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 Pulmonary infections represent one of the main causes of development of severe 
acute respiratory insuffi ciency that requires hospital admission in pneumology 
wards and intensive care units. In this scenario, mechanical ventilation is corner-
stone in severe forms. 

 However, some types of pulmonary infections are characterized by severity and 
high risk of contamination, especially for health personnel and debilitated critically 
ill patients. These high-risk pulmonary infections are characterized by their great 
capacity for rapid spread and mortality, as determined in the current and past pan-
demics as SARS, swine fl u and the classical outbreak infections of pulmonary 
tuberculosis or legionella pneumophila. Lastly, some forms of bioterrorism and bio-
chemical agents have been added as new potential source of acute respiratory failure 
affecting a great number of patients. 

 This is a continuum and permanent challenge to resolve to Emergency Medicine, 
Pneumology and Critical Care Medicine community. 

 In this last decade selection of more appropriate non-invasive therapeutic options 
may avoid complications associated with invasive mechanical ventilation as ventila-
tor associated pneumonia and prolonged mechanical ventilation. In this scenario, 
non-invasive mechanical ventilation has been shown as growing practical and safe 
alternative. 

 However, there are no practical books that defi ne appropriate criterias for selec-
tion, contraindications and rational preventive programs for pre and hospital health 
organization. In this book entitled  Noninvasive Ventilation in High-Risk Infections 
and Mass Causalities , we discuss from a practical point of view, what is the role of 
non-invasive mechanical ventilation, best hospital organizational recommendations, 
protection mechanisms and patient care during non-invasive mechanical ventilation 
in patients suffering high-risk pulmonary infections and mass causalities. 

 Murcia, Spain   Antonio M. Esquinas  
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     Coughing is a watchdog of the lungs. It represents the most important airway defen-
sive refl ex and one of the main symptoms of respiratory disease. During coughing 
and sneezing, particles of mucus can be expelled for a distance of up to 9 m [ 1 ]. 
Various pathogens, if present, may therefore infect nearby people and animals, con-
tributing to massive dissemination of airborne infections. In addition to using vari-
ous protective measures, down-regulation of coughing plays a substantial role in 
preventing dissemination of respiratory infections. For example, about 80 % of pas-
sengers on a 3-h airplane trip may be infected by the cough of an individual carrying 
the fl u virus. These newly infected passengers then disseminate the viral infection 
at their destinations worldwide. 

 Protective and therapeutic actions are particularly urgent during a pandemic of 
infl uenza A (H1N1 virus), which mainly affects the most marginal and immuno-
compromised members of a population, including children. There are several patho-
physiological forms of cough down-regulation [ 2 ] that can be applied during a fl u 
pandemic. 

 The  D222G  mutation of the 2009 pandemic virus A (H1N1) caused destruction 
of the tracheobronchial ciliated cells as well as the bronchiolar and alveolar cells. 
This, in turn, disabled the clearing mechanisms of the lungs, which in Spain caused 
a 3.5-fold increase in the fatal outcome of the 2009 fl u pandemic [ 3 ,  4 ]. 

        Z.   Tomori      (*) •    V.   Donic    
  Department of Physiology and Sleep Laboratory, Faculty of Medicine , 
 University of P.J. Safarik ,   Kosice ,  Slovakia   
 e-mail: zoltan.tomori@gmail.com  

 1      High-Risk Infections: Influence 
of Down-Regulation and 
Up-Regulation of Cough Using Airway 
Reflexes and Breathing Maneuvers 

             Zoltan     Tomori      and     Viliam     Donic   
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 During the breathing cycle, the lung volume at the moment determines the 
actions of two alternating tendencies—inspiration and expiration—mediated by 
two distinct ventilatory refl exes. The refl exes are induced by stimulation of the 
 airway and lung receptors, again depending on the lung volume and local pressure 
at the moment. At the early phase of inspiration, the lung volume is very low, just 
starting to increase gradually from its functional residual capacity (FRC). There is 
a strong general tendency to inspire at this point [ 5 ]. 

