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  Pref ace   

 Ideally all strategies directed toward decreasing the duration of invasive mechanical 
ventilation (IMV) and reducing or avoiding its complications are useful in patients 
receiving IMV for different medical or surgical reasons. In the past decade advance-
ment in protocols focusing on weaning from mechanical ventilation and new venti-
lation modes such as neutrally adjusted ventilatory assist (NAVA) and airway 
pressure release ventilation (APRV) has been developed along with improving the 
patient-ventilator interaction, advance monitoring, and strategies for early diagnosis 
and prevention of ventilator-associated pneumonia. However, there still remain a 
signifi cant proportion of those who are dependent on IMV and develop diffi culty in 
weaning from it even after their underlying acute respiratory failure (ARF) and 
other organ failure have resolved. This population represents weaning failure and 
ventilator dependence. 

 More and more advanced surgical procedures and medical management in the 
elderly population and those with multiple comorbidities also lead to failure to wean 
from IMV and impact healthcare delivery both due to persistent long-term illness 
and increasing cost of care. 

 Currently, noninvasive mechanical ventilation (NIV) is considered one of the 
alternatives to endotracheal intubation in selected patients who develop ARF of 
diverse etiology. Its establishment as a suitable, effective, and rational alternative is 
based not only for its strong and positive action on the respiratory muscles and gas 
exchange but also due to its positive infl uence on short- and long-term outcome in 
critically patients. This infl uence is signifi cant particularly in patients with exacerba-
tion of COPD and acute cardiac pulmonary edema and who are immunodepressed. 

 In the past decade there has been signifi cant development in NIV equipment and 
interfaces and in the understanding of the patient-NIV interaction. This has led to 
physicians considering NIV as an alternate to endotracheal intubation and IMV, in 
the management of not only ARF but also failure to wean from IMV and extubation 
failure. The latter is defi ned as a condition where the patient is unable to sustain 
respiratory status postextubation from IMV. Is NIV a recognized alternative to IMV 
in these conditions? Will this strategy change patient outcomes and IMV-related 
complications? Will NIV infl uence healthcare delivery by improving quality of care 
and reduce cost of care? 

 In this book, sections and chapters are structured in response to these questions 
based on evidence, clinical practice, and expert recommendations. 
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 The recognized chapters that we have contemplated on NIV have been divided 
into clinical conditions such as persistent weaning failure from prolonged mechani-
cal ventilation, extubation post acute respiratory failure, and unplanned extubation 
and its use as alternative to short- and long-term IMV including those with trache-
otomy. The use of NIV in these clinical conditions will look at the diverse medical 
and surgical (thoracic, cardiac, abdominal, lung transplants) population. 
Additionally, determinants of NIV response, comorbidities, equipments and inter-
faces, ventilatory modes, patient-ventilator interaction, and clinical monitoring will 
also be covered in this book. 

 We consider that this book represents a valuable tool for a practical approach by 
the rational use of NIV in prolonged mechanical ventilation, diffi cult weaning, and 
postextubation failure.  

   Murcia, Spain     Antonio     M.     Esquinas  ,   MD, PhD, FCCP                     

Preface
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  1      Physiologic Determinants of Prolonged 
Mechanical Ventilation and Unweanable 
Patients       

       Dimitrios     Lagonidis      and     Isaac     Chouris    

1.1             Introduction 

 Unfortunately, there is no broadly accepted defi nition of prolonged mechanical ven-
tilation (PMV). According to a consensus conference held in 2004, PMV is defi ned 
as ≥21 consecutive days of mechanical ventilation (MV) for ≥6 h/day [ 1 ]. This defi -
nition seems to have high sensitivity; most patients requiring MV for more than 
21 days after acute critical illness or injury would meet the clinical phenotype of 
chronic critical illness syndrome (CCIS). Patients with CCIS have survived acute 
critical illness. Pathophysiologically, it consists of a metabolic, immune- 
neuroendocrine axis and nutritional derangements caused by the initial event 
(trauma, sepsis, surgery) and then maintained with unresolved critical illness, PMV, 
and chronic infl ammation [ 3 ]. 

 CCIS has been considered a distinct entity with a predictable constellation of 
clinical features and a course characterized by ongoing chronic infl ammation, slow 
fl uctuations in function and care needs, and slow (over weeks or months) progress 
or deterioration, which may be interrupted by acute events such as sepsis or acute 
heart failure [ 2 ,  3 ]. Apart from prolonged ventilator dependence, patients with CCIS 
have profound weakness (caused by myopathy, neuropathy, or loss of lean body 
mass); brain dysfunction (coma, delirium, depression, anxiety, cognitive impair-
ment); distinctive neuroendocrine derangements (impaired secretion of anterior 
pituitary hormones, impaired anabolism); increased vulnerability to infections 
caused by multi-drug-resistant pathogens;, and skin disruption attributed to nutri-
tional defi ciencies, edema, and prolonged immobility. 

 CCSI has been considered a byproduct of medical technology and is increasingly 
recognized as an important problem in modern medicine and one of the growing 
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challenges in health care [ 2 ,  3 ]. It is estimated that between 5 and 13 % of mechani-
cally ventilated patients require PMV [ 4 ], and that about 50 % of these will be liber-
ated from the ventilator. However, about 25 % of intensive care unit (ICU) survivors 
with CCIS and PMV are not weaned at the end of fi rst year [ 2 ]. CCIS patients have 
poor prognosis and prolonged ICU and hospital stays (either in long-term acute care 
facilities or in specialized weaning centers), contributing to increased costs. It has 
also been estimated that 1-year mortality rates range from 48 to 68 % [ 3 ]. 

 The ultimate goal for CCIS patients is liberation from a ventilator, because suc-
cessful weaning is associated with improved survival, better quality of life, and less 
fi nancial burden on health-care systems. Therefore, this review is intended not only 
to analyze the physiologic determinants of PMV and unweanable patients in the 
context of CCIS but also to guide physicians managing these patients in a compre-
hensive and structured way.  

