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Preface

Brain tumor programs are like orchestras—several components all working 
together seamlessly to provide optimal clinical care and conduct basic, trans-
lational, and clinical research, and thus advance the field. The last decade has 
witnessed unprecedented advances in the field of neuro-oncology that have 
impacted the entire practice of treating children with brain tumors. Using 
modern molecular technologies that have facilitated a unique insight into the 
genomic make up of pediatric brain tumors, we have gained in-depth knowl-
edge into the genetic heterogeneity of these tumors. This knowledge has also 
generated a new classification that is gradually being implemented by the 
World Health Organization (WHO). The fields of neurosurgery, neuroimag-
ing, and radiation oncology have witnessed technological advances that have 
revolutionized how these modalities have been deployed in the treatment of 
children. The introduction of targeted therapies based on tumor molecular 
profiling has injected a new era of hope for curing brain tumors that were 
incurable in the past. Neurocognitive deficits, which are a significant concern 
in children treated for brain tumors, are being addressed with interventions 
that promise to remediate some of the damage. Long-term follow-up of brain 
tumor survivors has documented the unique health risk profile that these chil-
dren carry for their life based on their treatment history. The recognition that 
more than two-thirds of the burden of pediatric cancer occurs in developing 
countries raises unique challenges regarding delivery of adequate therapy to 
this disadvantaged population. The authors of the individual chapters, all 
experts in their own domains, have done an outstanding job of succinctly 
documenting the recent advances and providing a glimpse of where the field 
is headed over the next few years. This book is a must-read for trainees, junior 
and seasoned practitioners in the field as it provides a lucid update in a rapidly 
emerging field.

Memphis, TN, USA Amar Gajjar
Silver Spring, WA, USA Gregory H. Reaman
Cincinnati, OH, USA Judy M. Racadio
Cincinnati, OH, USA Franklin O. Smith
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Epidemiology of Pediatric Central 
Nervous System Tumors

Nicholas A. Vitanza, Cynthia J. Campen, 
and Paul G. Fisher

1.1  Introduction

Tumors of the central nervous system (CNS) 
comprise a broad and diverse collection of neo-
plasms within pediatric oncology. Yet when taken 
together pediatric brain and spine tumors repre-
sent the most common childhood cancer with an 
incidence of 5.57 per 100,000 annually and are a 
leading cause of cancer-related death in patients 
under 19 years of age (Ostrom et al. 2014; Siegel 
et al. 2015). Factors such as genetic predisposi-
tion, age, and sex play an increasingly significant 
role in understanding presentation, management, 
and etiology of childhood brain tumors. Although 
long-standing observations regarding general 
patterns of CNS tumors continue to be clinically 
useful, the introduction of molecular subtypes, 
such as in medulloblastoma and ependymoma, 
and the discovery of epigenetic regulators, such 
as in diffuse intrinsic pontine gliomas (DIPG) 
and other diffuse midline gliomas with H3K27M 
mutations, have repurposed epidemiological 
findings and reconceptualized CNS tumor clas-
sification (Louis et al. 2016). The elucidation of 

the molecular profile of pediatric CNS tumors 
has made it clear that epidemiology, viewed 
through a prism of genetics and epigenetics, can 
offer even greater insights into this incredibly 
challenging group of tumors. Epidemiology 
today considers not only environmental, parental, 
and birth factors that may increase the risk of 
pediatric CNS tumors, but also germline and 
molecular features that are causal or pathogno-
monic of tumor types and subtypes.

1.2  Astrocytomas and Other 
Gliomas

The gliomas are a heterogeneous group of 
tumors, comprised mostly of astrocytomas. 
Pediatric astrocytomas are divided into four 
grades by the World Health Organization (WHO), 
with pilocytic astrocytomas (WHO grade I) being 
the most common subtype of pediatric CNS 
tumor, comprising approximately 15% (Ostrom 
et al. 2014; Louis et al. 2007). The incidence of 
pilocytic astrocytomas in children in England and 
the USA is 0.75–0.97 per 100,000, and these 
tumors have an exceedingly low incidence of 
metastasis or malignant transformation (Ostrom 
et  al. 2014; Stokland et  al. 2010; Fisher et  al. 
2008; Arora et  al. 2009). Although they may 
occur in any CNS location including the spine, 
they most commonly arise from the posterior 
fossa, optic pathway and hypothalamus, or brain 
stem (Fernandez et al. 2003; Gajjar et al. 1997; 
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Hayostek et al. 1993; Khatib et al. 1994). Diffuse 
astrocytomas (WHO grade II), anaplastic astro-
cytomas (WHO grade III), and glioblastomas 
(WHO grade IV) have an incidence of 0.27, 0.08, 
and 0.15 per 100,000 children 0–14 years of age, 
respectively. Low-grade gliomas, which are com-
prised of WHO grade I and II astrocytomas as 
well as WHO grade I gangliogliomas, most com-
monly present with greater than 6 months of 
symptoms (Fisher et al. 2008). The incorporation 
of molecular characteristics in the 2016 WHO 
classification of tumors of the CNS will assist in 
a deeper epidemiological understanding by 
addressing distinct biologic entities, such as dif-
fuse gliomas with IDH mutations and diffuse 
midline gliomas with H3K27M mutations (Louis 
et al. 2016).