 Inspiratory efforts can be provoked by various methods for stimulating airway 
rapidly adapting receptors (RARs). In cats, rapid inspiratory efforts can be evoked 
by nasopharyngeal stimulation, manifesting as the sniff- and gasp-like aspiration 
refl ex (AspR) [ 1 ,  6 – 8 ] and by rapid lung infl ation [ 5 ], which decreases the frequency 
and intensity of the subsequent expiratory efforts of cough and postpones them [ 9 ]. 
During gastroesophageal refl ux or inhalation of irritant substances to the larynx, 
there is a strong “urge to cough” that can be voluntarily suppressed. To prevent aspi-
ration of irritant substances into the lower airways, the necessary effort of coughing 
may be postponed by a previous, very slow voluntary inspiration followed by breath-
holding and swallowing of the bolus to the esophagus. Only then can the effort to 
cough be initiated for expulsion of irritants from the airways [ 10 – 12 ]. Similar vol-
untary cough suppression commonly decreases the disturbing effect of coughing 
during a concert. It can similarly strongly inhibit dissemination of airborne infec-
tions due to coughing. Such ventilatory maneuvers might be usefully applied to the 
fi ght against fl u pandemics and other widespread respiratory infection outbreaks. 

 On the other hand, the increasing lung volume at and above the tidal volume ( V  T ) 
stimulates the slowly adapting receptors (SARs). Also, because of the Hering 
Breuer inspiration inhibiting refl ex (HBIIR), after inspiratory “switch-off” the  V  T  
induces the expiratory phase. The tendency to expire is strong at the end of tidal 
inspiration [ 5 ]. Therefore, stimulation of laryngeal RARs interrupts the inspiration 
and evokes laryngoconstriction and the expiration refl ex (ExpR) [ 1 ,  7 ,  8 ]. 
Additionally, an inspired or infl ated volume above the normal  V  T  or blockade of 
lung defl ation at the beginning of expiration by positive pressure can adequately 
speed up and increase the intensity of the subsequent expiratory effort. It is caused 
by stimulation of airway receptors and manifests as the Hering Breuer expiration 
facilitating refl ex (HBEFR) [ 5 ]. 

 Hyperinfl ation or occlusion of airways and hindering lung defl ation by a ventila-
tor or a pressure pulse provokes the ExpR and the cough refl ex (CR). Such rapid 
expiratory efforts might promote expulsion of infected mucus, preventing its protru-
sion from the larynx to the lungs and preclude, or at least postpone, the development 
of dangerous aspiration pneumonia [ 13 ]. A proposed voluntary breathing maneuver 
consists of several rapid sniffs with a closed mouth of 0.5 s duration, each followed 
by forced expiration lasting about 3 s. Such a maneuver might save many lives and 
improve the quality of life of millions of people worldwide during imminent fl u 
pandemics or other widespread respiratory infections. The early inspiratory sniffs 
and other spasmodic inspirations, including provocation of the AspR, result in 
down-regulation of coughing and may substantially retard a fl u or other respiratory 
infection pandemic. 

Z. Tomori and V. Donic
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 Rapid refl ex or voluntary hyperinfl ation or occluded lung defl ation—started at 
the early expiratory phase by pressure pulses—may result in refl ex up-regulation of 
cough due to stimulation of airway receptors and mediated by HBEFR [ 5 ]. Such 
up-regulation may prevent, or at least postpone, the development of mostly fatal 
aspiration pneumonia. The sniff- and gasp-like AspR provoked by nasopharyngeal 
stimulation in anesthetized cats decreased the number and intensity of cough efforts 
provoked in the tracheobronchial region [ 9 ]. Similarly, the urge to cough may be 
suppressed, and even the motor act of coughing might be inhibited or at least post-
poned by voluntary action, helping to decrease the dissemination of airborne infec-
tions [ 11 ,  12 ]. Rapid, deep breaths through the nose, but not through the mouth, 
have bronchoprotective and bronchospasmolytic effects in probands and patients 
with mild bronchial asthma. This bronchoprotective effect in humans requires rapid 
inspiratory airfl ow [ 14 ,  15 ]. The sniff-like voluntary inspiration decreases the bron-
choconstriction detected by one-second forced expiratory volume (FEV 1 ), induced 
by metacholine inhalation in adult asthmatics [ 16 ] and decreased the number of 
coughs provoked by capsaicin inhalation in young asthmatics [ 17 ]. These results 
indicate a refl ex origin of the bronchodilator effect of nasopharyngeal stimulation, 
which decreases in parallel with bronchodilation and bronchoconstrictor-triggered 
coughing [ 18 ]. Taking advantage of voluntary airway refl exes and ventilatory 
maneuvers have many important practical applications [ 19 ]. They include detection 
of preparatory movement activity in the premotor area in persons in a vegetative 
state [ 20 ,  21 ]. The control of wheelchairs by trained paraplegics [ 22 ] can be repro-
duced by voluntary performance of aspiration and expiration refl exes, representing 
binary signals [ 19 ]. Gasping respiration developing in animals can provide autore-
suscitation for few minutes even during cardiac arrest [ 23 ]. Therefore, provocation 
of the gasp-like AspR persisting even in agonal state or voluntary sniffs, might 
provide autoresuscitation in emergency situations [ 7 ,  19 ].    
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2.1        Introduction 

