regions called 
exons interrupted by one or more non‐coding regions 
termed introns. Introns are initially transcribed into 
RNA in the nucleus but are not present in mature mRNA, 
which also has flanking 5′ and 3′ untranslated regions 
(UTRs). The latter contains a signal for the addition of 
adenosine residues (the polyA tail) to the end of the 
mature mRNA.

Other sequences within the 3′ UTR are important for 
translation efficiency, localization and stability, whereas 

the 5′ UTR is important in the regulation of RNA trans‑
lation. It is important when discussing genes to define 
what is meant by the terms trans and cis. trans‐Acting 
usually means ‘acting from a different molecule’, whereas 
cis‐acting means ‘acting from the same molecule’. In 
genetics and genomics, cis‐acting elements refer to DNA 
sequences in the vicinity of a gene that are required for 
gene expression; trans‐acting factors, either proteins or 
some classes of RNA molecules, bind to the cis‐acting 
sequences to control gene expression.

Many genes produce not just one but multiple pro‑
teins, which is achieved either by alternative splicing of 
the coding segments of genes or by numerous types of 

Table 1.1 (Continued)

Site Content URL

PhenomicDB A multi‐organism phenotype–genotype database 
including human, mouse, fruit fly, C. elegans, and other 
model organisms

http://www.phenomicdb.de

Phencode Connects human phenotype and clinical data in various 
locus‐specific mutation databases with data on genome 
sequences, evolutionary history and function in the 
UCSC Genome Browser

http://phencode.bx.psu.edu

Human Epigenome Atlas Includes human reference epigenomes and the results of 
their integrative and comparative analyses. Provides 
details of locus‐specific epigenomic states like histone 
marks and DNA methylation across tissues and cell 
types, developmental stages, physiological conditions, 
genotypes and disease states

http://www.genboree.org/
epigenomeatlas

Encyclopedia of DNA 
Elements (ENCODE)

Catalogue of functional elements in the human genome, 
including elements that act at the protein and RNA levels 
and regulatory elements that control cells and 
circumstances in which a gene is active

https://www.encodeproject.org

Genomics England 
100,000 Genomes Project

The project will sequence 100,000 genomes from around 
70,000 people. Participants are National Health Service 
(UK) patients with a rare disease, plus their families, and 
patients with cancer

www.genomicsengland.co.uk/
the‐100000‐genomes‐project

5′ 3′
Promoter

5′ untranslated
region

Start of 
transcription

Initiation codon

Exons

Introns 5′ untranslated
region

Termination
codon

Direction of transcription

Polyadenylation
signal

Figure 1.1 Example of a typical mammalian gene structure. A typical gene has regulatory regions preceding the coding exons 
interspersed by non‐coding introns. The individual labelled features are discussed in detail in the text.
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biochemical modifications of the resulting proteins so 
that the 19,000 genes in the human genome are esti‑
mated to generate over a million different proteins. The 
other point to remember is that individual proteins 
rarely work by themselves. The cell is composed of 
modular supramolecular complexes and each complex 
performs an independent, discrete biological function 
that could not be achieved by the independent compo‑
nents of the complex. The transfer of information 
from  the DNA strand to the protein is mediated by 
RNA, which directs the synthesis and sequence of 
polypeptides.

Genetic information is stored in genes in the form of a 
genetic code in which the sequence of adjacent bases 
determines the sequence of amino acids in the polypep‑
tide. RNA is synthesized from DNA by transcription and 
the RNA carrying the coded information is termed mes-
senger RNA (mRNA), which is transported from the 
nucleus to the cytoplasm where it is translated to synthe‑
size the protein. This constitutes the central dogma of 
molecular biology.

Regulation of Gene Expression

Gene expression is the production of correct RNA, which 
is a complex process where the RNA must be expressed 
in the appropriate cell type in the correct amount and, in 
some cases, at a precise developmental time. Nucleic 
acid sequences flanking the coding sequences and in 
some cases within the coding sequences provide the 
molecular signals for gene transcription. A promoter 
region that contains sequences necessary for the initia‑
tion of transcription lies at the 5′ end of most genes. An 
enhancer is a short (50–1500 bp) region of DNA that can 
be bound by proteins (transcription factors) to increase 
the likelihood that transcription of a particular gene will 
occur. Enhancers are generally located up to 1 Mbp away 
from the gene and can be upstream or downstream of 
the gene it regulates. The orientation of an enhancer may 
even be inverted without having an effect on its 
function.

Genes that are necessary for complex and multiple 
developmental processes usually have a number of 
enhancers with overlapping functions. A good example 
is the SOX9 locus: the developmental timing and tissue‐
specific transcriptional regulation of SOX9 are highly 
complex and involve multiple elements located in flank‑
ing regions of at least 1 Mb upstream and 1.6 Mb down‑
stream and these show strikingly different phenotypes 
when mutated. Upstream rearrangements are associated 
with campomelic dysplasia and fall within two clusters 
located about 400 kb apart. Large (>1 Mb) duplications 5′ 
to SOX9 (i.e. downstream) are associated with brachy‑
dactyly anonychia (symmetric brachydactyly of the 

hands/feet, hyponychia or anonychia). Pierre Robin 
sequence (micrognathia, cleft palate and macroglossia) 
is caused by either a deletion located 1.38 Mb upstream 
or a deletion located 1.56 Mb downstream of SOX9.

Another regulatory element, termed RevSex, is located 
600 kb upstream of SOX9 gene. Three copies of RevSex 
are associated with testicular or ovotesticular disorders 
of sex development (DSD), whereas deletions (one copy) 
of RevSex are associated with 46,XY gonadal dysgenesis.

RNA Editing

RNA editing is a molecular process through which cells 
can make discrete changes to specific nucleotide 
sequences within a RNA molecule. RNA editing includes 
nucleotide additions and insertions as well as nucleobase 
modifications such as cytidine (C) to uridine (U) and 
adenosine (A) to inosine (I), which is termed deamina‑
tion. RNA editing in mRNAs alters the amino acid 
sequence of the encoded protein so that it differs from 
that predicted by the genomic DNA sequence.