1.2     Physiologic Determinants 

 The adequacy of the respiratory function depends on the balance between the respira-
tory requirements (the “load”) and the capability of the respiratory pump and its com-
ponents (the respiratory motor drive and the neuromuscular system) to meet those 
requirements. A practical and methodical approach to the problem of diffi cult-to- 
wean and unweanable patients is to consider the various factors with the ability to 
“tip” the balance, thereby slowing down or even disallowing the weaning procedure. 

1.2.1     Respiratory Physiological Determinants 

1.2.1.1     Factors Determining Increased Respiratory Load 

   Control of Breathing 
 It has been long recognized that the hallmark of weaning failure is a rapid shallow 
breathing pattern, the combination of elevated frequency (  f  ) and decreased tidal 
volume ( V  T ) [ 5 – 7 ]. Weaning failure patients exhibit marked shortening of both 
inspiratory and expiratory time, which results in increased breathing frequency. At 
the same time, the combination of decreased inspiratory time (Ti) and normal mean 
inspiratory fl ow leads to decreased  V  T  [ 8 ]. 

 Acute hypercapnia has been consistently observed in many patients who failed to 
wean despite an increase, not a decrease, in respiratory drive, measured by using  P  0.1  
or the mean inspiratory fl ow. The hypercapnia is not caused by decreased minute 
ventilation. Instead, it is the consequence of the rapid shallow breathing pattern, 
resulting in dead-space ventilation [ 6 ]. 

 Assessment of respiratory drive is determined by  P  0.1 , which is the airway occlu-
sion pressure at the fi rst 100 msec of inspiration (normal values: 0.5–1.5 cmH 2 O). 
Although it is available with most ventilators, it is of limited value because of the 
wide normal range. The value of  P  0.1  depends not only on respiratory drive but also 
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on inspiratory muscle capacity. It is worthy of consideration that in patients on PMV, 
the values of P 0.1  measured at the end-expiratory lung volume may be affected by 
further development of abnormal muscle length and chest wall distortion [ 11 ]. Values 
within the normal range practically exclude respiratory drive disorders as the source 
of diffi cult weaning, although considerable variability has been reported [ 11 ]. 
Nevertheless,  P  0.1  remains a useful index when these limitations are recognized. 

 Impaired respiratory drive is only infrequently the cause of diffi culties in wean-
ing [ 5 ,  6 ]. It may involve defects in the peripheral and central chemoreceptors 
(carotid body dysfunction, prolonged hypoxia, metabolic alkalosis) or the brain-
stem respiratory centers (encephalitis, brainstem infarction, hemorrhage or trauma, 
demyelination, drug side-effects, endocrine disturbances – hypothyroidism or 
hyperthyroidism). Conversely, respiratory motor drive is increased in most patients 
who are unable to liberate from the ventilator [ 5 ,  6 ]. In ventilator-dependent patients, 
high  P  0.1  associated with low  V  T  indicates the poor conversion of high drive to ade-
quate ventilatory output. Accordingly, the demonstration of high drive to breathe 
has been found to predict weaning failure [ 11 ]. 

 It is well known that the absence of high f/ V  T  breathing pattern can predict wean-
ing success (WS), not only in heterogeneous ICU patients [ 7 ,  12 ,  13 ] but also in 
chronically ill patients [ 11 ]. Nevertheless, specifi c groups of patients on PMV, such 
as those with severe COPD, deserve special consideration. These patients may 
exhibit weaning failure (WF) despite a low f/ V  T  (shallow but not rapid breathing) 
during unassisted breathing [ 11 ]. The major mechanism responsible for WF is the 
combination of abnormal lung mechanics, specifi cally increased intrinsic positive 
end-expiratory pressure (PEEPi) and resistance, and the reduced pressure- generating 
capacity of inspiratory muscles resulting from dynamic hyperinfl ation. Interestingly, 
the respiratory drive is augmented to maintain adequate tidal volume but is poorly 
transformed into inspiratory fl ow because of the impaired respiratory muscles. As a 
result, the breathing effort leads to low  V  T . The diminished  V  T  is therefore ineffec-
tive to meet metabolic demands and clear carbon dioxide. On the other hand, the 
high motor output drive charges the inspiratory muscles and forces them to use a 
signifi cant amount (>40 %) of their maximal pressure-generating capacity to sus-
tain spontaneous ventilation. Accordingly, unassisted breathing cannot be sustained 
without excessive dyspnea [ 11 ].  

   Respiratory Mechanics 
 In an acute setting, Jubran and Tobin [ 7 ] demonstrated that, during a spontaneous 
breathing trial (SBT), all passive respiratory mechanics (resistance, elastance, 
PEEPi) became more abnormal in WF patients than in WS patients. More specifi -
cally, respiratory resistance increased up to seven times the normal value at the end 
of the trial, whereas pulmonary elastance increased about fi ve times the normal 
value. Moreover, PEEPi almost doubled during the trial. The same fi ndings were 
also found by other investigators [ 9 ]. 

 Airway resistance and respiratory load, that is, the work of breathing (WOB), are 
directly related. Signifi cantly increased airway resistance that hinders the weaning 
procedure may arise from upper (obstruction of tracheotomy tube, secretions, 
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post- extubation tracheal injury) or lower airway pathology (bronchospasm, bron-
chial hyper-responsiveness, pulmonary edema). Increased elastance (decreased 
compliance) of the respiratory system correlates with increased WOB. Low thoracic 
wall compliance may arise from pathological states such as edema of the thoracic 
wall, rib cage deformities, pleural effusions, morbid obesity, increased intra-abdom-
inal pressure. Additionally, decreased lung compliance may be the result of lung 
edema (cardiogenic or noncardiogenic), lung infections and atelectasis. 