 Respiratory failure is a major complication of viral infections such as severe acute 
respiratory syndrome (SARS) [ 1 ], avian infl uenza H5N1 infection [ 2 ], and the 2009 
pandemic infl uenza (H1N1) infection [ 3 ]. The course may progress rapidly to acute 
respiratory distress syndrome (ARDS) and multi-organ failure, requiring intensive 
care. Noninvasive ventilation (NIV) may play a supportive role in patients with 
severe viral pneumonia and early ARDS/acute lung injury. It can act as a bridge to 
invasive mechanical ventilation, although it is contraindicated in critically ill 
patients with hemodynamic instability and multi-organ dysfunction syndrome [ 4 ]. 
Transmission of some of these viral infections can convert from droplets to airborne 
during respiratory therapy. 

 During the major outbreak of SARS, endotracheal intubation [ 5 ], oxygen ther-
apy, and NIV were found to be risk factors for major nosocomial outbreaks affect-
ing health care workers [ 6 ]. Possible aerosol transmission during a nosocomial 
outbreak of seasonal infl uenza was temporally related to the application of NIV in 
an index patient with hypercapnic respiratory failure due to acute exacerbation of 
chronic obstructive pulmonary disease (COPD). The patient was on a medical ward 
with an imbalanced indoor airfl ow [ 7 ]. As infl uenza virus may be contained in fi ne 
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particles generated during tidal breathing [ 8 ], NIV may disperse potentially infected 
aerosols, especially when patients cough and sneeze frequently, contributing to 
nosocomial transmission of infl uenza. Pulmonary tuberculosis (TB) is well known 
to spread by the airborne route. A recent study showed that a small number of 
patients with pulmonary TB (28 %) produced culturable cough aerosols [ 9 ]. 

 Thus, it is important to examine the exhaled air directions and dispersion dis-
tances during application of NIV to patients with respiratory failure via commonly 
used face masks. The data can improve our understanding of and knowledge about 
infection control. Such knowledge can facilitate the development of preventive 
measures to reduce the risk of nosocomial transmission during application of NIV 
to high-risk patients with respiratory infections.  

2.2    Methods 

 As there is no reliable, safe marker that can be introduced into human lungs for 
experimental purposes, the laser smoke visualization method and the human patient 
simulator (HPS) model have been adopted as the method for studying exhaled air 
dispersion during application of various types of respiratory therapy in hospital 
medical wards, including the negative-pressure isolation room [ 10 – 13 ]. 

2.2.1    NIV and Lung Model 

 The HPS represents a 70-kg adult man sitting on a 45°-inclined hospital bed 
(Fig.  2.1 ). The HPS contains a realistic airway and is programmed to remove oxy-
gen and inject carbon dioxide into the system according to a preset respiratory 
exchange ratio and oxygen consumption. The lung compliance can also be changed 
to simulate different degrees of lung injury during chest infection. By varying the 
oxygen consumption (200, 300, and 500 ml/min) and lung compliance (70, 35, and 
10 ml/cmH 2 O), these sets of values produce a range of tidal volumes, respiratory 
rates, and peak inspiratory fl ow similar to those of patients with minimal (essen-
tially normal lung function), moderate, or severe lung injury, respectively. For 
example, lung compliance is set at 35 ml/cm H 2 O and oxygen consumption at 
300 ml/min to mimic mild lung injury. Tidal volume and respiratory rate are regu-
lated so a respiratory exchange ratio of 0.8 is maintained during measurements. 
Typically, this is achieved with a tidal volume of 300 ml and a respiratory rate of 25 
breaths/min [ 10 – 13 ]. Lung compliance and airway resistance also responds in a 
realistic manner to relevant respiratory challenges. The HPS produces an airfl ow 
pattern that is close to the in vivo situation. It has been applied in previous studies 
to simulate human respiration [ 14 – 17 ].