Various post‐translational modifications after protein 
biosynthesis can extend the chemical repertoire of the 
20 amino acids by introducing new functional groups 
such as phosphate, acetate, amide groups or methyl 
groups. This can occur on the amino acid side chains or 
at the protein’s carboxy (C‐) or amino (N‐) termini. The 
most common post‐translational modifications in 
descending order are phosphorylation, acetylation, N‐
linked glycosylation, palmitoylation and O‐linked 
glycosylation.

 Classes of RNA Molecules and their 
Functions

In recent years there has been a substantial shift in 
understanding the importance of different classes of 
RNA molecules in biological processes. Ninety percent 
of the human genome is transcribed, but many of the 
resulting transcripts and the factors regulating their 
transcription remain uncharacterized. The vast majority 
of the transcribed genome comprises diverse classes of 
non‐coding RNAs (ncRNAs) that may play key roles in 
different biochemical and cellular processes with pro‑
found implications for human health and disease. The 
cellular repertoire of ncRNAs consists of small house‑
keeping RNAs, such as ribosomal RNAs (rRNAs) and 
transfer RNAs, microRNAs, and long ncRNAs (lncRNAs). 
Assigning molecular, cellular, and physiological func‑
tions to well‐annotated ncRNAs is the current challenge 
in this field. ncRNAs are emerging as key players in pedi‑
atric and endocrine diseases.
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MicroRNAs, Small Interfering RNAs, and 
Piwi‐interacting RNAs

Small RNAs usually refers to any class of non‐coding 
RNA of 19–32 nt (Table 1.2). The role of small RNAs is 
continuing to be explored but their main function is gene 
silencing through RNA‐mediated mechanisms. RNA 
silencing is an umbrella term for all small RNA‐mediated 
inhibition of transcription, translation and deactivation 
of transposable elements. RNA silencing is widely 
regarded as a master controller of gene regulation but 
small RNAs have important roles in an increasing variety 
of eukaryotic biological processes. For example, small 
RNAs may play a role in transgenerational inheritance 
and epigenetic memory.

In eukaryotes, there are three major classes of small 
RNAs involved in post‐transcriptional regulation: micro‑
RNAs (miRNAs), small interfering RNAs (siRNAs) and 
Piwi‐interacting RNAs (piRNA). All find target RNAs by 
base pairing between complementary sequences, caus‑
ing target RNA degradation and/or translational repres‑
sion. Each type has its own preferred class of RNA 
targets, reflecting their biological functions. miRNAs 
and siRNAs bind to proteins in the Argonaute subfamily, 
whereas piRNAs bind to the Piwi subfamily of proteins.

MicroRNAs (miRNAs) are an abundant class of small 
evolutionarily conserved regulatory RNAs about 19–22 
nucleotides (nt) in length. They are thought to play fun‑
damental roles in most biological processes including 
disease. Over 1500 miRNAs have been identified that 
regulate the expression of up to 60% of mammalian 
genes. The canonical miRNA pathway starts with the 

transcription of miRNA genes by RNA polymerase II, 
which results in the production of the primary miRNA 
(pri‐miRNA). The pri‐miRNA transcript is cleaved by a 
protein complex consisting of Drosha/DGCR8 to gener‑
ate an ~80 base‐pair precursor miRNA (pre‐miRNA) 
with a characteristic hairpin secondary structure vital for 
enabling export from the nucleus.

Dicer, an RNase III/helicase multi‐domain enzyme, 
processes the pre‐miRNA into a ~22 bp miRNA. The 
gene encoding DICER is termed DICER1. DICER1 syn‑
drome is an inherited disorder that increases the risk of a 
variety of cancerous and benign tumours, including 
pleuropulmonary blastoma, cystic nephroma, multinod‑
ular goiter and Sertoli–Leydig cell tumours of the ovary, 
which typically develop in affected women in their teens 
or twenties. Some Sertoli–Leydig cell tumours release 
testosterone resulting in virilization.

Incorporated into one member of the Argonaute (Ago) 
protein family is the RNA‐induced silencing complex 
(RISC), a mature miRNA that binds typically to the 3′‐
UTR of the mRNA and inhibits its translation via various 
mechanisms including mRNA degradation. The key 
determinant of target recognition is a short sequence 
complementarity between the miRNA seed sequence 
(the second–eighth nucleotides of the miRNA) and the 
target mRNA. The maturation and function of miRNAs 
are highly dependent on the coordinated action of sev‑
eral RNA‐binding proteins.

The miRNA genes are mainly clustered in the genome 
and are transcribed as polycistronic primary transcripts. 
Forty percent of miRNA genes lie in the introns of pro‑
tein and non‐protein coding genes. These are usually, 

Table 1.2 Characteristics of the three major classes of small RNAs involved in post‐transcriptional regulation.

Properties miRNA piRNA siRNA

Size (nt) 20–24 (usually 22) 26–31 20–25
Origin Endogenous and ubiquitous Endogenous to germ cell lineages Exogenous or endogenous
Evolutionary 
conservation

Eukaryotes Vertebrates and invertebrates Eukaryotes

Precursor Single‐stranded RNA Single‐stranded RNA Double‐stranded RNA
Biogenesis Dicer dependent Dicer independent Dicer dependent
Base‐pair match 
to target

Imperfect Perfect Perfect

Distribution Cytoplasmic and nuclear Cytoplasmic and nuclear Cytoplasmic
Ago dependence Ago subfamily Piwi subfamily Ago subfamily
Target nucleic 
acid

3′UTR, 5′‐UTR, promoters, 
coding regions, pseudogenes

Transposons mRNA, promoters

Main functions Translation inhibition, mRNA 
degradation, transcriptional and 
post‐transcriptional silencing

Transposon silencing, 
transcriptional and post‐
transcriptional silencing

mRNA degradation, 
transcriptional and post‐
transcriptional silencing
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though not exclusively, found in a sense orientation and 
thus are regulated together with their host genes. Pre‐
miRNAs that are spliced directly out of introns are 
termed Mirtrons. Approximately 16% of pre‐miRNAs are 
modified by nuclear RNA editing, leading to changes in 
biological function. This is mainly mediated by adeno‑
sine deaminases acting on RNA to catalyse adenosine to 
inosine (A to I) transitions. RNA editing can result in 
disruption of nuclear processing as well as alter down‑
stream processes including cytoplasmic miRNA pro‑
cessing and target specificity.

