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Preface

There is no doubt that obesity has become one of the leading public health threats 
worldwide. The number of obese subjects has doubled during the last 25 years to 
reach more than 600 million subjects in 2015. Considering the 100 million obese 
children in the world, obesity’s future is assured at least for the next generation. Of 
course, the continuously increasing incidence of the disease is problematic, but the 
new alarming phenomenon is the explosion of the cases of massively obese indi-
viduals. Indeed, the higher the severity of obesity according to body mass index, the 
higher the incidence of obesity-associated cardio-respiratory disorders and meta-
bolic diseases. Obesity-induced chronic respiratory failure—commonly referred to 
as obesity hypoventilation syndrome—is encountered in more than half of the 
superobese patients with a BMI exceeding 50 kg·m−2. The management of these 
patients in the emergency setting is often challenging and raises specific problems 
that must be addressed and overcome at the bedside in a short time. At the interface 
between multiple health specialties, the obese patient usually requires a time- 
consuming multidisciplinary approach involving different stakeholders in respira-
tory care, cardiovascular diseases, endocrinology, surgery, anesthesiology, and also 
a necessary implication of the nursing staff. This book is intended to highlight the 
critically ill obese patient’s specificities that must be taken into account when 
mechanical ventilation is part of the therapeutic management of such a patient. 
Given the singularity of the massively obese critically ill patient, it can be assumed 
that an individualizing care approach is particularly adapted for this topic. Good 
knowledge of the respiratory physiology and cardio-respiratory interactions appears 
to be an essential prerequisite to the management of a critically ill obese patient, 
especially when oxygenation and mechanical ventilation are needed. The first part 
of the book is devoted to delivering insight into the basic understanding of the phys-
iological characteristics of the respiratory system of the obese patient and their 
implications for mechanical ventilation. The second part deals with the comorbidi-
ties of the obese patient and the causes of acute respiratory failure that can impact 
on the outcome. The third part of the book includes chapters about preoxygenation, 
positioning, recruitment strategy, sedation and analgesia during invasive mechani-
cal ventilation, and its associated complications. Another part is about noninvasive 
ventilation and the promising technique of high-flow oxygen via nasal cannula, 
which both have the potential to avoid the resort to invasive mechanical ventilation 
in many situations. Finally, nutritional support and outcome after mechanical 
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ventilation are two main issues that are developed in the last part. We are convinced 
that this book provides a useful didactic tool for an everyday practice of critical care 
medicine in obese patients with respiratory failure.

Both editors are very grateful to all authors for their valuable contribution to the 
book. We are deeply aware of the time they spent in writing the chapters, making it 
possible to share their knowledge and expertise with the readers. We greatly appre-
ciate having so many internationally recognized experts in the field of obesity and 
mechanical ventilation who accepted to participate in the writing of this book.

Lens, France Malcolm Lemyze, M.D.
Murcia, Spain Antonio M. Esquinas, M.D., Ph.D.
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1Control of Ventilation in Obesity

Nikolaos Markou, Heleni Stefanatou, and Maria Kanakaki

1.1  Introduction

The literature on the control of ventilation in obesity suggests a fundamental dichot-
omy: eucapnic subjects tend to maintain normal or augmented chemosensitivity, 
whereas hypercapnic subjects have a blunted chemosensitivity [1, 2]. Yet existing 
studies often pose methodological problems. Thus, they do not always take into 
account other factors which may also affect chemical control of breathing like gen-
der or the coexistence of sleep-disordered breathing (SDB), which is very common 
in obese subjects. Furthermore, although most of these studies utilize rebreathing 
assessments of chemoreflex sensitivity, they do not always use the same rebreathing 
protocols. Additionally the output of the ventilatory center is not uniformly evalu-
ated: some investigators measure minute ventilation (VE) alterations, while others 
evaluate neural drive more directly, in terms of alterations in mouth occlusion pres-
sure (P0,1) or in diaphragmatic electromyogram activity (EMGdi). Finally, practi-
cally all studies deal with chemical control of breathing only at the awake state, with 
very few data on chemosensitivity during sleep.

In the rest of the chapter, we shall initially present data on the neural control of 
breathing at rest. Then we shall discuss data on the hypercapnic ventilatory response 
(HCVR) and the hypoxic ventilatory response (HOVR) in eucapnic and in hyper-
capnic obesity (obesity hypoventilation syndrome—OHS), with emphasis on stud-
ies accounting for the coexistence of obstructive sleep apnea (OSA). Finally we 
shall discuss the cause of alterations in the chemical control of breathing in OHS 
and the possible consequences of these alterations.

mailto:nikolaos_markou@hotmail.com
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1.2  Respiratory Neural Drive at Rest in Obesity

In otherwise healthy eucapnic obese adults, measurements of P0,1 and EMGdi 
suggest that respiratory neural drive at rest is increased compared to nonobese 
controls or to reference values [3–8]. Even in hypercapnic obesity, some limited 
data suggest that P0,1 at rest is not reduced and may even be increased relative to 
normal reference values [9, 10]. In eucapnic obesity, respiratory drive at rest 
seems to be closely related to indices of body weight [4, 7]. In a large cohort of 
245 obese subjects with no obstructive or restrictive syndrome or neuromuscular 
impairment, P0,1 at rest was independently associated with severity of obesity 
(defined as percentage of body fat) and inversely associated with minimum oxy-
gen saturation during sleep, total lung capacity, partial pressure of end-tidal CO2, 
and leptin levels [6].