   Deliberate leakage from the exhalation ports of the Mirage mask (ResMed, Bella 
Vista, NSW, Australia) [ 10 ], ComfortFull 2, and Image 3 masks (Respironics, 
Murrysville, PA, USA) [ 11 ] fi rmly attached to a high-fi delity HPS (HPS 6.1; 
Medical Education Technologies, Sarasota, FL, USA) has been evaluated. NIV was 
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applied using a bilevel positive airway pressure device (VPAP III ST; ResMed) via 
each mask. The inspiratory positive airway pressure (IPAP) was initially set at 10 
cmH 2 O and gradually increased to 18 cmH 2 O. The expiratory positive airway pres-
sure (EPAP) was maintained at 4 cmH 2 O throughout the study [ 10 ,  11 ].  

2.2.2    Flow Visualization 

 Visualization of airfl ow around each NIV face mask was facilitated by marking the 
air with smoke particles produced by a M-6000 smoke generator (N19; DS 
Electronics, Sydney, Australia), as in our previous studies [ 10 – 13 ]. The oil-based 
smoke particles, measuring less than 1 μm in diameter, are known to follow the 
airfl ow pattern precisely with negligible slip [ 18 ]. The smoke was introduced con-
tinuously to the right main bronchus of the HPS. It mixed with alveolar gas and then 
was exhaled through the airway. Sections through the leakage jet plume were then 
revealed by a thin, green laser light sheet (532 nm wavelength, continuous-wave 

  Fig. 2.1    Human patient simulator (HPS) lying at 45° on a bed undergoing noninvasive ventilation 
via the ResMed Mirage face mask. A laser beam located on the right side of the bed lateral to the 
human patient simulator illuminates the exhaled air particles leaking from the exhalation ports of 
the face mask in the coronal plane. A camera was positioned along the sagittal plane at the end of 
the bed to capture lateral dispersion of exhaled air illuminated by the laser device. Positions of the 
camera and the laser device would be exchanged when the exhaled air dispersion from the face 
mask is examined along the sagittal plane       
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mode) created by a diode-pumped solid-state laser (OEM UGH-800 mW; Lambda 
Pro Technologies, Shanghai, China) with custom cylindrical optics to generate a 
two-dimensional laser light sheet [ 10 – 13 ]. 

 The light sheet was initially positioned in the median sagittal plane of the HPS 
and subsequently shifted to paramedian sagittal planes. This allowed us to investi-
gate the regions directly above and lateral to the mask and the patient [ 10 – 13 ]. 

 All leakage jet plume images revealed by the laser light sheet were captured by 
a high-defi nition video camera—Sony high-defi nition digital video camcorder 
(HDR-SR8E; Sony, Tokyo, Japan); ClearVid complementary metal oxide semicon-
ductor sensor (Sony) with a Carl Zeiss Vario-Sonnar T* Lens (Carl Zeiss, Jena, 
Germany)—with optical resolution of 1,440 × 1,080 pixels per video frame. The 
normalized smoke concentration in the plume was estimated from the light intensity 
scattered by the smoke particles [ 10 – 13 ].  

2.2.3    Image Analysis 

 The normalized smoke concentration in the mask leakage air was estimated from 
the light scattered by the particles. The analysis was based on scattered light inten-
sity being proportional to the particle concentration under the special conditions of 
constant-intensity laser light sheet illumination and monodispersion of small (sub-
micron) particles [ 18 ]. In short, the thin laser light sheet of near-constant intensity 
illuminated the smoke particle markers in the mask airfl ow leakage. Smoke particles 
scattered laser light perpendicular to the light sheet. The pictures were then col-
lected and integrated by the video camera element and lens [ 10 – 13 ].  

2.2.4    Image Capture and Frame Extraction 

 A motion video of at least 20 breathing cycles for each NIV setting was captured and 
individual frames extracted as gray-scale bitmaps for intensity analysis. Frames were 
extracted at time points starting from the beginning of each inspiration to generate an 
ensemble average for the corresponding instant of the respiratory cycle [ 10 – 13 ]. The 
time at which the normalized concentration contours spread over the widest region from 
the NIV mask was chosen for the ensemble average to estimate the greatest dispersion 
distance. This was found to be approximately at the mid- respiratory cycle [ 10 ,  11 ].  