 Expiratory fl ow limitation leads to inadequate expiratory time to achieve fully 
defl ated lungs, hindering the lungs to reach the elastic equilibrium point. The result 
is the phenomenon of progressive air-trapping and dynamic lung hyperinfl ation, 
which is associated with the development of PEEPi. Dynamic hyperinfl ation may 
have hemodynamic consequences (decreased venous return and cardiac output) but 
is also a major cause of increased WOB. The positive pressure thus generated means 
that the threshold to initiate inspiratory fl ow is heightened and the patient’s inspira-
tory efforts may be ineffective, leading to ineffective ventilator triggering and 
patient-ventilator asynchrony. Moreover, the presence of dynamic hyperinfl ation 
detrimentally affects the diaphragmatic force-generating capacity by displacing it to 
a suboptimal position of its length-tension curve. 

 In spontaneously breathing patients, dynamic measurement of PEEPi with an 
esophageal balloon delivers more precise results and thus is preferable. Elevated 
PEEPi may arise for the following reasons:

•    increased expiratory fl ow resistance (bronchospasm, compromised endotracheal 
tube patency, heat and moisture exchange (HME) fi lters)  

•   loss of lung elastic recoil (emphysema)  
•   increased minute ventilation  
•   inadequate expiratory time     

   Gas Exchange 
 Inadequate gas exchange (hypoxemia, hypercapnia) exerts an additional load on 
the respiratory muscles because increased minute volume is required to restore 
gas exchange disturbances, resulting in muscle fatigue and WF. Hypercapnia 
results mainly from the following mechanisms: hypoventilation (e.g., neuromus-
cular diseases), severe low ventilation/perfusion mismatch (e.g., chronic obstruc-
tive pulmonary disease (COPD)), and, to a lesser extent, increased dead space 
(rapid shallow breathing, heat and moisture exchangers, connectors to the Y-point 
of the circuit). 

 Interestingly, studies using the multiple inert gas method showed that ventila-
tion/perfusion maldistribution and hypercapnia were found in WF patients [ 10 ]. 
Specifi cally, acute hypercapnia was observed in many patients who failed to wean 
despite an increased respiratory motor output, measured by  P  0.1  [ 7 ]. Acute hyper-
capnia is not caused by decreased minute ventilation. Instead, it is the consequence 
of a rapid shallow breathing pattern resulting in dead-space ventilation. Only in a 
minority of WF patients may hypercapnia be attributed to primary depression of 
respiratory drive [ 7 ].   
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1.2.1.2    Factors Determining Reduced Respiratory Capacity 

   Respiratory Muscle Weakness or Dysfunction 
 Spontaneous breathing during a weaning trial imposes a substantial load on the 
inspiratory muscles, which are considered the major part of the respiratory pump. 
Dysfunction of the respiratory pump may result from a defect anywhere between 
the respiratory centers in the medulla and the myocytes inside the respiratory mus-
cles. Upon release of positive pressure ventilation and during unassisted breathing, 
patients have to make a greater inspiratory effort to compensate for the deteriorating 
respiratory mechanics. Using an esophageal balloon catheter, direct measurements 
of WOB and pressure-time product consistently showed that WF patients exhibit a 
greater effort compared with WS patients [ 7 ]. 

 Respiratory muscle dysfunction is a major determinant of the degree of weaning 
diffi culty. Clinical signs suggestive of respiratory muscle dysfunction, and thus of 
the respiratory pump, include tachypnea, dyspnea, and paradoxical respiratory move-
ments. Respiratory muscle dysfunction may be caused by any condition that leads to:

•    Impaired neurotransmission (amyotrophic lateral sclerosis, Guillain-Barré, myas-
thenia gravis, drugs, phrenic nerve dysfunction, critical illness polyneuropathy)  

•   Reduced muscle strength (malnutrition, sepsis-associated myopathy, acidosis, 
electrolyte disturbances, hypoxemia, low cardiac output states)    

 Global evaluation of inspiratory muscle strength includes the static measurement 
of  maximal inspiratory pressure  ( MIP ) during the Mueller maneuver, with lower 
normal values −75 cmH 2 O in men and –50 cmH 2 O in women younger than 65 years 
old. It can be measured either in mechanically ventilated or spontaneous breathing 
patients. Values that are more negative than normal essentially exclude signifi cant 
inspiratory muscle weakness, whereas values that are more positive than normal do 
not prove muscle weakness.  MIP  depends on patient cooperation (it is a voluntary 
test) and lung volume and thus can falsely assess muscle weakness. Many studies 
have shown that  MIP  does not discriminate between WF and WS patients, suggest-
ing that muscle weakness may not be a major determinant of weaning outcome [ 10 ]. 

 A more reliable assessment of diaphragmatic strength is taken by recording 
 transdiaphragmatic pressure  ( Pdi ).  Pdi  is the difference between abdominal (gas-
tric) and pleural (esophageal) pressure. It can be obtained after a forceful inspiration 
against a closed airway or after sniffi ng and both gastric and esophageal balloons 
are required. The energy expenditure of the diaphragm can be estimated by  the 
tension-time index and the pressure-time product . These indices are too complicated 
for routine clinical use. Ideally,  Pdi  should be measured during a SBT, because it is 
infl uenced by positive pressure of the ventilator [ 27 ] 