In normal subjects, external elastic loading is known to augment neural drive by 
activating neural load-compensating mechanisms [11–13]. The increase of neural 
drive at rest in obesity seems to represent a similar compensatory mechanism in 
order to maintain an adequate minute ventilation in the face of increased mechanical 
loading due to weight gain [1, 2, 14]. From another viewpoint, an increased EMGdi 
in obesity might also indicate a reduced ventilatory reserve, that is, an inability in 
obese subjects to adequately augment their neural drive when needed, which might 
predispose to hypoventilation and hypercapnia in situations of increased work of 
breathing [7].

1.3  Chemical Control of Breathing in Eucapnic Obesity

In normal volunteers, the application of external elastic loading results in compen-
satory increases of neural drive responses to CO2 rebreathing and to exercise. The 
range of these neural adjustments may vary with load size and type of load—e.g., 
loading of the rib cage compartment might elicit more intense responses, than load-
ing of the abdominal compartment [11–13, 15]. Similar compensatory mechanisms 
have been reported to be operative in eucapnic obesity as well [2, 16], and they 
probably contribute to the increased sensation of dyspnea often encountered in 
these subjects [17]. In spite of this neural adjustment, in obesity the final output in 
terms of minute ventilation response may remain unaffected or even decreased. 
Thus, Lopata et al. report that obese eucapnic subjects without OSA had an increased 
response of respiratory neural drive (evaluated as EMGdi) to CO2 rebreathing com-
pared with normal controls, whereas the VE response was decreased. They con-
clude that compensatory adjustments in respiratory neural drive are not always 
adequate to completely overcome the increased mechanical load in obesity [3]. 
Eucapnic subjects with less preserved HCVR may be more prone to ventilatory 
compromise: Sampson et al. have observed an impairment of the VE response to 
CO2 rebreathing in eucapnic massively obese patients who had previously suffered 
an episode of transient hypercapnia at the time of a respiratory insult, compared 
with carefully matched controls who had never been hypercapnic [4].

N. Markou et al.
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Yet, perhaps because of methodological differences, not all studies on chemo-
sensitivity in eucapnic obesity come to the same conclusions. A shortcoming of 
many of these studies is that they do not account for the frequent coexistence of 
obstructive sleep apnea (OSA) in obesity. Yet, OSA has also been associated with 
increased chemosensitivity [18–22]—although the literature again is not unanimous 
[23–27], with an increased gain of the central controller of breathing implicated in 
OSA pathogenesis [28–30].

In studies addressing the question of chemosensitivity in eucapnic obesity with-
out taking into account the possible presence of sleep-disordered breathing (SDB), 
the HCVR has been reported to be normal [5, 31] or increased [4, 32, 33] or even 
gender-depended, with normal responses for males and increased responses for 
females [34].

An association has also been suggested between an increased HCVR in obesity 
and the percentage and distribution of body fat [32]. The HOVR has similarly been 
reported as normal [31] or increased [5, 32–34]. Before and after studies with 
weight loss after surgical treatment of obesity conclude that eucapnic obesity is 
associated with an augmented HCVR [17, 35].

Methodological problems are encountered in some of these studies, like a great 
imbalance as regards age and gender between obese subjects and normal controls 
[5] or the measurement of HCVR without a hyperoxic background mixture, which 
may have contributed to the finding of an augmented HCVR in another study [33].

1.4  Chemical Control of Breathing in Eucapnic Obesity 
Without OSA

Studies of eucapnic obese subjects in whom OSA had been rigorously excluded 
with polysomnography also provide somewhat conflicting data.