2.2.5    Intensity Averaging and Concentration Normalization 

 All gray-scale frames were read into a program specifi cally developed for these 
studies [ 10 – 13 ] (MathCad 8.0; MathSoft, Cambridge, MA, USA) [ 19 ] along with 
the background intensity images obtained with the laser switched off. The back-
ground intensity image was subtracted from each frame, pixel by pixel, to remove 
any stray background light. The pixel intensity values were averaged over all frames 

D.S.C. Hui



11

to determine the average intensity. The resulting image was the total intensity of 
light scattered perpendicular to the light sheet by the smoke particles. It was directly 
proportional to the smoke concentration under the conditions mentioned above. The 
image was normalized against the highest intensity found within the leakage jet 
plume to generate normalized particle concentration contours [ 10 – 13 ]. 

 As the smoke particles marked air that originated from the HPS’s airways before 
leaking from the mask, the concentration contours effectively represent the probability 
of encountering air around the patient that has come from within the mask and the 
patient’s respiratory system. The normalized concentration contours are made up of data 
collected from at least 20 breaths. A contour value of 1 indicates a region that consists 
entirely of air exhaled by the patient, where there is a high chance of exposure to the 
exhaled air, such as at the mask exhaust vents. A value near 0 indicates no measurable 
air leakage in the region and a small chance of exposure to the exhaled air [ 10 – 13 ].   

2.3    Results 

 The results are presented with reference to the median sagittal plane. 

2.3.1    Noninvasive Positive-Pressure Ventilation Applied via 
the ResMed Mirage Mask 

 With the ResMed Mirage mask, a jet plume of air escaped through the exhaust holes 
to a distance of approximately 0.25 m radially during application of IPAP 10 
cmH 2 O, with some leakage from the nasal bridge. The leakage jet probability was 
highest about 60–80 mm lateral to the sagittal plane of the HPS. Without nasal 
bridge leakage, the plume jet from the exhaust holes increased to a 0.40 m radius 
circle, and exposure probability was highest about 0.28 m above the patient. When 
IPAP was increased to 18 cmH 2 O, the vertical plume extended to about 0.5 m above 
the patient and the mask, with some horizontal spread along the ward roof [ 10 ].  

2.3.2    Noninvasive Positive-Pressure Ventilation Applied via 
the ComfortFull 2 Mask 

 With the ComfortFull 2 mask, a vertical, cone-shaped plume leaked out from the 
mask exhalation diffuser and propagated well above and almost perpendicular to the 
patient at an IPAP and an EPAP of 10 and 4 cmH 2 O, respectively. The maximum 
dispersion distance of smoke particles—defi ned as the boundary with a region 
encountering <5 % normalized concentration of exhaled air (light blue contour 
smoke concentration scale)—was 0.65 m, whereas that of a high concentration (con-
taining >75 % normalized concentration of exhaled air, red zone, and above) was 
0.36 m. There was no signifi cant room contamination by exhaled air (as refl ected by 
the blue background in the isolation room) other than the exhalation jet plume [ 11 ]. 
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 When the IPAP was increased from 10 to 14 cmH 2 O, the maximum exhaled dis-
persion distance of low-concentration exhaled air was similar at 0.65 m, but that of 
high-concentration exhaled air increased to 0.40 m, with contamination of the isola-
tion room. Also, there was some exhaled air concentration outside the exhalation jet 
plume. When IPAP was increased to 18 cmH 2 O, the dispersion distance of low- 
concentration exhaled air was 0.85 m, whereas that of high-concentration exhaled 
air increased to 0.51 m along the median sagittal plane. More background contami-
nation of the isolation room by smoke particles was noted at higher IPAPs owing to 
interaction between the downstream ceiling-mounted ventilation vent and the 
upstream exhaled air from the HPS (images at left in Fig.  2.2 ) [ 11 ].