Gene regulation by miRNAs is of key importance in 
many fundamental biological processes such as cellular 
differentiation, proliferation, migration and apoptosis. In 
disease, some circulating blood miRNA levels are pro‑
portional to the degree of severity of the pathology, such 
as drug‐induced liver injury, cardiovascular infection, 
cancer, Alzheimer’s disease, inflammation and metabolic 
diseases (obesity). Altered expression of miRNAs in dia‑
betes causes malfunction of insulin release and insulin 
resistance. The use of miRNAs as biomarkers for type 1 
diabetes (T1D) risk is attractive as these markers could 
be used to identify individuals at risk for developing T1D 
before symptoms appear. Twelve miRNAs were found to 
be more concentrated in sera from children and adoles‑
cents with newly diagnosed T1D compared with sera 
from age‐matched controls. Among them, miR‐25 was 
associated with improved glycaemic control and better 
residual β‐cell function, suggesting that this miRNA 
could be used during early and intensive management of 
newly diagnosed diabetes to improve blood glucose con‑
trol and reduce microvascular complications.

piRNA is the largest class of small non‐coding RNA 
molecules expressed in animal cells. piRNAs are gener‑
ated from various portions of long single‐stranded pre‑
cursor RNAs transcribed from genomic loci termed 
piRNA clusters, which are often >100 kb in size. They are 
distinguished from miRNA by their size (26–31 nt), lack 
of sequence conservation and increased sequence com‑
plexity. The majority are antisense to transposon 
sequences, indicating that transposons are the piRNA 
target. piRNAs direct the Piwi proteins to their transpo‑
son targets for gene silencing. The piRNA‐mediated 
repression of transposons is best characterized in the 
germline. piRNAs are necessary for spermatogenesis in 
humans.

siRNAs are derived from long double‐stranded pre‑
cursor RNAs (dsRNAs). Endogenously formed dsRNAs 
are exported to the cytoplasm where they are cleaved 
into 20–25‐nt duplexes by Dicer. One strand of these 
fragments, usually the antisense strand, is incorporated 
into multiprotein RISCs composed of one of a family of 
Argonaute proteins together with auxiliary proteins that 
extend or modify the function. In contrast to miRNAs, 

siRNAs have a sequence fully complementary to their 
target mRNA and usually have a single target mRNA. 
Depending on the source of dsRNA precursor, siRNAs 
can be further divided into exogenous and endogenous 
siRNAs (exo‐ and endo‐siRNAs, respectively).

LncRNAs

LncRNAs, non‐protein‐coding RNA transcripts longer 
than 200 nucleotides (nt), are emerging as key regula‑
tors of diverse cellular processes. The definition of lncR‑
NAs continues to evolve. The first reported example of 
a long non‐coding RNA (lncRNA) was the H19 tran‑
script, which lacked large open reading frames and was 
not translated into protein. Later work revealed the 
existence of thousands of lncRNAs in the human 
genome. The expression of lncRNAs is usually low but 
they are transcribed in a highly regulated manner, either 
from their own promotor sequence or as a by‐product of 
other transcriptional processes. Although some lncR‑
NAs are located within intergenic sequences, the major‑
ity are transcribed as complex, interlaced networks of 
overlapping sense and antisense transcripts that often 
include protein‐coding genes. They are generally, but 
not exclusively, spliced, 5′‐capped and 3′‐polyade‑
nylated, and transcribed by RNA polymerase II.

Approximately one‐third to one‐half of lncRNAs over‑
lap protein‐coding genes. Genic lncRNAs can be further 
divided into those that overlap protein‐coding loci in the 
sense or antisense direction and those that overlap 
exonic or intronic regions of the protein‐coding gene. A 
universal classification does not exist. The 200‐nt cut‐off 
to define their size is arbitrary and does not represent a 
biological distinction. A lncRNA may code for a poly‑
peptide but it must have coding‐independent functions, 
as shown for the steroid receptor RNA activator (SRA), a 
well‐characterized bifunctional lncRNA involved in the 
nuclear receptor‐mediated regulation of gene expres‑
sion. The SRA1 gene expresses both SRA RNA and the 
SRA protein (SRAP). This gene is involved in the regula‑
tion of many NR and non‐NR activities, including 
metabolism, adipogenesis and chromatin organization. 
The encoded protein, SRAP, acts as a transcriptional 
repressor by binding to the non‐coding RNA. SRA coac‑
tivates a range of nuclear receptors including ERα and 
ERβ in a ligand‐dependent manner by direct interaction 
with other co‐regulatory proteins. lncRNAs are becom‑
ing increasingly important in oncology. The dysregula‑
tion of lncRNAs expression is highly specific to the 
cancer type as compared to the protein‐coding genes. 
lncRNAs are being identified as drivers of cancer with 
their potential functions being predicted. This is provid‑
ing a framework for the development of new cancer 
diagnostics, stratification and precision treatments.
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Other Small ncRNA Classes

Small nucleolar RNAs (snoRNAs) are a class of small 
RNA molecules that primarily guide chemical modifica‑
tions of other RNAs, mainly ribosomal RNAs, transfer 
RNAs and small nuclear RNAs. There are two main 
classes, the C/D box snoRNAs, which are associated 
with methylation, and the H/ACA box snoRNAs, which 
are associated with pseudouridylation.

Y non‐coding RNAs were initially found in the cyto‑
plasm of mammalian cells. There are four non‐coding Y 
RNAs in humans: hY1, hY3, hY4 and hY5 RNA. Y RNA 
fragments are not involved in the miRNA pathway but 
they are essential factors for the initiation step of chro‑
mosomal DNA replication in human cell nuclei. The 
mechanism is poorly understood but is thought to be 
mediated by interactions with chromatin and transcrip‑
tion initiation proteins.

Small nuclear ribonucleic acid (snRNA) are found 
within the splicing speckles and Cajal bodies of the cell 
nucleus in eukaryotic cells. The length of an average 
snRNA is ~150 nucleotides. Their primary function is 
the processing of pre‐messenger RNA in the nucleus. 
They also aid the regulation of transcription factors (7SK 
RNA) or RNA polymerase II (B2 RNA) and telomere 
maintenance.