Thus, Lopata et al. [3] report a lower VE response to CO2 rebreathing compared 
with normal controls in spite of a normal or increased response in terms of mouth 
occlusion pressure and EMGdi. According to Narkiewicz et al., eucapnic obese sub-
jects without OSA had a higher HCVR compared to normal controls matched for 
age and sex but a similar HOVR [36]. Buyse et al. on the other hand, compared the 
chemosensitivity of 138 healthy obese subjects without OSA (21 men and 117 
women) of whom more than half had morbid obesity (BMI > 40), with reference 
values from their laboratory, and concluded that in obesity, chemosensitivity is 
affected by gender differences [37]. Obese women had an increased response of VE 
normalized for vital capacity and of P0,1 to hyperoxic hypercapnia and an even 
more increased response to hypoxia. HCVR and HOVR slopes correlated with 
BMI. On the contrary, obese men did not have an altered chemosensitivity. Women 
deemed to be menopausal in this study had lower HCVR and HOVR than women 
deemed to be premenopausal. Estrogen and progestin are known to augment respi-
ratory drive [38], and an augmented chemosensitivity in obese women may be asso-
ciated with increased estrogen production from fat tissue in the premenopausal 
period [37].

1 Control of Ventilation in Obesity
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An interplay between weight increase and sex on chemosensitivity is further cor-
roborated by the findings of Sin DD et al. in a large cohort of 219 patients (many of 
them obese) who underwent polysomnography under suspicion for OSA and in whom 
HCVR independently correlated with BMI in women and with age in men [39].

Finally, in a study of obese adolescents, it was found that after exclusion of OSA, 
obese subjects in the awake state had a higher VE response to CO2 than age-matched 
lean subjects but that this difference did not persist during sleep [40].

1.5  Chemical Control of Breathing in Eucapnic Obesity 
with OSA

Coexistence of OSA seems to blunt neural drive responses and to diminish the VE 
response to CO2 in the study of Lopata et al. [3]. A blunting effect of coexisting 
OSA on HCVR has also been confirmed by Gold et al. in eucapnic obese males, 
while HOVR was not affected by the coexistence of OSA [41].

On the other hand, in a case-control comparison of 21 men and 34 women with 
obesity and OSA matched 1:1 with obese subjects without OSA, on the basis of age, 
height, and BMI, coexistence of OSA resulted in a higher VE/VC and P0,1 response 
to hypoxia (but not hypercapnia) in women, while it did not affect chemosensitivity 
in obese men [37].

Finally, in obese adolescents, coexistence of OSA did not affect the HCVR in the 
awake state. Nevertheless, during sleep, obese subjects with OSA had blunted ventila-
tory responses to CO2 administration compared both to normal controls and to obese 
subjects without OSA, although the neural drive response was not evaluated [40]. The 
blunted response during sleep might conceivably result in prolonged respiratory 
events in these subjects (promoting nocturnal hypercapnia), while the enhanced 
response during wakefulness might lead to an inappropriately high ventilatory 
response upon arousal from apnea with concomitant ventilatory instability because of 
fluctuations in PaCO2 [40].

1.6  Chemical Control of Breathing in Hypercapnic Obesity 
(Obesity Hypoventilation Syndrome)

The simplest evidence for a defective central respiratory drive in OHS is that 
most of these patients are able to voluntarily hyperventilate to eucapnia,  implying 
that impairments in respiratory system mechanics alone do not explain the 
hypoventilation [42].

This impression is further confirmed by several small studies that report a blunted 
HCVR in OHS compared to normal weight subjects [3, 43] or subjects with eucap-
nic obesity [44], at least in the absence of OSA [3]. Interestingly, Lopata et al. report 
that in eucapnic obesity coexisting with OSA, the HCVR is similarly blunted [3], 
but this finding has not been confirmed by Garay et al., who report a substantially 
higher HCVR in eucapnic obesity compared with OHS [23].

N. Markou et al.
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Data on HOVR in OHS are fewer, but it seems that HOVR is also decreased 
compared with lean controls [43]. A trend for lower HOVR has also been observed 
in hypercapnic compared with eucapnic obese subjects with OSA [21], while in 
another study of OSA patients not necessarily obese, this difference in HOVR 
between hypercapnic and eucapnic subjects was significant [45].

This blunted chemosensitivity in OHS is not likely to be associated with genetic 
influences: HCVR and HOVR were similar between first-degree relatives of patients 
with OHS and controls matched for age and weight [46]. It should be noted that 
neither the decreased drive observed in hypercapnic OSA can be attributed to 
genetic influences [45].

The demonstration of increases in HCVR and HOVR as early as 2 weeks from 
initiation of treatment of OHS with continuous positive airway pressure (CPAP) or 
noninvasive positive pressure ventilation (NIPPV) [10, 46–48] constitutes addi-
tional evidence that blunting of chemosensitivity does not preexist but is a second-
ary effect of the syndrome, probably mediated by hypercapnia, which is similarly 
reversed with CPAP or NIPPV treatment. This improvement in HCVR is probably 
confined to subjects with substantially blunted chemosensitivity, in whom an 
increase of 47% has been reported after NIPPV [49].