Children with pilocytic astrocytomas have 
excellent outcomes of >96% overall survival 
(OS) at 10 years, and patients with subtotal resec-
tions do not do significantly worse than patients 
with gross total resections (Ostrom et  al. 2014; 
Gajjar et  al. 1997). Posterior fossa tumors are 
common in children, with pilocytic astrocytomas 
being the second most common tumor arising in 
that location, behind only medulloblastoma; 
mean age of occurrence is 7.1 years (Smoots 
et al. 1998). Up to 60% of pilocytic astrocytomas 
are associated with a KIAA1549:BRAF fusion, 
which is associated with a better outcome (Becker 
et al. 2015; Jones et al. 2008). Optic pathway and 
hypothalamic astrocytomas are most often pilo-
cytic astrocytomas, but other subtypes of low-
grade gliomas also account for a small number of 
cases (Hoffman et al. 1993; Laithier et al. 2003). 
Optic pathway gliomas (OPGs) occur in approxi-
mately 15% of patients with neurofibromatosis 
type 1 (NF1), though they most often occur spo-
radically (Listernick et  al. 1989). OPGs are 
reported to have a broad median age between 4.3 
and 8.8 years, and those occurring in patients 
with NF1 present at a significantly earlier age 
than sporadic cases (Listernick et  al. 1989; 
Nicolin et al. 2009; Singhal et al. 2002; Ahn et al. 
2006; Janss et  al. 1995; Khafaga et  al. 2003; 
Jahraus and Tarbell 2006; Avery et al. 2011). The 
variation in age of presentation may be secondary 
to the presence of a cancer predisposition syn-

drome in NF1 patients, as well as the practice of 
asymptomatic surveillance imaging in that group, 
while 90% of sporadic cases present with new 
neurologic symptoms. Subependymal giant cell 
astrocytomas (SEGAs) are another WHO grade I 
astrocytoma subtype that develop almost exclu-
sively in patients with tuberous sclerosis (TS), 
which occurs in 1 in 5600 live births (O’Callaghan 
et  al. 1998). Five to twenty percent of patients 
with TS develop SEGAs, often in adolescence, 
but congenital cases have also been reported 
(Adriaensen et al. 2009; O’Callaghan et al. 2008; 
Hahn et al. 1991).

Several WHO grade II subtypes can be distin-
guished by histology and presentation. 
Pilomyxoid astrocytomas (WHO grade II) have a 
more aggressive course than pilocytic astrocyto-
mas (WHO grade I), a greater propensity for 
growing in the hypothalamochiasmatic region, 
and often present earlier with a mean age of 3.3 
years (Bhargava et  al. 2013). Pleomorphic xan-
thoastrocytomas (WHO grade II) are typically 
located in the superficial temporal lobe; they 
classically present with seizures and have a 
median age at diagnosis of 20.5 years and an 
approximately 75% overall survival (Gallo et al. 
2013; Perkins et al. 2012). These can rarely trans-
form into a high-grade glioma.

Low-grade gliomas of the brain stem can be 
pilocytic astrocytomas or gangliogliomas, which 
typically occur dorsally and have the possibility 
of long-term cure. WHO grade II, III, and IV 
gliomas of the brain stem have dismal outcomes 
and together comprise diffuse intrinsic pontine 
glioma (DIPG). The 2016 WHO classification 
has adjusted that nomenclature in favor of diffuse 
midline gliomas, as diffuse gliomas of the pons, 
thalamus, and spinal cord may form a more bio-
logically distinct category when H3K27M muta-
tions are present (Louis et al. 2016; Shankar et al. 
2016).

DIPGs arise most commonly in the ventral 
pons and comprise 10–15% of all pediatric CNS 
tumors and 80% of brain stem gliomas, affecting 
roughly 300 children in the USA each year 
(Ostrom et  al. 2014; Ramos et  al. 2013; Smith 
et  al. 1998). Males and females are affected 
equally and the median age of presentation is  
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7 years (Lassiter et al. 1971; Lober et al. 2014; 
Veldhuijzen van Zanten et al. 2014). Presentation 
usually consists of a classic triad of ataxia, cra-
nial nerve palsies, and pyramidal tract signs 
developing over 1 month, although atypical cases 
can present more slowly over several months 
(Fisher et  al. 2000). It is now recognized that 
approximately 17% of patients undergo both 
local and distant neuraxis dissemination by 15 
months, which is not far beyond the median over-
all survival of patients with DIPG, as only 10% of 
patients survive beyond 2 years and only 2–3% 
are considered long-term survivors (Gururangan 
et al. 2006; Hargrave et al. 2006; Jackson et al. 
2013). Recently, 80% of DIPGs have been found 
to harbor mutations in K27M of histone 3.1 or 
3.3, which are associated with mutations in 
ACVR1 and p53, respectively (Taylor et al. 2014; 
Wu et al. 2012).