Circular RNAs (CircRNAs) are a family of naturally 
occurring endogenous ncRNAs with widespread distri‑
bution and diverse functions. These ~100 nucleotides 
long, single‐stranded RNA molecules form a circle 
through covalent binding. CircRNAs mainly arise from 
the exons of protein‐coding genes but they can also be 
derived from introns, untranslated regions, intergenic 
loci and antisense sequences of known transcripts. 
CircRNAs are common in the eukaryotic transcriptome 
and abundant in exosomes. CircRNAs show a high 
sequence conservation with specific expression in vari‑
ous tissues during different developmental stages. Some 
circRNAs can interact with miRNAs and can function as 
miRNA sponges in mammalian cells. CircRNAs are 
becoming increasingly important in medicine by serving 
as biomarkers for non‐invasive diagnosis of atheroscle‑
rosis, neurodegenerative diseases and cancers.

 Gene Mutations and Inheritance

Any permanent heritable change in the sequence of 
genomic DNA is termed a mutation.

Classes of Gene Mutations

Fifty percent of all disease‐causing mutations are mis-
sense, which are caused by a single nucleotide substitution 

(point mutation) in the DNA coding sequence of a gene 
that results in the replacement of one amino acid by 
another in the final protein product. Nucleotide changes 
that involve the substitution of one purine for the other 
(A for G or G for A) or one pyrimidine for the other 
(C for T or T for C) are termed transitions. The replacement 
of a purine for a pyrimidine (or vice versa) is a transver-
sion. Missense mutations are often referred to as non‐
synonymous mutations, whereas point mutations that do 
not alter the amino acid in the final protein product are 
referred to as synonymous mutations. Although the latter 
were largely ignored since they were considered to have 
no functional consequences, there is a growing realiza‑
tion that they can be associated with disease by affecting 
the stability of the mRNA, mRNA folding, translation 
fidelity and miRNA–mRNA interaction or by creating 
novel RNA splice sites. More than 50 human diseases are 
associated with synonymous mutations including 
Crohn’s disease, Treacher Collins syndrome and Crouzon 
syndrome.

A point mutation in a DNA coding sequence that 
results in the replacement of an amino acid codon to 
one of the three termination codons is termed a non-
sense mutation. Depending on its position, the result‑
ing transcript is predicted to be recognized by the 
nonsense‐mediated decay surveillance complexes and 
degraded. If this does not occur, the resulting truncated 
protein is usually unstable and degraded. Ten percent 
of all disease‐causing mutations are nonsense muta‑
tions, which may affect the processing of RNA. For 
introns to be excised from unprocessed RNA and the 
exons spliced together to form a mature mRNA requires 
a specific nucleotide sequence located at the exon–
intron (5′ donor site) or the intron–exon (3′ acceptor 
site) junctions. Mutations that affect these required 
bases at either the splice donor or acceptor site inter‑
fere with (and in some cases abolish) normal RNA 
splicing at that site. A second class of splicing muta‑
tions involves intron base substitutions that do not 
affect the donor or acceptor site sequences themselves. 
This class of mutations creates alternative donor or 
acceptor sites that compete with the normal sites dur‑
ing RNA processing. Thus, at least a proportion of the 
mature mRNA in such cases may contain improperly 
spliced intron sequences.

Mutations can also be caused by the insertion, inver‑
sion, translocation or deletion of DNA sequences. This 
may involve only a single base pair or up to several mil‑
lion base pairs. Frameshift mutations occur when small 
deletions or insertions occur within coding sequences 
and involve a number of bases that are not a multiple of 3. 
These generate a different sequence of codons from the 
point of the insertion or deletion and usually generate a 
downstream termination codon.
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Another form of mutation is gene conversion, a process 
by which one DNA sequence replaces a homologous 
sequence so that the sequences become identical after 
the conversion event. Gene conversion can be allelic, 
meaning that one allele of the same gene replaces another 
allele, or ectopic, meaning that one paralogous DNA 
sequence is converted to another. Gene congential plays 
an important role in congenital adrenal hypoplasia due 
to mutations involving the CYP21A2 gene, which is 
located on chromosome 6p21.3, 30 kb from the 
CYP21A1P pseudogene. Both CYP21A2 and CYP21A1P 
show sequence identity of 98% between exons and 96% 
between introns. The high sequence identity and close 
proximity of CYP21A2 and CYP21A1P can generate 
gene conversion that results in the transfer of deleterious 
mutations from the pseudogene to CYP21A2. It is esti‑
mated that 25% of all disease‐causing mutations are due 
to deletions or insertions.

Patient and Family History

A detailed patient and family history and thorough 
 clinical and biochemical investigation are essential to 

understand if the disorder follows one of five basic modes 
of inheritance for single‐gene diseases or if the inherit‑
ance pattern follows a more complex inheritance with 
incomplete penetrance or variable expressivity. The fam‑
ily history should include the drawing of the pedigree 
where individuals are represented by symbols (usually 
circles for female and squares for male), solid to indicate 
someone affected by a trait and unfilled for unaffected. 
Figure 1.2 illustrates some of the conventions followed in 
constructing pedigrees. A detailed pedigree analysis can 
reveal the inheritance patterns in a family. Pedigree anal‑
ysis is also useful for analysing populations with limited 
progeny data from multiple generations.

Mendelian Inheritance Patterns

The basic laws of inheritance are important to under‑
stand patterns of disease transmission. Single‐gene or 
monogenic diseases are usually inherited in one of 
 several patterns depending on the location of the gene in 
the genome or whether one or two copies of the gene are 
needed for normal biological activity. The five modes of 
inheritance for single‐gene diseases are autosomal 

3 4

?

1 2 
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II
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Sex unspecified

Number of children
of sex indicated

Affected

Nonpenetrant carrier,
may manifest disease

Obligate carrier

Proband
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Stillbirth

Spontaneous abortion

Miscarriage 

Marriage or union

Consanguinity

Divorce

Monozygotic twins

Dizygotic twins

Twins of unknown zygosity 

Pedigree with generations 
and individuals numbered

Termination of pregnancy

Figure 1.2 Symbols commonly used for creating pedigree charts.
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 dominant, autosomal recessive, X‐linked dominant, X‐
linked recessive and mitochondrial inheritance 
(Table 1.3). Single‐gene disorders affect 2% of the popu‑
lation sometime during a lifetime.