Blunted HCVR has also been observed in patients with hypercapnic OSA (many 
of whom are obese and suffering in fact from OHS) compared with normal controls 
[19, 23] or with eucapnic OSA patients [45, 47, 48] and is similarly reversed—
together with hypercapnia—by effective OSA treatment.

A weak but significant inverse association between HCVR and PaCO2 has been 
demonstrated in a large cohort of 219 patients who underwent polysomnography 
under suspicion of OSA, although only a few of them had severe obesity or hyper-
capnia [40].

Development of nocturnal hypercapnia is believed to be a critical factor toward 
the establishment of a blunted HCVR in obesity as well as in isolated OSA. Notably, 
the study of Chouri-Pontarollo N et  al. confirms that in patients with OHS, the 
HCVR correlates moderately with the amount of nocturnal hypoventilation during 
REM sleep [49].

Obesity may promote nighttime hypercapnia by increasing metabolic rate and 
CO2 production [50] while at the same time imposing increases in elastance and 
resistance of the respiratory system and perhaps impairing respiratory muscle func-
tion [1, 2]. During sleep these effects may promote nocturnal alveolar hypoventila-
tion, more pronounced during REM sleep. Additionally, obesity often compromises 
upper airway patency causing OSA, which is in fact present in 90% of patients with 
OHS [1]. Most individuals with OSA can sufficiently hyperventilate after apneas to 
eliminate the accumulated CO2 and therefore can maintain overall eucapnia during 
sleep [51–53]. Yet in obesity, this interapnea elimination of CO2 can be impaired 
due to mass loading and reduced FRC, or because the ventilatory response to accu-
mulated CO2 during sleep may be blunted [41, 52].

Once nocturnal hypercapnia develops, kidneys retain at night small amounts of 
bicarbonate to buffer the decrease in pH. This increase in serum bicarbonate is not 
always corrected before the next sleep period as the time constant of bicarbonate 

1 Control of Ventilation in Obesity
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excretion is longer than that of CO2. The result will be a net gain of bicarbonate 
which will cause a secondary depression of central respiratory drive [53–55] and 
will promote further CO2 accumulation at night [51].

Thus a vicious circle begins, with more severe exposure to hypoxemia and 
hypercapnia and further attenuation of central drive, with a decreased HCVR 
during daytime and maintenance of the state of hypoventilation during the day as 
well [1, 2, 56].

A blunted HOVR may also contribute to daytime hypercapnia in obesity. Blunted 
HOVR may be caused by sleep desaturation in the settings of OSA or of alveolar 
hypoventilation during sleep: this nocturnal hypoxemia may lead to depression of 
HOVR, in way similar to that seen in high-altitude hypoxia [57]. Sustained hypoxia 
may also impair the arousal response to external resistive loading, and this may 
worsen sleep-associated airway occlusion [58]. Nocturnal hypoxemia in obese 
patients may thus further impair the compensatory hyperventilation between apneic 
events, contributing to nocturnal rise in CO2 [1].

There are some indirect indications of a poor correlation of central drive at the 
awake state with central drive during sleep [40, 51]. This might explain why some 
patients with OHS may still have normal HCVR. Regrettably data on respiratory 
drive during sleep are scarce in obesity [40] and nonexistent in OHS, and it remains 
unclear if what matters more is respiratory drive during wakefulness or during sleep.

In addition to its contribution to the establishment and maintenance of OHS, an 
impaired chemosensitivity may be responsible for the worsening of hypercapnic 
acidosis observed in a randomized crossover study of patients with OHS after 
breathing an oxygen mixture with an FiO2 0,5 [59]. It has also been found that OHS 
patients with the lowest HCVR responses had a greater propensity for increased 
objective sleepiness, while they also demonstrated significant improvement in 
objective daytime sleepiness with NIPPV [49].

Respiratory stimulants (medroxyprogesterone, acetazolamide) have occasion-
ally been used in the past in OHS in order to reverse CO2 retention [60–63]. Yet 
experience remains limited, and such drugs do not currently constitute a part of the 
mainstream approach in OHS, which remains based on application of CPAP or 
NIPPV during sleep.

1.7  The Role of Leptin in Alterations of Chemosensitivity 
in Obesity

Neurohormonal changes may also be implicated in alterations of chemosensitivity 
in obesity. In this context, the interplay between obesity, leptin, and ventilatory 
drive seems to play an important although not fully clarified role.

Leptin is a satiety hormone produced by adipocytes that, in addition to reducing 
appetite and weight via receptors in the hypothalamus, increases ventilation in ani-
mal models by stimulating central respiratory centers after penetrating the blood- 
brain barrier [64].

N. Markou et al.
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Leptin levels rise in proportion to body fat and obese subjects usually have high 
leptin levels, while hypoxia (in the context of OSA and OHS) also seems to exert an 
influence on leptin production [1, 2].