2.3.3       Noninvasive Positive-Pressure Ventilation Applied via 
the Image 3 Mask Connected to the Whisper Swivel 

 The Image 3 mask required an additional exhalation device (whisper swivel) to 
prevent carbon dioxide rebreathing. The exhaled air leakage was much more diffuse 
than that with the ComfortFull 2 mask because of the downstream leakage of 

  Fig. 2.2    Exhaled air dispersion along the median sagittal plane when the recumbent HPS was 
wearing the Comfortfull 2 mask (images on the  left ) or the Image 3 mask connected to the whisper 
swivel (images on the  right ) when the inspiratory positive airway pressure was increased from 10 
to 14 and then 18 cmH 2 O while the expiratory positive airway pressure was fi xed at 4 cmH 2 O [ 11 ]       
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exhaled air through the whisper swivel exhalation port. At an IPAP of 10 cmH 2 O, 
the maximum dispersion distance of a low concentration in exhaled air (light blue 
zone on the smoke concentration scale) was 0.95 m toward the end of the bed, 
whereas that of a medium concentration (containing >50 % of the normalized con-
centration of exhaled air, green zone, and above) was about 0.6 m along the median 
sagittal plane. As the IPAP was increased from 10 to 14 cmH 2 O, the exhaled air with 
a medium concentration increased to 0.95 m toward the end of the bed along the 
median sagittal plane of the HPS [ 11 ]. 

 When the IPAP was increased to 18 cmH 2 O, the exhaled air with a low concen-
tration dispersed diffusely to fi ll up most of the isolation room (i.e., beyond 0.95 m, 
as captured by the camera), whereas that with a medium concentration, occupying 
wider air space, was noted to spread 0.8 m toward the end of the bed, with accumu-
lation of a high concentration of exhaled air (red zone on scale) within 0.34 m from 
the center of the mask, along the median sagittal plane of the HPS (images on the 
right in Fig.  2.2 ) [ 11 ].   

2.4    Discussion 

 There is no reliable, safe marker that can be introduced into human lungs for experi-
mental purposes. Hence, the maximum distribution of exhaled air, marked by very 
fi ne smoke particles, from the HPS during application of NIV using three face 
masks was examined by the laser smoke visualization method on a high-fi delity 
HPS model. The studies showed that the maximum distances of exhaled air par-
ticle dispersion from patients undergoing NIV with the ResMed Ultra Mirage mask 
was 0.5 m along the exhalation port [ 10 ]. In contrast, the dispersion distances of 
a low, normalized concentration of exhaled air through the ComfortFull 2 mask 
exhalation diffuser increased from 0.65 to 0.85 m at a direction perpendicular to the 
head of the HPS along the sagittal plane when IPAP was increased from 10 to 18 
cmH 2 O. There was also more background contamination of the isolation room at 
the higher IPAP [ 11 ]. Even when a low IPAP of 10 cmH 2 O was applied to the HPS 
via the Image 3 mask connected to the whisper swivel exhalation port, the exhaled 
air leaked far more diffusely than from the ComfortFull 2 mask, dispersing a low 
normalized concentration of 0.95 m along the median sagittal plane of the HPS. The 
higher IPAP resulted in wider spread of a higher normalized concentration of smoke 
around the HPS in the isolation room with negative pressure [ 11 ]. 

 Simonds et al. [ 20 ] applied the laser visualization method to assess droplet dis-
persion during application of NIV in humans with an optical particle sizer (Aerotrak 
8220; TSI Instruments, High Wycombe, UK) and showed NIV as a droplet- (not 
aerosol-) generating procedure, producing droplets measuring >10 μm. Most of 
them fell onto local surfaces within 1 m of the patient. 