 The involuntary evaluation of diaphragm strength is obtained by the measurement of 
twitch  transdiaphragmatic pressure  ( Pdi  tw ) or  twitch airway pressure  ( Paw  tw ) after mag-
netic phrenic nerve stimulation [ 25 ,  26 ]. These methods are not applicable in everyday 
practice because they are fairly invasive and technically diffi cult in critically ill intubated 
or tracheostomized patients [ 27 ]. Values of  Pdi  tw  between 35 and 39 cmH 2 O are recorded 
in normal subjects, whereas values below 10 cmH 2 O are obtained in WF patients [ 14 ]. 
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 Another important task of the ventilator pump is the ability to endure, that is, to 
avoid muscle fatigue. The fatigue threshold of the diaphragm can be quantifi ed 
by the  tension-time index of the diaphragm  ( TTIdi ), derived by the formula 
TTIdi = (Pdi/Pdi max ) × (Ti/Ttot), where Pdi is the tidal transdiaphragmatic pressure, 
Pdi max  is the maximum transdiaphragmatic pressure, Ti is the inspiratory time, and 
Ttot is the total breath duration. This equation demonstrates the importance of both 
the pressure- generating effort of the diaphragm and the relative duration of inspira-
tion as determinants of diaphragmatic fatigue. Diminishing diaphragm strength 
results in decreased Pdi max , whereas reduced compliance increases Pdi. Similarly, 
tachypnea increases the Ti/Ttot index, thus promoting muscle fatigue. 

 In one study, it was reported that the majority of ICU patients had diaphragm muscle 
weakness at the beginning of mechanical ventilation associated with sepsis and disease 
severity [ 24 ]. The ability of the diaphragm to generate force was assessed by recording 
occluded twitch tracheal pressure during twitch magnetic stimulation of bilateral phrenic 
nerves. The twitch tracheal pressure ( Ptaw  tw ), measured at the proximal end of the endo-
tracheal tube, was used as a surrogate of transdiaphragmatic pressure independent of 
patient effort and cooperation. More specifi cally, 64 % of patients had a  Ptaw  tw  less than 
11 cmH 2 O, a value that indicates diaphragm muscle weakness. 

 Hypercapnia is often considered an indirect sign of respiratory muscle fatigue, 
but one must be careful to take into account other mechanisms leading to it. 
Nevertheless, it is probably safe to conclude that lack of hypercapnia, combined 
with absence of acid–base disturbances, practically rules out the possibility of 
fatigue as a cause for weaning failure. 

 It has been suggested that the  f / V  T  ratio gives an estimate of the capability of 
sustaining unsupported breathing and could be a surrogate of the most-diffi cult to 
measure  TTIdi or Pdi/Pdi  max . 

 For the fi rst time, Jubran et al. [ 7 ] showed that, in patients with COPD, the major 
determinant between a successful and failed weaning trial was a change in the 
breathing pattern rather than an intrinsic derangement of pulmonary mechanics. In 
another study, Vassilakopoulos et al. [ 9 ] reported that, compared with WS patients, 
WF patients had greater total resistance, intrinsic PEEP, dynamic hyperinfl ation, 
ratio of mean to maximum inspiratory pressure, less MIP, and a breathing pattern 
that was more rapid and shallow. They also found that TTI and f/ V  T  were the only 
signifi cant parameters that predicted weaning success. Finally, in a study by 
Capdevila et al. [ 15 ], the WF was associated with high breathing frequency, 
increased P 0.1 , minute ventilation, intrinsic PEEP, and persistent hypercapnia. 

 Although  TTI and Pdi/Pdi  max . are too diffi cult to measure in everyday practice, 
they seem to be more accurate in determining the potential reserve of the patients 
during the weaning trial. On the other hand, the f/ V  T  ratio may not give a thorough 
insight into the weaning capabilities of ventilator-dependent patients because it 
could be affected either by their psychological burden resulting in tachypnea or by 
their tendency not to increase f to avoid dynamic hyperinfl ation [ 16 ]. 

 Carlucci et al. [ 16 ], by recording active respiratory mechanics in true ventilator- 
dependent patients with multiple weaning failures in the past, showed that the major 
determinant of WS was associated with the signifi cant improvement of diaphragmatic 
inotropism at the time of gaining liberation from the ventilator, as expressed by 
increased Pdi max . They also found that these patients on PMV have increased 
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mechanical load/capacity balance, predominantly because of reduced Pdi max  rather 
than excessive load, so that once they are on unassisted breathing, they breathe above 
the threshold of diaphragmatic fatigue. In both the WF and WS patients, a tension-time 
index (TTI) above the fatigue threshold was noted at the fi rst attempt of weaning trial. 

 Specifi cally, in PMV patients, the recovery of an inadequate respiratory muscle 
force could be the major determinant of late weaning success, because this factor 
allows them to breathe far below the diaphragm fatigue threshold. Many factors 
contribute to the reduced Pdi max  in ventilator-dependent patients (e.g., age, hyper-
capnia, hypoxia, malnutrition, inactivity, mechanical ventilation–induced atrophy, 
sepsis, prolonged use of corticosteroids, and cardiovascular compromise). Purro 
et al. [ 11 ] showed that the patients who could not be weaned had small tidal volume, 
high neuromuscular drive, abnormal lung mechanics, and reduced inspiratory mus-
cle strength as soon as they resumed spontaneous breathing. 

 For many years, electromyography (EMG) of the diaphragm has been a useful 
research tool in evaluating respiratory muscle dysfunction. It can be obtained in 
ICU patients using a special esophageal catheter with multiple electrodes [ 27 ]. The 
signal that is taken is referred as the  electrical activity of the diaphragm  ( EAdi ) and 
it is considered as a direct measure of neural respiratory drive. Thus, it is considered 
the gold standard to detect the onset and duration of neural inspiration and expira-
tion and thus patient-ventilator asynchronies [ 27 ]. 

 The  V  T /EAdi ratio represents the  neuroventilatory effi ciency  ( NVE ) of the dia-
phragm. An improved NVE indicates the capability of the patient to generate the same 
VT with lower Eadi [ 27 ]. It was suggested as an index to discriminate between extu-
bation success and failure in patients weaning from the ventilator. Another index is the 
 neuro-mechanical effi ciency  ( NME ), indicated by the ratio Pdi/EAdi; a gradual 
decrease in NME suggests the development of diaphragmatic weakness [ 27 ]. Although 
EMG of the diaphragm has some limitations, it seems to be a reasonable method for 
monitoring respiratory muscles during the course of a weaning trial in PMV patients. 