The association of leptin with chemosensitivity in humans is not absolutely 
clear. In mostly nonobese eucapnic OSA patients, both HCVR and leptin levels 
were higher than in matched healthy controls, and a significant correlation existed 
between HCVR and leptin levels [20]. Yet hypercapnic OSA patients, in spite of a 
significantly lower HCVR, had leptin levels similar to those found in eucapnic 
OSA [20].

High serum leptin concentrations have been associated with the presence of 
hypercapnia in obesity [65] and OSA [66]. In obese subjects leptin was a better 
predictor of hypercapnia than the degree of adiposity [65], while in OSA leptin 
was the only independent predictor of hypercapnia [66]. Furthermore, serum 
leptin levels are inversely associated with respiratory drive (P0,1) at rest in obese 
subjects [6].

In order to explain the paradox of a depressed ventilatory drive and hypercapnia 
in the presence of high leptin levels, it has been suggested that in some obese sub-
jects, central resistance to ventilatory stimulatory effects of leptin may develop [2]. 
Leptin has to penetrate the blood-brain barrier in order to affect the respiratory 
center. The finding that obese individuals have leptin levels three times higher com-
pared to lean controls while their leptin CSF/serum ratio is fourfold lower [67] sug-
gests that such resistance may be the result of reduced leptin CSF penetration [1]. 
The observation that NIPPV use significantly reduces leptin levels [68] has led to 
the hypothesis that the improvement noted with positive pressure treatment in the 
central chemosensitivity of OHS patients [10, 47, 48] may be mediated through a 
reduced leptin resistance.

Yet the hypothesis of leptin resistance is not uniformly supported by all 
studies. Redolfi et al. [69] found that leptin levels were considerably elevated 
in OHS patients compared with reference values but remained much lower 
than those observed in matched obese eucapnic controls. Several months after 
initiation of NIPPV, PaCO2 was normalized in these patients, HCVR was 
increased by 100%, and leptin levels were increased by 50%, although they 
still remained significantly lower than in eucapnic obesity. More study is 
therefore needed in order to clarify the exact role of leptin in the control of 
ventilation in obesity.

 Conclusion
Eucapnic obesity may be associated with an augmented chemosensitivity which 
represents a compensatory response to mass loading of the respiratory system. 
Yet, a small subset of obese subjects who develop daytime hypercapnia demon-
strates a blunted respiratory drive. Although secondary to nocturnal hypoventila-
tion and the subsequent development of daytime hypercapnia, this blunted 
chemosensitivity contributes to the establishment and maintenance of daytime 
hypercapnia.

1 Control of Ventilation in Obesity
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2.1  Respiratory Mechanics and Obesity

2.1.1  Background

Obesity reduces life expectancy and increases morbidity and mortality [1, 2]. It 
causes serious health risks including diabetes, cardiovascular disease and cancer 
[3]. Despite this, the worldwide prevalence of obesity has doubled since the 1980s 
[4]. Although there is extensive knowledge about the cardiovascular and metabolic 
risks of obesity, respiratory comorbidities of obesity are less well understood.

The degree of obesity can be measured using the body mass index (BMI), often 
used due to its ease of use and correlation with adverse health outcomes. BMI, how-
ever, is not a good measure of body fat distribution. There is ongoing discussion 
whether indices of fat distribution may be better predictors of morbidity [5] and 
whether they are of greater relevance to the development of sleep-disordered breath-
ing, but this has not been born out by prospective studies [6, 7].

2.1.2  Non-communicable Disease

According to the World Health Organization (WHO), non-communicable disease 
(NCD) contributes to the majority of mortality worldwide. NCD is commonly 
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attributable to one of the following four factors: alcohol, tobacco, unhealthy diet 
and physical inactivity [8]. The trend to lead a more sedentary lifestyle with reduced 
metabolic needs, while energy intake increases, results in a general rise in body 
weight with age [9, 10]. The population most at risk of obesity-related ill health 
therefore tends to be middle-aged.

2.1.3  The Respiratory Muscle Pump

Effects of obesity can impact on the respiratory mechanics, as well as on neural 
respiratory drive. The respiratory muscle pump sums up all muscle groups that con-
tribute to ventilation; it contains the diaphragm, chest wall muscles, neck and shoul-
der muscles and the abdominal muscles. Different parts of the respiratory muscle 
pump are active during inspiration, expiration, awake at rest, during exercise or 
while asleep. The most important muscle for inspiration is the diaphragm, which 
separates the thoracic from the abdominal cavity. It delivers the majority of the work 
of breathing in healthy individuals [11]. Due to its contribution to intrathoracic and 
intra-abdominal pressure swings while breathing, it impacts on various effects asso-
ciated with ventilation. The diaphragm is made of three parts, the costal part, the 
crural part and a central tendon (Fig. 2.1).