 Noninvasive ventilation is an effective treatment for patients with respiratory fail-
ure due to COPD, acute cardiogenic pulmonary edema, or pneumonia in immuno-
compromised patients. However, evidence supporting its use in patients with 
pneumonia is limited. NIV was applied to patients with severe pneumonia caused by 
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a 2009 pandemic infl uenza (H1N1) infection with a success rate of about 41 %. 
Although there were no reported nosocomial infections [ 21 ], there is a potential risk 
of applying NIV to patients hospitalized with viral pneumonia on a crowded medical 
ward with inadequate air changes [ 7 ]. In this regard, deliberate leakage via the exhala-
tion ports may generate droplet nuclei and disperse infective aerosols through evapo-
ration of water content of respiratory droplets, resulting in a superspreading event. 
Nonetheless, NIV was applied using a single circuit to treat patients effectively with 
respiratory failure due to SARS in hospitals with good infection control measures 
(including installation of powerful exhaust fans to improve the room air change rate 
and good protective personal equipment at a level against airborne infection). There 
were no nosocomial infections among the health care workers involved [ 22 ,  23 ]. In 
contrast, a case–control study involving patients in 124 medical wards of 26 hospitals 
in Guangzhou and Hong Kong identifi ed the need for oxygen therapy and use of NIV 
as independent risk factors for superspread of nosocomial SARS outbreaks [ 6 ]. 
Similarly, a systematic review has shown a strong association between ventilation, air 
movement in buildings, and airborne transmission of infectious diseases such as mea-
sles, tuberculosis, chickenpox, infl uenza, smallpox, and SARS [ 24 ]. 

 These studies of infection with the HPS model [ 10 ,  11 ] and in humans [ 20 ] have 
important clinical implications for preventing future nosocomial outbreaks of SARS 
and other highly infectious conditions such as pandemic infl uenza when NIV is 
provided. NIV should be applied in patients with severe community acquired pneu-
monia only if there is adequate protection for health care workers because of the 
potential risk of transmission via deliberate or accidental mask interface leakage 
and fl ow compensation causing dispersion of a contaminated aerosol [ 10 ,  11 ]. 
Pressure necrosis may develop in the skin around the nasal bridge if the NIV mask 
is applied tightly for a prolonged period of time. Many patients loosen the mask 
strap to relieve discomfort. Air leakage from the nasal bridge is defi nitely a potential 
means of transmitting viral infections. Fitting a mask carefully is important for suc-
cessful, safe application of NIV. Addition of a viral/bacterial fi lter to the breathing 
system of NIV, between the mask and the exhalation port, or using a dual-circuit 
NIV via full face mask or helmet without heated humidifi cation may reduce the risk 
of nosocomial transmission of a viral infection [ 11 ,  25 ]. 

 In view of the observation that higher ventilator pressures result in wider dispersion 
of exhaled air and more air leakage [ 10 ,  11 ], it is advisable to start NIV with a low IPAP 
(8–10 cmH 2 O) and increase it gradually as necessary. The whisper swivel is an effi cient 
exhalation device to prevent carbon dioxide rebreathing, but it would not be advisable 
to use such an exhalation port in patients with febrile respiratory illness of unknown 
etiology. This is especially true in the setting of an infl uenza pandemic with the high 
potential of human-to-human transmission for fear of causing a major outbreak of 
nosocomial infections. It is also important to avoid the use of high IPAP, which could 
lead to wider distribution of exhaled air and substantial room contamination [ 11 ]. 

 There are some limitations regarding the use of smoke particles as markers for 
exhaled air. The inertia and weight of large droplets in an air-droplet two-phase fl ow 
would certainly cause them to have less horizontal dispersion than occurs with the 
continuous air carrier phase during which the particles travel with increased inertia 
and drag. However, evaporation of the water content of some respiratory droplets 
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during coughing or sneezing when exposed to NIV may produce droplet nuclei 
suspended in air, whereas the large droplets fall to the ground in a trajectory path-
way [ 10 – 13 ]. As smoke particles mark the continuous air phase, the data contours 
described refer to exhaled air. The results would therefore represent the “upper 
bound” estimates for dispersion of the droplets—which would be expected to fol-
low a shorter trajectory than an air jet due to gravitational effects—but not fully 
refl ect the risk of large-droplet transmission [ 10 – 13 ]. 

 In summary, the laser visualization technique using smoke particles as a marker in 
the HPS model is a feasible means of assessing exhaled air dispersion during applica-
tion of NIV and other modes of respiratory therapy [ 10 – 13 ]. Substantial exposure to 
exhaled air occurs within 1 m of patients undergoing NIV in an isolation room with 
negative pressure via the ComfortFull 2 mask and the Image 3 mask connected to the 
whisper swivel exhalation port. It must be noted that there is far more extensive leak-
age and room contamination with the Image 3 mask, especially at higher IPAPs [ 11 ]. 

 Health care workers should take adequate precautions for infection control. They 
especially must pay attention to environmental air changes when providing NIV 
support to patients with severe pneumonia of unknown etiology complicated by 
respiratory failure   .      
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