 Ultrasonography has been used to investigate diaphragmatic atrophy or dysfunc-
tion in critical care settings. By using B-mode ultrasonography with a linear array 
transducer, the diaphragm thickness at the zone of apposition could be precisely and 
reproducibly measured in spontaneously breathing patients during a weaning trial 
[ 28 ]. Kim et al. [ 29 ] evaluated diaphragmatic dysfunction during a SBT after 
patients had been ventilated for more than 48 h. They found diaphragmatic dysfunc-
tion (defi ned as <10 mm vertical excursion) in 29 % of patients, and there was a 
correlation with longer mechanical ventilation and WF. Moreover, this ultrasono-
graphic criterion to predict WF was similar to the rapid shallow breathing index.     

1.3     Cardiac Determinants 

 The transition from the positive pressure ventilation to spontaneous breathing exerts 
an additional load on the cardiovascular system and can impose or unmask cardiac 
dysfunction, either systolic or diastolic. These factors may thus be causes of unsuc-
cessful weaning. The heart-lung interactions during the weaning procedure are 
complex. Spontaneous breathing raises WOB and oxygen consumption by the 
respiratory muscles and promotes adrenergic stress and negative swings in the 
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intrathoracic pressure. These alterations lead to increases in both preload and after-
load of right and left ventricles through the augmented venous return, resulting in 
weaning- induced cardiac dysfunction. 

 At the end of a weaning trial, oxygen consumption is equivalent in WS and WF 
patients [ 17 ]. However, the response of the cardiovascular system to the oxygen 
demand differs in the two groups. In WS patients, oxygen demand is met by the 
augmented oxygen delivery mediated through the expected increase in cardiac out-
put on release of positive pressure ventilation [ 17 ]. In WF patients, because they 
have relatively decreased oxygen delivery, oxygen demand is met by the increase in 
oxygen extraction. Under these circumstances, the greater oxygen extraction results 
in a signifi cant decrease in SvO 2 , contributing to hypoxemia [ 17 ]. 

 In 2015, it was reported that, in acute critically ill patients, it was found that a 
negative passive leg-raising test performed before SBT, suggesting preload inde-
pendence, was associated with weaning-induced cardiac dysfunction [ 23 ]. 

 Diastolic dysfunction is a common and underdiagnosed entity. More than 60 % of 
people over 65 years of age experience diastolic dysfunction, and in more than 50 % 
of patients with heart failure, it is of the diastolic type. Moreover, differentiation 
between systolic and diastolic cardiac failure is clinically important because of dis-
tinct therapeutic approaches [ 21 ]. Diastolic dysfunction with relaxation impairment 
has been found to predict weaning failure. The principal feature of LV diastolic failure 
is reduced compliance of the ventricle due to various causes (e.g., coronary artery 
disease, myocardial hypertrophy and fi brosis, infi ltrative diseases, hypoxia, or 
acidosis). 

 There is growing evidence to advocate that transthoracic echocardiography (TTE) 
plays a key role in the evaluation of patients who are diffi cult to wean due to cardiac 
origin. However, it is not possible to use it in every critically ill patient because of cer-
tain limitations (e.g., excessive pulmonary emphysema, or thoracic trauma). In tissue 
Doppler imaging TTE, the ratio of mitral Doppler infl ow E velocity to annular tissue 
Doppler Ea wave velocity (E/Ea) provides an accurate estimate of the degree of dia-
stolic dysfunction. Moreover, these echocardiographic measurements can also be per-
formed on patients with atrial fi brillation with reasonable sensitivity and specifi city. 

 In 2010, Gaille et al. [ 20 ], in an unselected cohort of patients, found that weaning 
failure occurred more often in patients with systolic heart failure. More precisely, in 
patients with ejection fraction (EF) <50 % they found signs of diastolic dysfunction 
(decreased E/A and depressed acceleration time of E wave) during a SBT. Moreover, 
Moscietto et al. [ 18 ] showed that in 68 patients with sinus rhythm and atrial fi brillation 
on mechanical ventilation more than 48 h, the measurement of E/Ea with Doppler tis-
sue imaging TTE could predict weaning failure as early as 10 min after the beginning 
of the SBT. They also suggested that diastolic dysfunction with relaxation impairment 
was strongly associated with weaning failure. Conversely, in the same study, the sys-
tolic dysfunction was not associated with weaning outcome. In another study with 
similar fi ndings [ 19 ], the authors suggested that an E/Ea >7.8 may indentify patients at 
high risk of WF. 

 In conclusion, diastolic dysfunction of the left ventricle seems to be important in 
the evolution of WF. By measuring E and Ea waves even in patients with atrial 
fi brillation, TTE with Doppler tissue imaging measuring is a key examination that 

D. Lagonidis and I. Chouris



11

can be easily applied before and after the weaning trial. It has also been demon-
strated that the transition from mechanical ventilation to sustained breathing could 
lead to myocardial ischemia in patients with coronary artery disease. Ischemia can 
be detected by electrocardiogram before and at the end of the SBT and the signifi -
cance of anemia as a precipitating factor should not be underestimated. 

  Mixed venous oxygen saturation  ( SvO   2  ) can be used as a marker of cardiac perfor-
mance, with  superior vena cava oxygen saturation  ( ScvO   2  ) serving as a reasonable 
surrogate. In diffi cult-to-wean patients, a decrease in SvO 2  during the weaning pro-
cedure should raise the suspicion about the presence of inadequate cardiac output. 
Patients with cardiac dysfunction largely rely on increasing the oxygen extraction 
ratio instead of raising the cardiac output, resulting in SvO 2  reduction as demon-
strated by Jubran et al. [ 17 ] in a study comparing 8 patients who failed at SBT with 
11 patients who successfully completed the SBT. The decrease in SvO 2  was related 
to the inability to improve cardiac output and consequently oxygen transport. 
Increased afterloads of the right and left ventricle were found in these patients. 