Fig. 2.1 The human diaphragm (reproduced from Gray’s Anatomy, 20th US edition, originally 
published in 1918)
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Contraction of the diaphragm results in caudal movement of the dome-like struc-
ture in addition to expansion of the ribcage which is supported by other inspiratory 
muscle groups like the parasternal intercostal muscles, the scalenes and accessory 
muscle groups. The resulting negative intrathoracic pressure results in inspiratory 
airflow. In expiration, the diaphragm is largely relaxed and positive intra-abdominal 
pressures will push it back up into the thoracic cavity. Elevated intra-abdominal 
pressures in obesity significantly impact on the function of the diaphragm by 
increasing the load during inspiration and expiration (Fig. 2.2).

2.1.4  Gas Exchange in Obesity

Gas exchange is typically measured using the diffusing capacity of the lungs for 
carbon monoxide (DLCO). The DLCO is relatively well preserved in mild obesity 
[12–16], but the pattern in severe obesity is less well understood [16, 17]. However, 
intra-abdominal pressures in obesity impact on the diaphragm and the intrathoracic 
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Fig. 2.2 The load-capacity ratio of the respiratory muscle pump, simplified scheme. Multiple fac-
tors in obesity contribute to an increased load that leads to an elevated neural respiratory drive to 
recruit from the capacity of the respiratory muscle pump. If the elevated level of neural drive can-
not be sustained (e.g., fatigue) or is influenced by other factors (e.g., sleep, drugs), an imbalance 
between load and capacity will develop and cause symptoms and respiratory failure when awake 
and sleep-disordered breathing when asleep
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cavity, particularly in supine posture, and contribute to a ventilation-perfusion mis-
match in the posterobasal compartments of the lung, and this mismatch contributes 
to the effect of alveolar hypoventilation.

2.1.5  Lung Volumes in Obesity

Lung volumes in obesity are either relatively normal or slightly reduced, indicating 
a restrictive ventilatory defect (Fig.  2.3). The forced expiratory volume in 1  s 
(FEV1) is lower in obesity compared to nonobese subjects [19, 20], suggesting that 
in addition to an increased elastic load, obese subjects must overcome an increased 
airway resistance which is a consequence of the reduction in operational lung vol-
umes (Figs. 2.4 and 2.5). The expiratory reserve volume (ERV) is low in morbidly 
obese subjects, and the functional residual capacity (FRC) is close to the residual 
volume (Fig. 2.3).

2.1.6  Respiratory Mechanics and Changes in Obesity

During normal inspiration, the diaphragm descends and the decrease in intratho-
racic pressures initiates inspiratory airflow; in parallel, the diaphragm descent draws 
blood into the vena cava and the right side of the heart. During expiration, an 
increase in intrathoracic pressures leads to air being expelled from the lungs. While 
inspiration is generally an active process, expiration follows passively due to the 
elastic recoil of the chest compartment and positive intra-abdominal pressures, and, 
unless enforced, expiration does not require significant muscle activity in the nor-
mal subject at rest.

In obesity, many factors related to the respiratory system change. Intra-abdominal 
pressures are high, particularly with visceral obesity, and this causes an increased 
preload on the diaphragm movement, specifically in supine posture. The abdominal 
pressures are transmitted to the thoracic cavity where they result in reduced trans-
pulmonary pressures [18]. Due to the reduced pressure gradient, it is more likely 
that obese subjects breathe close to the residual volume (RV) with the functional 
residual capacity (Fig. 2.2) which leads to increased airway resistance due to the 
closing volume of the small airways [21]. This effect increases the work of breath-
ing due to a low compliance [22] (Figs. 2.4 and 2.5). In supine posture, the work of 
breathing increases further [18, 23, 24], the intra-abdominal pressure impacts 
directly on the diaphragm, and an intrinsic positive end-expiratory pressure (PEEPi) 
develops [24, 25]. Neural respiratory drive increases to recruit force, but it can be 
offset by inflating the chest with continuous positive airway pressure (CPAP; 
Fig.  2.6) [24]. However, without noninvasive support, patients with obesity are 
prone to develop a restrictive spirometry. With sleep onset, neural respiratory drive 
falls and the required minute ventilation is no longer maintained, which results in 
hypoventilation and the development of hypercapnia.
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Fig. 2.3 Simplified schematic illustration of lung volumes seated and supine in normal and obese 
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Fig. 2.4 Pressure–volume (PV) curves seated of a normal (N9, male, 66 years, 1.72 m, body mass 
index (BMI) 23.3  kg/m2; filled circles) and matched obese (01, male, 60 years, 1.73  m, BMI 
34.4 kg/m2; open circles) subject. Functional residual capacity (FRC) levels and dynamic compli-
ance are indicated by bold grey bars. The PV curve in the obese is restricted in lung volume and 
diminished in slope, the FRC is low. Despite the differences in the slope of the static PV curves, 
the dynamic compliance, illustrated by the diagonal grey bars, is not substantially different 
between the obese and normal subject. With friendly permission from Thorax [18]