Single‐gene disorders are dominant or recessive. A 
dominant phenotype is expressed in both homozygotes 
and heterozygotes for a mutant allele, whereas a reces‑
sive phenotype is expressed only in homozygotes for the 
mutant allele. Most dominant disorders are rare and usu‑
ally seen in the heterozygous state. Thus approximately 
one‐half of offsprings will inherit a dominant trait. 
Homozygotes for dominant traits have usually a more 
severe phenotype or fail to survive. Many autosomal 
dominant mutations result in haploinsufficiency, which 
occurs when the single functional copy of the gene does 
not produce enough gene product to produce a wild‐
type phenotype.

A dominant negative mutation dominantly affects the 
phenotype by means of a defective protein or RNA mol‑
ecule that interferes with the function of the normal gene 
product in the same cell. Most recessive disorders are 
due to mutations that result in the reduction or elimina‑
tion of the function of the gene product and are termed 
loss‐of‐function mutations. Examples include 5‐alpha 
reductase deficiency, due to autosomal recessive muta‑
tions in the SRD5A2 gene, and congenital adrenal hyper‑
plasia, due to homozygous mutations in the CYP21A2, 
CYP11B1 or CYP11A1 genes.

The majority of loci on the X chromosome show X‐
linked inheritance because they participate in meiotic 
recombination only during female gametogenesis, when 
there are two X chromosomes; they cannot recombine 
with the Y during male gametogenesis. Males have a sin‑
gle X and are therefore hemizygous with respect to X‐
linked genes. 46,XY males are never heterozygous for 
alleles at X‐linked loci, whereas females can be heterozy‑
gous or homozygous at X‐linked loci. To compensate for 
the double complement of X‐linked genes in females, 
alleles for most X‐linked genes are expressed from only 
one of the two X chromosomes in any given cell.

A sex‐limited trait is a phenotype expressed in only 
one sex, although the gene that determines the trait is 
carried by both sexes and therefore autosomal. This is an 
on or off phenomenon. Sex‐limited genes cause the two 
sexes to show different phenotypes, despite having the 
same genotype. They are responsible for sexual dimor‑
phism, a phenotypic (directly observable) difference 
between males and females of the same species (e.g. lac‑
tation). This is not to be confused with sex‐linked traits, 
which is the phenotypic expression of an allele present 
on the sex chromosome of the individual. A classic exam‑
ple is male‐limited precocious puberty, an autosomal 
dominant disorder in which affected boys develop sec‑
ondary sexual characteristics and undergo an adolescent 
growth spurt at about 4 years of age. In some families, 
the phenotype is due to mutations in the gene that 
encodes the receptor for luteinizing hormone (LCGHR). 
A sex‐influenced trait refers when the expressivity of the 
phenotype is influenced by the sex, for example, body 
and facial hair.

For many phenotypes the mode of inheritance may 
depend on the gene involved. Non‐syndromic disorders 
of testis determination, 46,XY complete or partial 
gonadal dysgenesis, can be inherited in a number of dif‑
ferent ways that include sex‐limited autosomal recessive 
(e.g. DHH), sex‐limited autosomal dominant with varia‑
ble expressivity and incomplete penetrance (e.g. NR5A1), 
Y‐linked (SRY) or X‐linked (hemizygous duplication of 
NR0B1).

Non‐Mendelian Inheritance Patterns

Mitochondrial DNA (mtDNA) molecules, are present in 
tens to thousands of copies per cell. If a cell contains 
mitochondria that contain only a pure population of 
mutant mtDNA, it is termed homoplasmy. Alternatively, 
if the cell has mitochondria, some with and some with‑
out mutation, it is termed heteroplasmy. Disorders 
involving mtDNA mutations are characterized by mater‑
nal inheritance. Sperm mitochondria are eliminated 
from the embryo, so that mtDNA is always inherited 
from the mother. Thus, all the children of a female who is 

Table 1.3 Types of inheritance and their associated family history.

Type of 
inheritance Family history pattern

Autosomal 
dominant

Individuals carrying one mutated copy of 
the gene will be affected by the disease. 
Each affected person usually has one 
affected parent, although de novo mutations 
occur. Usually occurs in every generation of 
the family

Autosomal 
recessive

Individuals carrying two mutated copies of 
the gene will be affected. Parents are usually 
unaffected and each must carry a copy of 
the mutated gene (carriers). Usually not 
seen in every generation

Mitochondrial Maternally inherited. Both males and 
females can be affected. Can appear in 
every generation of a family

X‐linked 
dominant

Females are more frequently affected than 
males. Fathers cannot pass on X‐linked 
traits to their sons

X‐linked 
recessive

Males are more frequently affected than 
females. Affected males are often seen in 
each generation. Both parents of an affected 
daughter must be carriers. Only the mother 
must be a carrier of an affected son
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homoplasmic for a mtDNA mutation will inherit the 
mutation, whereas none of the offspring of a male carry‑
ing the same mutation will do so. mtDNA mutations 
cause human diseases that often involve the central nerv‑
ous and musculoskeletal systems. The proportions of 
normal and mutant mtDNA in the cells making up dif‑
ferent tissues often result in incomplete penetrance of 
the phenotype, variable expression and pleiotropy.

Amplification of a repeat sequence is observed in dis‑
orders such as Huntington disease and fragile X syn‑
drome. In the former, a simple trinucleotide repeat is 
located in the coding region and in a transcribed but 
untranslated region of the FRM1 gene in the latter. 
Trinucleotide repeat disorders often show a parent‐of‐
origin effect. Large expansions of the CAG repeat that 
cause juvenile Huntington disease are generally of pater‑
nal origin, whereas large expansions of the CGG repeat 
in fragile X syndrome are often of maternal origin.