 It is imperative to note that reduction in ScvO 2  is the normal response to increased 
loading. In normal subjects on moderate exercise, it was found that ScvO 2  decreases 
below 50 %. Therefore, a reduction in ScvO 2  should not necessarily be interpreted as a 
marker of heart failure. Accordingly, in WF patients, without a reduction in ScvO 2 , heart 
dysfunction is highly unlikely [ 21 ]. Conversely, in those patients who failed a weaning 
trial and had reduced ScvO 2 , heart dysfunction could be a limiting factor and further 
investigation with echocardiography and/or insertion of a Swan-Ganz catheter is war-
ranted [ 21 ]. 

 Brain natriuretic peptide (BNP) is a neurohormone synthesized in the cardiac 
ventricles and released from the myocardium upon stretch. It is released by the 
myocytes as pre-proBNP that is cleaved into  proBNP  and fi nally into BNP and the 
inactive N terminal proBNP peptide ( NT-proBNP ). Its release into the circulation 
is directly proportional to the ventricle expansion and volume overload of the ven-
tricles. Thus, it serves as a marker of the systolic and diastolic left ventricular 
dysfunction. The value of BNP or NT-proBNP as a predictor of weaning failure 
due to cardiovascular reasons seems to be well established in the literature. 
Nevertheless, the accepted cut-off values pose a clinical challenge for data 
interpretation. 

 A study by Grasso et al. [ 22 ] demonstrated that serial measurements of 
NT-proBNP could detect acute cardiac dysfunction during an unsuccessful weaning 
trial in diffi cult-to-wean patients with COPD. Baseline NT-proBNP levels were sig-
nifi cantly higher (median, 5,000; interquartile range, 4,218 pg/mL) in patients with 
cardiac dysfunction. It was also shown that levels of NT-proBNP increased signifi -
cantly at the end of the spontaneous breathing trial only in patients with acute car-
diac dysfunction (median, 12,733; interquartile range, 16,456 pg/mL).  

    Conclusions 

 The ultimate goal for CCIS patients on PMV is liberation from the ventilator. 
Repeated weaning failure has been associated with an imbalance between 
increased load and reduced capacity of the respiratory muscles or, to a lesser 
extent, with the cardiovascular impairment. A systematic approach to the  problem 
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  Fig. 1.1    Balance between load (↑motor drive, ↑resistive, ↑elastic, cardiovascular impairment) and 
capacity (↓motor drive, ↓neurotransmission, inspiratory muscle weakness) determines the ability 
to sustain spontaneous ventilation       
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of diffi cult-to- wean and unweanable patients is to understand in-depth the physi-
ologic determinants characterizing the two sides of the balance (Fig.  1.1 ). This 
approach may help identify the factors that play a role in the specifi c patient so 
that appropriate therapeutic strategies can be applied.
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2.1           Introduction 

 Advances in the management of critically ill patients in intensive care unit (ICU) 
have improved mortality and morbidity as well as reduced length of stay and, 
subsequently, cost of treatment. However, despite improvements in short-term 
mortality and stabilization of acute organ dysfunction, a small but substantial 
population of critically ill patients who survive the initial critical illness continue 
to suffer from prolonged dependence on life support or to need long-term thera-
peutic interventions. These patients have been grouped under the classifi cation of 
chronically critically ill (CCI) patients. Such a group is characterized by hetero-
geneity, prolonged need for high-cost interventions, and high long-term (around 
1 year) mortality rate [ 1 ]. The best characterized component of the CCI popula-
tion is patients on prolonged mechanical ventilation (PMV). In 2005, the National 
Association for Medical Direction of Respiratory Care (NAMDRC) defi ned 
PMV as the need for ≥21 consecutive days of mechanical ventilation (MV) 
for ≥6 h/day [ 2 ]. According to the European Respiratory Society Task Force, 
these patients constitute a particular group needing prolonged weaning from the 
ventilator, defi ned as more than three spontaneous breathing trials (SBTs), or 
more than 7 days from the fi rst unsuccessful SBT [ 3 ]. Nevertheless, other inves-
tigators have favored Medicare’s defi nition of MV >96 h, with tracheostomy as 
the marker of PMV [ 2 ]. 

 Patients requiring PMV have clearly different needs and resource consumption 
patterns in relation with patients during the acute phase of critical illness. Moreover, 
these patients may represent as many as 14 % of patients admitted to the ICU for 
intubation and MV, whereas it is estimated that they account for 37 % of all ICU 
costs and are associated with in-hospital mortality up to 32 % [ 4 ,  5 ]. Finally, avail-
able data suggest that the global prevalence of PMV in Europe ranges from 2 to 30 
per 100,000 population according to different countries [ 6 ], whereas different stud-
ies have demonstrated that as many as 20 % of medical ICU patients remained 
dependent on ventilator support after 21 days [ 3 ].  

2.2     Discontinuation of PMV 

2.2.1     Pathophysiology of Weaning Failure 

 The successful weaning process from PMV is based on the understanding of the 
complexity of different causes associated with the need for prolonged ventilatory 
support. In this respect, it has been suggested that the major mechanisms of weaning 
failure in this group of patients include either an isolated failure of the respiratory 
system or respiratory failure occurring within the context of chronic critical illness 
syndrome (CCIS) [ 2 ,  3 ,  7 ]. 