PV supine, N9 + O1 

V
o

lu
m

e 
(%

p
re

d
T

L
C

)

Transpulmonary Pressure (cmH20)

-40 -30 -20 -10 0 10 20 30 40 50

140

120

100

80

60

20

0

Fig. 2.5 Pressure–volume curves supine of a normal (N9, filled circles) and matched obese (01, 
open circles) subject. Compared with the seated posture, the slope of the curves is diminished, in 
the obese functional residual capacity approximates residual volume. Dynamic compliance is 
lower than when seated and more different between obese and normal subject. With friendly per-
mission from Thorax [18]
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2.2  Sleep-Disordered Breathing

2.2.1  Fat Distribution

Sleep-disordered breathing relates to abnormal breathing when asleep; the most 
common types of abnormal breathing during sleep in obesity are obstructive sleep 
apnoea (OSA), obesity hypoventilation syndrome (OHS) and an overlap syndrome 
(OSA/OHS). Neck circumference is a predictor of OSA which suggests that upper 
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Fig. 2.6 Resting breathing in an obese subject (body mass index 42 kg/m2, neck circumference 
43 cm) when seated (left), supine without CPAP (middle) and with CPAP (right). The change in 
end-expiratory oesophageal baseline pressure is reflected by the horizontal dotted lines (nos 1–3). 
There is PEEPi of approximately 6 cm H2O (vertical lines indicate the start of inspiratory flow, 
difference between horizontal dotted lines 2 and 4 = PEEPi). Zero flow is indicated by the horizon-
tal line. The right panel shows the same patient supine breathing with CPAP of 6 cm H2O (full 
facemask). Neural respiratory drive to the diaphragm increases when changing posture from sitting 
to supine and decreases with CPAP; PEEPi is offset with CPAP and pressure swings of Poes and 
Pdi are smaller. Note that on the lower right trace we do not measure flow but mask pressure 
because flow is predominantly inspiratory when receiving CPAP.  The inspiratory deflection in 
mask pressure was chosen instead of flow to mark the beginning of inspiration (vertical line). 
CPAP continuous positive airway pressure, EMGdi electromyogram of the diagram (channel 5 
records the biggest EMG signal; Poes oesophageal pressure, Pgas gastric pressure; Pdi transdia-
phragmatic pressure (Pdi  =  Pgas  −  Poes); PEEPi, intrinsic positive end-expiratory pressure; 
EMGdi in μV, all pressures in cm H2O, flow in l/min. With friendly permission from Thorax [24]
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body or central obesity contributes more to its pathogenesis than general weight 
gain [26]. Upper body obesity is thought to have a greater cardiovascular and meta-
bolic risk than lower body obesity, and central obesity has a greater impact on spi-
rometric results compared to the subcutaneous deposition of adipose tissue [27].

2.2.2  The Relationship of Weight Gain and Obesity  
with Poor Sleep

Obesity is directly related to poor sleep quality, through the development of diseases 
including obstructive sleep apnoea (OSA) and obesity hypoventilation syndrome 
(OHS). Weight gain is also known to cause poor sleep independent of other underly-
ing conditions [28, 29]. Furthermore, poor sleep quality and reduced sleep quantity 
have been found to lead to weight gain, hence perpetuating a vicious cycle of poor 
sleep and obesity.

Chronic sleep deprivation and the associated daytime sleepiness lead to reduced 
levels of exercise, and sleep deprivation is known to increase appetite and produce 
hyperphagia [30, 31]. These changes occur due to complex hormonal regulation 
including cortisol, an increased level of ghrelin and altered levels of leptin [30, 32]. 
Poor sleep quality and quantity have also been suggested to reduce energy expendi-
ture due to abnormal thermoregulation and energy expenditure [33].

Adipose tissue is the largest endocrine organ, and it secretes leptin. Leptin par-
ticipates in a number of metabolic pathways. It directly affects neuroendocrine 
functioning, and energy intake, via specific receptors in the hypothalamus, with one 
of its main roles being the reduction of appetite. Leptin levels increase exponen-
tially with increasing levels of fat mass. However, obese individuals are thought to 
develop a ‘leptin resistance’ due to permanently increased levels of leptin [34], and 
obese patients with OSA have significantly higher levels of leptin than those with-
out, independent of body fat [35]. These hormonal changes, in addition to changing 
the societal sleep pattern, perpetuate a cycle whereby poor sleep and weight gain are 
intrinsically related. The weight gain can lead to altered respiratory mechanics and, 
eventually, the development of sleep-disordered breathing.