Mosaicism is the presence of at least two cell lines that 
differ genetically but are derived from a single zygote in 
an individual or a tissue. Mosaicism can be categorized 
as somatic and/or germline. Mosaicism for numerical or 
structural abnormalities of chromosomes is clinically 
important and somatic mutations are recognized as a 
major contributor to many types of cancer. Somatic 
mosaicism refers to population of cells that carry a muta‑
tion in some tissues of the body but not in the gametes, 
whereas the cells carrying the mutation may be restricted 
to the gamete lineage in germline mosaicism. In some 
individuals both somatic lineages and the germline may 
be affected. 45,X/46,XY is a disorder of sex development 
associated with sex chromosome aneuploidy and mosai‑
cism of the Y chromosome associated with highly varia‑
ble clinical phenotypes, ranging from partial virilisation 
and ambiguous genitalia at birth to individuals with 
completely male or female gonads.

Common Disorders with Complex 
Inheritance Patterns

Many common disorders such as myocardial infarction, 
Alzheimer disease and diabetes do not follow Mendelian 
inheritance patterns seen in single gene disorders. They 
result from complex interactions between a number of 
genetic and environmental factors and follow a multifac‑
torial or complex inheritance pattern.

Complex phenotypes can be divided into qualitative 
and quantitative traits. A qualitative trait is the presence 
or absence of the disorder, whereas a quantitative trait is 
a measurable physiological or biochemical aspect of the 
disorder such as the body mass index in obesity.

Familial aggregation of a common phenotype does not 
always mean that the cause must be genetic. Family 
members may develop a disorder by chance since, as well 

as genes, family members often share a common envi‑
ronment, diet, socio‐economic status and culture. The 
familial aggregation of a disorder can be measured by 
comparing the frequency of the disorder in the relatives 
of an affected proband with its frequency in the general 
population. The more common a disorder in the general 
population, the more likely it is that the familial aggrega‑
tion may be a coincidence.

Another approach to determine familial aggregation is 
case–control studies. Patients with the disorder are com‑
pared with carefully chosen control individuals who do 
not have the disorder. Often this is a spouse since they 
usually match the case in terms of age, ancestry (previ‑
ously referred to as ethnicity) and environment. These 
types of studies are subject to errors that include ascer‑
tainment biases and failure to correctly match case–con‑
trol subjects. Control individuals should differ from 
cases only in their disease status. All other factors should 
be matched. If they are not matched, a case–control 
study may find significant associations that are due to 
differences in, for example, ancestry rather than any rela‑
tionship to the presence or absence of the disorder.

The genetic contribution to a complex disorder can be 
dissected by measuring allele sharing between affected 
and unaffected relatives. The concept is simple: when a 
genetic contribution is important in a disorder, the fre‑
quency of disease concordance increases as the degree of 
relatedness increases. Monozygotic twins (MZ) are the 
most extreme example as they have all their alleles in 
common. A first‐degree relative shares ½ of alleles, a sec‑
ond‐degree relative ¼, and a third‐degree relative ⅛ and 
so on. One of the most common ways of separating the 
genetic contribution from the environment is to study 
MZ and dizygotic twins (DZ). DZ reared together allow 
the measurement of disease concordance in a similar 
environment, whereas MZ twins provide the opportu‑
nity to study genotypically identical individuals reared in 
similar or different environments. Greater disease con‑
cordance in MZ versus DZ twins is strong evidence for a 
genetic contribution to the disease.

Heritability was developed to quantify the role of 
genetic differences in determining variability of quanti‑
tative traits. It is the fraction of the total phenotypic vari‑
ance of a quantitative trait caused by genes. Due to 
genetic differences between individuals, the higher the 
heritability, the greater the variability of the phenotype. 
Heritability measures the fraction of phenotype variabil‑
ity that can be attributed to genetic variation but it does 
not indicate the degree of genetic influence on the devel‑
opment of a trait of an individual.

Good examples of complex or multifactorial disorders 
include hypospadias and T1D. Hypospadias is one of the 
most common congenital disorders in males occurring 
in 1 : 200–1 : 300 male births. Anterior (glandular) and 
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middle (penile) forms comprise 70–80% and 15–20% of 
cases, respectively. Hypospadias shows familial cluster‑
ing, with 7% of cases having affected first‐, second‐ or 
third‐degree relatives. The chance that a brother of an 
affected boy will also have hypospadias is 9–17%. Studies 
of family as well as twins of known zygosity have esti‑
mated the heritability of hypospadias to be 57–77%, 
meaning that 57–77% of the phenotypic variability can 
be attributed to genetic variability. Like many other com‑
mon disorders, such as infertility, current data indicate 
that hypospadias might be monogenic in a small propor‑
tion of the families (e.g. the mutations in genes NR5A1, 
AR, FGFR2 and MAMLD1) but that there is a multifac‑
torial cause in the majority of cases.

T1D is a result of interplay between genetic predispo‑
sition, environmental factors and reprograming of the 
immune system. The destruction of pancreatic β‐cells 
affects the level of insulin secretion leading to disease 
development. Destruction of pancreatic β‐cells is medi‑
ated by an altered immune response due to genetic 
anomalies resulting in increase of pro‐inflammatory 
cytokines and autoreactive T and B lymphocytes. Twin 
studies have estimated that 88% of phenotypic variance 
of T1D in Finland is due to genetic factors and the 
remaining due to unshared environmental factors. 
Genome‐wide association studies have identified more 
than 50 variants associated with increased risk for T1D. 
The HLA class II region has the strongest impact on T1D 
risk. However, more than 40 non‐HLA loci that impact 
upon the risk of developing T1D have been identified. 
Many of these genes are associated with immune func‑
tion including interleukin (IL)‐2Ra, PTN22, IL‐10, CCR5 
and IL‐2.

Uniparental Disomy

Uniparental disomy (UPD) occurs when a person 
receives two copies of a chromosome or of part of a chro‑
mosome from one parent and no copy from the other. 
UPD usually arises from the failure of the two members 
of a chromosome pair to separate properly into two 
daughter cells during meiosis in the parent’s germline 
(nondisjunction). The resulting gametes contain either 
two copies of a chromosome (disomic) or no copy of that 
chromosome (nullisomic). This leads to a conception 
with either three copies of one chromosome (trisomy) or 
a single copy of a chromosome (monosomy).

If a second event occurs by either the loss of one of the 
extra chromosomes in a trisomy or the duplication of the 
single chromosome in a monosomy, the karyotypically 
normal cell may have a growth advantage compared to 
the aneuploid cells.