 It is estimated that pulmonary disease accounts for approximately 50 % of causes 
for PMV, associated with inspiratory muscle weakness, increased work of breathing, 
and reduced respiratory drive [ 2 ,  7 ]. Pulmonary disease results in reduced lung 
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compliance and increased load upon respiratory muscles. In this respect, ventilator-
associated pneumonia and acute respiratory distress syndrome (ARDS) are consid-
ered the main pulmonary pathologies leading to prolonged weaning from the 
ventilator. Airway disease in patients with chronic obstructive pulmonary disease 
(COPD) may also increase work of breathing through air-fl ow limitation, dynamic 
hyperinfl ation, and auto-positive end-expiratory pressure (PEEP). Furthermore, con-
gestive heart disease has been reported in up to 26 % of patients hospitalized in long-
term acute care (LTAC) hospitals in the United States [ 8 ]. Such cardiac dysfunction 
can be uncovered during SBTs due to increased venous return, end-diastolic volume 
augmentation, and increased metabolic demands. In these cases, performance of car-
diac echocardiography and determination of B-type natriuretic peptide (BNP) serum 
levels during SBTs can be of signifi cant value for early diagnosis and prompt treat-
ment of possible myocardial dysfunction and/or hypervolemia [ 7 – 9 ]. 

 Critical illness neuromyopathy (CINM) can manifest itself as ICU-acquired 
weakness and subsequent PMV, usually associated with multiple organ failure, 
muscle inactivity, hyperglycemia, or use of corticosteroids and neuromuscular 
blockers. As a result, early mobilization, minimizing the use of deep sedation and 
steroids, and avoidance of hyperglycemia have been advocated as effective preven-
tive strategies during the acute phase of critical illness [ 7 ,  10 ]. Ventilator-induced 
diaphragm dysfunction constitutes a rapid form of skeletal muscle injury that may 
occur within only 18 h of MV [ 7 ,  11 ]. Age, malnutrition, and continuous mandatory 
ventilation have been found to promote such muscle weakness, whereas pressure 
support ventilation (PSV) seems to minimize diaphragmatic ventilator-induced 
injury [ 11 ]. In addition, optimal patient-ventilator synchrony through properly 
adjusted ventilator settings, psychotropic medications, and delirium management 
seems to reduce work of breathing and further promote earlier weaning from venti-
latory support [ 7 ]. 

 Finally, managing PMV patients requires careful consideration and manage-
ment of all issues related to CCIS, such as severe nutritional defi cits, endocrine 
dysfunction, including loss of glycemic control and hypothyroidism, bone loss, 
and immune and autonomic nervous system dysfunction, that usually arise between 
7 and 14 days post acute illness, if the patients do not fully recover from the acute 
episode [ 1 ].  

2.2.2     Weaning Strategies in PMV Patients 

 Weaning rates in PMV patients vary signifi cantly, ranging from 42 to 83 % across 
different studies, due to the heterogeneity of the population requiring prolonged MV 
[ 2 ,  3 ]. A prospective observational cohort study that was carried out in 23 LTACs in 
the United States and included 1,419 patients remains the main source of weaning 
data in patients with PMV [ 8 ]. In this study, 20 % failed to wean from PMV. From this 
group, 80 % required full-time PMV, 18 % part-time, and 2 % were managed with 
noninvasive ventilation (NIV). More than half of ventilator-dependent survivors from 
critical illness were successfully separated from prolonged mechanical ventilation [ 8 ]. 
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 According to the 2005 NAMDRC report, successful weaning in PMV patients 
was defi ned as breathing unassisted for 7 days [ 2 ]. In this respect, the recommenda-
tions included weaning the PMV patient to about 50 % of ventilator requirements 
using PSV mode (10–15 cmH 2 O) and, subsequently, respiratory therapist-driven 
SBTs of increasing duration using tracheostomy or T-piece. Moreover, a rapid shal-
low breathing index (RSBI) of up to 97 was found to correlate with successful 
1-hour tolerance of SBT in these patients, shortening the time to weaning by 
approximately 12 days [ 2 ]. 

 What have we learned since the NAMDRC report? It seems that different proto-
cols combining gradual decrease of pressure support ventilation, SBTs in a stepwise 
manner, daily RSBI measurements, and capping of the tracheostomy tube with NIV 
could be effective in reducing weaning time in PMV patients [ 7 ]. In this respect, a 
bundle of weaning approaches has also been suggested in the acute care setting for 
reducing length of MV in survivors of critical illness [ 12 ]. Thus, the “ABCDE” 
bundle, which includes daily  A wakening, spontaneous  B reathing trials, sedation 
 C hoice,  D elirium monitoring, and  E xercise/early mobility, has been proposed in 
patients with prolonged weaning. Recently, a randomized controlled trial (RCT) 
that was conducted among 316 PMV patients in a single LTAC facility found that 
unassisted breathing through a tracheostomy (trash collar) compared with PSV 
resulted in shorter median weaning time, although weaning mode had no effect on 
survival at 6 and 12 months [ 13 ]. 

 In addition, increased age, severity of illness estimated with Acute Physiology 
and Chronic Health Evaluation (APACHE) II score, elevated body-mass index and 
blood urea nitrogen levels, lower Glasgow Coma Scale (GCS), serum albumin, and 
maximal inspiratory pressure have been associated with failure to wean from PMV 
[ 2 ,  7 ]. As a result, better identifi cation of different groups of patients requiring pro-
longed MV is needed for individualizing different weaning strategies. Moreover, 
the “3 M approach,” including  minimizing  sedation,  maintaining  nutrition, and  max-
imizing  mobility, has been proposed as a simple approach to treating such a complex 
medical condition [ 7 ]. Such efforts should take place in long-term acute care hospi-
tals and specialized weaning units (SWUs), reducing cost of treatment and provid-
ing at the same time a multidisciplinary approach of early rehabilitation. These units 
with specialized teams, including nurses, physiotherapists, and nutritionists, might 
be an appropriate “bridge-to-home” environment for PMV patients [ 3 ]. It has been 
suggested that SWUs could be of two types: (1) step-down or noninvasive respira-
tory units within acute care hospitals and (2) regional weaning centers separate from 
hospitals, where different studies have demonstrated that 34–60 % of patients can 
be successfully weaned from ventilatory support [ 3 ,  8 ]. 