2.2.3  Obstructive Sleep Apnoea

Obesity is a significant risk factor in the pathogenesis of OSA [26, 36]. OSA is a 
syndrome in which recurrent collapse of the upper airway leads to apnoeas and 
hypopnoeas during sleep [37]. Besides upper airway collapsibility, mechanical 
changes related to the respiratory muscle pump during obstructive respiratory events 
include increasing pleural pressure swings [38], decreased transpulmonary pres-
sures [18], reductions in expiratory reserve volumes [18] and functional residual 
capacity [39] and decreased compliance [24, 40] compared to healthy individuals 
[25, 41]. Additionally, expiratory flow limitation and an intrinsic PEEP have been 
described [24, 25]. Most of these limitations are successfully counterbalanced by 
continuous positive airway pressure (CPAP; Fig. 2.6).
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2.2.4  Obesity Hypoventilation Syndrome

Obesity hypoventilation syndrome (OHS) [42] was historically known as the 
‘Pickwickian’ syndrome after Charles Dicken’s stories that described the features in 
the character of fat boy ‘Joe’. These patients have a propensity towards a blunted 
neural respiratory drive which results in hypercapnia and hypoxia, whilst awake and 
more markedly during sleep. Obese patients tend to develop this condition as a con-
sequence of the imposed mechanical limitations on their respiratory requirements 
secondary to the high intra-abdominal pressures caused by adipose tissue deposi-
tion. Problems caused by OHS are directly related to an increased body habitus, and 
weight loss can potentially reverse this condition. To improve the hypercapnic respi-
ratory failure, patients benefit from noninvasive ventilatory support, typically 
offered at night. OHS has some clinical features of OSA, and many of these patients 
tend to have an overlap syndrome (OSA/OHS).

With increasing prevalence of obesity, particularly morbid obesity, screening for 
sleep-disordered breathing becomes important. The majority of patients with mor-
bid obesity have at least a mild degree of sleep-disordered breathing [43], while 
around a quarter of pre-bariatric patients who score >4 points on the STOP-BANG 
questionnaire [44] require CPAP therapy [45]. A restrictive spirometry (FVC <3.5 L 
in men and <2.3 L in women) and reduced daytime oxygenation (SpO2 <95% in 
men and <93% in women) can also be useful markers to indicate patients with fea-
tures of nocturnal hypercapnia [46].

2.3  Summary

The load on the respiratory muscles in obesity is high, and this leads to an increased 
work of breathing and elevated levels of neural respiratory drive. High intra- 
abdominal pressures become more relevant with supine posture; they cause an 
intrinsic PEEP in morbidly obese subjects and impose an inspiratory preload on the 
diaphragm. Increased airway resistance due to the low operational volumes increases 
the work of breathing further and impacts on the compliance of the respiratory sys-
tem. Lastly, the reduced transpulmonary pressures lead to a more restrictive lung 
function in obesity.

Sleep-disordered breathing in obesity develops due to upper airway collapse 
(OSA) or hypoventilation (OHS) which is more likely with the increased load in 
obesity. With increasing neck circumference, the upper airway is more likely to 
collapse when asleep, and this explains the high prevalence of OSA in obesity. 
The impact of obesity on the intrathoracic compartment requires elevated levels 
of neural respiratory drive which are not maintained when falling asleep; the sub-
sequent loss of the neuromuscular tone of the respiratory muscles leads to 
hypoventilation. The blood gas analysis and restrictive lung function parameters 
indicate the imbalance between load and capacity of the respiratory system and 
determine the likelihood of sleep-disordered breathing. Acknowledging patho-
physiological changes is important in the context of screening for sleep-disor-
dered breathing in this cohort.
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3Implications of Obesity 
for Mechanical Ventilation

Paolo Formenti and John J. Marini

3.1  Introduction

Recent data from the United States and Europe indicate that approximately one 
third of adult men and women are overweight, with body mass index (BMI) values 
exceeding 25. Results from studies that focused attention on the risks associated 
with overweight have reported conflicting results [1–4]. Improved medical man-
agement of obesity-related chronic diseases or differences between the US general 
population and populations in other studies may account for the findings of some 
reports that overweight was not associated with an excess risk of death [5]. 
However, a large prospective study reported that obesity was strongly associated 
with mortality risk and suggested that even moderate elevations in BMI portend an 
increased mortality risk [6]. Despite these conflicts, it is clear that obesity has 
potential to directly affect respiratory mechanics, since it increases oxygen con-
sumption and carbon dioxide production while at the same time stiffens the chest 
wall, compresses the lungs, and increases the work of breathing. Adipose tissue 
around the rib cage and abdomen inhibits chest wall expansion and reduces func-
tional residual capacity (FRC). For this and other reasons that we examine in the 
present chapter, ventilator settings should be adjusted to minimize potentially 
adverse consequences of obesity.
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