A postfertilization error can also lead to UPD, by either 
somatic recombination or gene conversion. Two types of 

UPD can be defined – uniparental heterodisomy (UPhD), 
where the two different alleles of the same parent are 
transmitted, and uniparental isodisomy (UPiD), where 
two identical copies of one allele of the contributing par‑
ent are present.

UPD may have clinical relevance for several reasons. 
For example, either isodisomy or heterodisomy can dis‑
rupt parent‐specific genomic imprinting, resulting in 
imprinting disorders. Additionally, isodisomy leads to 
large blocks of homozygosity, which may lead to the 
uncovering of recessive genes. Uniparental inheritance 
of imprinted genes can result in phenotypic anomalies. 
Examples include Prader–Willi, Angelman and Silver–
Russell syndromes. Prader–Willi syndrome, character‑
ized by hypothalamic–pituitary abnormalities, is caused 
by deletion or inactivation of genes on the paternally 
inherited chromosome 15, while the maternal copy, 
which may be of normal sequence, is imprinted and 
therefore silenced. Angelman syndrome is a neurodevel‑
opmental disorder caused by the loss of maternally 
inherited genes on chromosome 15 and paternal imprint‑
ing. Silver–Russell syndrome is a clinically heterogene‑
ous disorder characterized by severe in utero growth 
restriction and poor postnatal growth, body asymmetry, 
irregular craniofacial features and several additional 
minor malformations. The etiology is complex and cur‑
rent evidence strongly implicates imprinted genes. 
Approximately half of all patients exhibit DNA hypo‑
methylation at the H19/IGF2 imprinted domain; around 
10% have maternal UPD of chromosome 7.

Penetrance and Expressivity

Some disorders are not expressed in an individual, even 
though the individual carries the mutation causing the 
phenotype in other members of the family. This is termed 
penetrance, defined as the probability that a gene muta‑
tion will have a phenotypic expression. Penetrance is an 
all or nothing concept. If only a proportion of people car‑
rying the genotype display the phenotype, the trait is said 
to show incomplete penetrance. If all carriers show the 
phenotype, then the trait is said to have complete or full 
penetrance. For example, familial cases of central preco‑
cious puberty show reduced or incomplete penetrance.

Expressivity refers to the severity of the phenotype in 
different individuals carrying the same disease‐causing 
genotype. If the severity of the phenotype differs in peo‑
ple with the same disease‐causing genotype, the pheno‑
type shows variable expressivity. Disease expressivity 
includes age of onset, rate of progression, severity and 
the manifestation of other comorbidities. There are 
numerous examples of studies of non‐identical twins 
who share the same environment and carry the same dis‑
ease‐causing genotype yet display distinct phenotypes. 
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This suggests that genetic factors are acting as modifiers 
of the phenotype. The effect of one gene or allele on the 
phenotypic outcome of a second gene or locus is termed 
epistasis, genetic interaction, digenic inheritance, oligo‑
genic inheritance or genetic modifier. Although these are 
essentially synonyms, there are important distinctions 
that can be drawn.

If a mutation in the primary gene is both necessary and 
sufficient to cause disease, the presence of an allele at a 
second gene has a purely modifying role on the severity 
of the phenotype. Digenic or oligogenic inheritance is 
termed when alleles at two (di‐) or more (oligo‐) genes 
are required to manifest the pathology. In practice this 
distinction is often blurred. It is important to note that 
variability in the expression of the phenotype could also 
be due to environmental factors, perhaps interacting 
with genetic variants. Examples of genetic modifiers 
include variation in an interacting protein partner or, if 
the protein is a DNA‐binding transcription factor, varia‑
tion in target binding sequences. An example of variable 
expressivity is the phenotype associated with mutations 
in the NR5A1 gene. Here, mutations involving the same 
amino acid change are associated with 46,XY complete 
gonadal dysgenesis in some individuals and infertility in 
others. Digenic and, more rarely, oligogenic inheritance 
has been reported in individuals with central hypogon‑
adotropic hypogonadism (CHH). Where the causal 
mutation has been identified, over 80% of patients with 
CHH have a monogenic cause but ~12% have digenic 
and 2.5% oligogenic inheritance.

 Human Populations and Genetic 
Variation

Overview of Human Genetic Variation

Mendelian phenotypes result from mutations that alter 
the function, localization and/or the presence of a pro‑
tein. Even though protein‐coding sequences comprise 
only around 2% of the human genome, linkage analyses 
on pedigrees with various disorders have shown that the 
vast majority of disease‐causing mutations are variants 
that directly impact protein expression or function. This 
excludes ascertainment bias. Overall, clinically recog‑
nized Mendelian phenotypes occur in ~0.4% of all live 
births and 8% of live births have a genetic disorder recog‑
nizable by early adulthood. The Human Genome Project 
and subsequent annotation efforts have established that 
there are around 19,000 predicted protein‐coding genes 
in humans. The consequences of germline mutations 
(single nucleotide variants [SNVs] and copy number var‑
iants [CNVs]) are known for more than 2300 of these 
genes. Around 3300 genes have been implicated in 

Mendelian disorders and this figure is growing at around 
300 per year.

Humans are 99.9% identical with respect to their DNA 
sequence. A typical human genome from an apparently 
healthy individual differs from the reference genome at 
4.1–5 million sites (>99.9% SNVs or indels) and carries 
300–600 non‐synonymous mutations that are found in 
<1% of the general population (minor allele frequency, 
MAF < 0.01). This includes around 150 mutations that 
are not (yet) present on any of the public variation data‑
bases and that are a combination of de novo or family or 
community‐specific DNA variants. All of us inherit 
about 100 likely loss‐of‐function or nonsense variants 
from our parents and around 25–30 variants per genome 
that have been reported to be associated with rare dis‑
eases (ClinVar: http://www.ncbi.nlm.nih.gov/clinvar).

One of the surprises from the large amount of genomic 
data generated from healthy control populations in 
recent years, such as the 1000 genomes project, is the 
relatively high prevalence of mutations that have previ‑
ously been reported as causing severe disease. This sug‑
gests that a combination of incomplete penetrance, a 
false assignment of pathogenicity or a wide range in the 
expressivity of the phenotype may be more common fea‑
tures of disease mutations than is generally appreciated.