 Another subset of patients includes those who remain ventilator dependent, 
requiring long-term ventilator support, which could be provided as NIV in the home 
setting. Thus, different studies in various groups of PMV patients have shown that 
approximately 9 % were discharged home with partial ventilator support, with 1 % 
using NIV and 8 % requiring MV via the tracheostomy [ 3 ,  14 ].   
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    Conclusions 
 The NAMDRC report included 12 recommendations regarding early identifi ca-
tion, management, and research priorities for patients requiring PMV [ 2 ]. Such 
patients by defi nition have failed multiple SBTs and usually require the placement 
of a tracheostomy tube. The fi rst priority for the management of this subgroup of 
critically ill patients is the optimization of any reversible factor contributing to 
PMV. Thus, early mobilization, discontinuation of high doses of narcotics and 
benzodiazepines, early recognition, and management of mental disorders, such as 
delirium, are a few actions that can accelerate the weaning process, in association 
with treatment of underlying causes of respiratory failure. Moreover, weekly 
monitoring of proteins and albumin levels should be part of the plan to make sure 
nutrition goals are met. Ensuring adequate nutrition in CCI patients improves 
immune function and muscle strength, preventing excess breakdown of lean body 
mass. Furthermore, a multidisciplinary rehabilitation program must be imple-
mented on an individualized basis, either in the acute care hospital, or to a special-
ized weaning center, where a team of physiotherapists and nutritionists could 
manage or even restore muscle weakness and atrophy. Such therapies apart from 
muscle strengthening can also facilitate the resolution of infl ammation, turn off 
catabolic stimuli, and restore glycemic control [ 3 ,  15 ]. Another important issue is 
the transition from PMV to long-term MV. It seems that patients with COPD and 
neuromuscular diseases are more amenable to long-term MV, with 3-year mortal-
ity more than 50 % [ 14 ]. Furthermore, patients with age >65 with sacral ulcers 
and abnormal renal function constitute the group with the worse prognosis [ 14 , 
 15 ]. In such cases, better communication between caregivers, patients, and fami-
lies and resetting of expectations regarding weaning failure can facilitate the man-
agement of such patients in different settings more effectively. 

 Key Major Recommendations 
•     Patients who need ventilatory support for more than 21 days, have failed at 

least 3 SBTs, or require mechanical ventilation for more than 7 days since 
the fi rst unsuccessful SBT and have a tracheostomy tube have been catego-
rized in the group needing prolonged mechanical ventilation.  

•   Such patients are usually chronically critically ill patients with many endo-
crine, metabolic, neuromuscular, and immunological disorders because the 
self-adaptation to acute stress has been transformed to a self-defense 
response, preventing restoration of normal physiology, despite apparent 
resolution of the causes of acute illness.  

•   The process of liberating these patients from the ventilator demands, fi rst, the 
treatment of underlying disease and, second, a multidisciplinary approach, 
where a group of health-care professionals, such as physiotherapists and 
nutritionists, apply early mobilization and nutritional support to restore neu-
romuscular, metabolic, and immunological functions toward “normalcy.”  
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•   Weaning protocols may accelerate the weaning process in the acute care 
setting, however, the heterogeneity of PMV patients limits their diagnostic 
accuracy, prompting an individualized approach, usually in specialized 
weaning centers, separate from the acute care hospitals.  

•   The better communication between caregivers, patients, and families, 
along with an advanced palliative care system, will restore confi dence 
between health-care professionals and relatives, resetting possibly unreal-
istic expectations for those patients needing long-term ventilation, usually 
with NIV even at home.    
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  3      Automated Weaning Modes       

       F.     Wallet     ,     S.     Ledochowski    ,     C.     Bernet    ,     N.     Mottard    , 
    A.     Friggeri    , and     V.     Piriou   

         Mechanical ventilatory support (MV) management of critically ill patients has 
undergone profound changes over the past 10 years. This practice has evolved from 
deep sedation associated with a totally controlled ventilation mode for prolong peri-
ods to minimal sedation and the corollary use of spontaneous ventilation modes. By 
reducing the duration and the depth of the sedation, the duration of invasive mechan-
ical ventilation in intensive care units (ICUs) has been signifi cantly shortened. 
Evidence showing the benefi t of such strategies is now clearly demonstrated [ 1 – 3 ]. 

 Weaning is the process of decreasing ventilator support and allowing patients to 
assume a progressively increasing part of their work of breathing or proportion of 
their ventilation. It is essential and represents nearly 40 % of the total duration of 
mechanical ventilation [ 4 ]. It has been shown in clinical practice that the use of 
protocols or algorithms was safe and effective in reducing the time spent on MV [ 4 ]. 
The fi rst step consists of assessing the “readiness to wean,” using objective criteria 
screened daily by nurses or ventilatory therapists to look for contraindications to 
spontaneous breathing (absence of vasopressors, patient awake, and ad hoc ventila-
tion parameters) [ 5 ]. When they are present, a spontaneous breathing trial (SBT) is 
made, after which the practitioner decides whether to extubate the patient [ 6 ]. There 
is, therefore, a scientifi c, economic, and human rationale to reduce the duration of 
ventilation (and sedation). 

 In fact, a prolonged duration of mechanical ventilation has a cost [ 7 ]. In the next 
decade, the need for ventilation will increase, both because of the aging of patients 
admitted to the ICU and global population growth [ 8 ,  9 ]. The availability of medical 
and paramedical personnel will decrease, with a risk of burnout among caregivers 
resulting from an increased workload [ 10 – 13 ]. 
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