Genetic variation in the general human population can 
be interrogated using dbSNP (http://www.ncbi.nlm.nih.
gov/SNP) or the Exome Aggregation Consortium (ExAC; 
http://exac.broadinstitute.org). The Exome Aggregation 
Consortium (ExAC) data set contains exome sequence 
data from more than 60,000 individuals with an assigned 
geographic ancestry. Approximately 60.9% of the sam‑
ples in the ExAC reference cohort are of European ances‑
try, compared with 13.7% of South Asian ancestry, 9.6% 
of Latino ethnicity, 8.6% of African (African American) 
ancestry and 7.2% of East Asian ancestry.

Allele Frequencies Differ in Different 
Populations

Although most variants are common across human 
populations, rare gene variants can show markedly dif‑
ferent patterns across different human communities. 
The 1000 genomes project established that there are 
several hundred thousand SNVs that show considera‑
ble differences in allelic frequencies in geographically 
and ancestry distinct populations. There are several 
explanations for this. Local populations may have 
adapted to their specific environments and genetic 
variants that facilitated this adaptation were selected 
by evolution (positive selection), which could explain 
the high frequency of mutation in the cystic fibrosis 
transmembrane conductance regulator (CFTR) gene in 
individuals of European ancestry. Carriers of CFTR 
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mutations may have had more resistance to cholera and 
other  dehydrating intestinal disorders or are more 
resistant to contracting tuberculosis.

The demographic history of a population can also have 
a dramatic impact on allele frequencies in modern popu‑
lations. Migration can change allele frequency by the 
process of gene flow, defined as the slow diffusion of 
genes across a barrier. This usually involves a large popu‑
lation and a gradual change in gene frequencies. The 
genes of migrant populations with their own characteris‑
tic allelic frequencies are gradually merged into the gene 
pool of the population into which they have migrated. 
Historically small and/or isolated populations or popula‑
tions that experienced a population bottleneck can also 
effect allelic frequencies. Tay–Sachs disease in Ashkenazi 
Jews is an example, where a Tay–Sachs mutation arose 
by chance in a small breeding population and led to a 
founder effect.

Chance events can have a much greater effect on allele 
frequencies in a small population than in a large one. If 
the population is small, random effects, such as increased 
fertility or survival of the carriers of a mutation that 
occurred for reasons unrelated to carrying the mutant 
allele, may cause the allele frequency to change from one 
generation to the next. This is termed genetic drift. 
Whatever the mechanism, large‐scale sequencing pro‑
jects are showing that disease‐causing alleles at relatively 
high frequencies in specific populations and communi‑
ties as well as rare variants may be an important con‑
tributor to common diseases. This has an important 
impact on the clinical work‐up of a patient, where it is 
essential to determine the ancestry of the affected 
individual.

Copy Number Variation (CNV)

Human populations also show extensive structural poly‑
morphism, both deletions and duplications of chromo‑
somal segments and, consequently, in the number of 
genes in these segments. Approximately two‐thirds of 
the human genome is composed of repeats and 4.8–9.5% 
of the genome contributes to CNVs. Indeed, CNVs are 
thought to account for ~1% of the variation between two 
individuals. In contrast, SNVs are thought to account 
for ~0.1% of the variation. CNVs can arise both meioti‑
cally and somatically and can therefore contribute to 
variation between identical twins as well as variation 
between different organs and tissues of the same 
individual.

Smaller deletions and insertions (typically >50 kb) can 
be detected by comparative genomic hybridization 
(CGH) or multiplex ligation‐dependent probe amplifica‑
tion (MLPA) analysis. MLPA is a variation of the multi‑
plex polymerase chain reaction. For a short sequence of 

target DNA, two adjacent probes are designed to contain 
the forward and reverse primer sequence, respectively. 
In addition, one or both probes contain a stuffer sequence 
of which the length can be varied during the experiment. 
The probes are hybridized against the target DNA and 
subsequently ligated. Only if ligation happened does a 
functional PCR strand appear, so that amplification only 
happens if target DNA is present in the sample. The 
amount of PCR product is proportional to the amount of 
target DNA present in the sample, making the technique 
suitable for quantitative measurements.

Comparative genomic hybridization is a molecular 
cytogenetic method for analysing CNVs relative to ploidy 
level in the DNA of a test sample compared to a  reference 
sample. Classically this was performed by differentially 
labelling a reference and test genome and hybridizing to 
an immobilized substrate such as a microarray. The fluo‑
rescence ratios provide a representation of the relative 
DNA CNV. Today, this is performed by a combination of 
hybridization of unlabelled DNA to target oligomers and 
enzymatic single‐base extension to incorporate a labelled 
nucleotide for assay read‐out but this is likely to be 
superseded by whole genome sequencing (WGS) in the 
near future.

There are still many hurdles in the clinical interpreta‑
tion of CNVs. They are relatively common and there are 
many examples of known pathogenic CNVs exhibiting 
reduced penetrance and/or variable expressivity. This 
can result in a more severely affected child, who has 
inherited a CNV from a seemingly normal parent. The 
22q11.2 deletion (del) syndrome is a classic example of 
this. In general, large, rare recurrent deletions and dupli‑
cations are straightforward to interpret because of con‑
siderable genetic and phenotypic evidence. Typically, in a 
large multi‐centre clinic, 15–20% of cases with develop‑
mental delay are associated with diagnostic findings 
from whole genome chromosomal microarray (CMA) 
analysis. Among these diagnostic cases, many rare CNVs 
are detected for which the potential functional signifi‑
cance is unknown and they are referred to as variants of 
uncertain (or unknown) significance (VUS). It is impor‑
tant to bear in mind that ~100 genes can be completely 
deleted from the human genome without phenotypic 
consequences.

The major challenge in this field is the detection and 
interpretation of small (>1–5 kb) rearrangements. These 
are generally too small to be detected by conventional 
microarrays but can be detected by WGS. Current data 
indicate that each individual carries many thousands of 
these small CNVs. Because of the absence of information 
in public databases on these small rearrangements, the 
interpretation of these small variants in challenging. 
CNVs are of considerable importance in pediatric endo‑
crinology. A considerable proportion of individuals with 
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