High-grade gliomas (HGGs) occur much 
more frequently in adults, with an increasing 
incidence with age to a peak between the ages of 
75 and 85 years (Ostrom et al. 2014). The out-
comes of patients with high-grade gliomas appear 
to be inverse to patient age, as 5-year overall sur-
vivals for children less than three and those 3–14 
years of age are 31–66% and 19%, respectively 
(Mathew et  al. 2014). Glioblastoma has been 
reported in classic CNS tumor predisposition 
syndromes, such as neurofibromatosis, Li–
Fraumeni, and Turcot syndromes, as well as in 
several genitourinary syndromes, such as Turner 
and Mayer–Rokitansky–Küster–Hauser syn-
drome, though the majority of cases are believed 
to be sporadic (Hanaei et al. 2015; Jeong and Yee 
2014; Macy et  al. 2012; Gonzalez and Prayson 
2013).

1.3  Embryonal Tumors

Embryonal brain tumors are a diverse group of 
aggressive neoplasms, including medulloblas-
toma, primary neuroectodermal tumors (PNET), 
atypical rhabdoid/teratoid tumors (ATRT), and 
pineoblastoma, which share high mitotic activity 
and a predilection for dissemination throughout 
the neuraxis, and are all WHO grade IV (Louis 

et  al. 2007). They account for 15% of CNS 
tumors in patients 0–14 years of age and 12% in 
those 0–19 years of age, with incidences of 0.78 
and 0.64 per 100,000, respectively; these inci-
dences have remained unchanged since at least 
1990 (Ostrom et al. 2014; Johnston et al. 2014). 
Embryonal CNS tumors rarely occur outside of 
childhood with the median age at presentation 
being 7.3 years, and 44% of them being diag-
nosed between the ages of 4 and 9 years (Ostrom 
et al. 2014; Kool et al. 2012). Medulloblastomas, 
the most common malignant brain tumor in pedi-
atrics, histologically appear as PNETs specifi-
cally arising in the posterior fossa (Northcott 
et  al. 2011). A minority of medulloblastoma 
cases have been reported in patients with genetic 
predisposition syndromes such as Gorlin, Turcot 
B, Li–Fraumeni, ataxia telangiectasia, Nijmegen 
breakage, Rubenstein–Taybi, and Coffin–Siris 
syndromes (Distel et al. 2003; Hart et al. 1987; 
Larsen et  al. 2014; Skomorowski et  al. 2012; 
Taylor et al. 2001; Rogers et al. 1988). Overall, 
there is a male predominance of 1.5:1, with 
females reported to have superior outcomes, 
although again this is likely subgroup dependent, 
as there are fewer females in the higher risk 
Group 3 and 4, while more young females have 
sonic hedgehog (SHH) driven tumors (Louis 
et  al. 2007; Northcott et  al. 2011). Historically, 
patients clinically classified as average-risk had a 
5-year OS of roughly 85%, while high-risk 
patients suffered poorer outcomes with near 70% 
OS and patients with large-cell anaplastic histol-
ogy had particularly dismal outcomes (Kool et al. 
2012; Gajjar et  al. 2006; Packer et  al. 2006; 
Tarbell et  al. 2013; Ramaswamy et  al. 2013). 
Overall, long-term survival in patients with 
medulloblastoma is achieved in only 66% of 
patients, with 10% suffering from secondary 
malignancies, 32% of which are secondary brain 
tumors (Ning et al. 2015).

Although particular subsets of medulloblastoma 
have long been suspected to behave differently, it is 
now commonly accepted that there are four distinct 
molecular subgroups: WNT, SHH, Group 3, and 
Group 4, which account for 11%, 28%, 27%, and 
34% of cases, respectively (Kool et  al. 2012; 
Northcott et  al. 2011; Badiali et  al. 1991). 

1 Epidemiology of Pediatric Central Nervous System Tumors
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Prodromes may vary among the groups, ranging 
from only 2 weeks in patients with SHH tumors, to 
4 weeks in patients with Group 3 tumors and 8 
weeks in patients with WNT or Group 4 tumors 
(Ramaswamy et al. 2014). Furthermore, age of pre-
sentation varies as the incidence of SHH medullo-
blastomas is bimodal, peaking under 3 years and 
again over 15 years of age (Northcott et al. 2011). 
WNT and Group 4 both peak around age 11, but 
WNT tumors are essentially absent in infancy 
(Kool et  al. 2012; Northcott et  al. 2011). WNT 
tumors have no gender predominance, are the least 
frequent subgroup, and experience the best out-
comes with greater than 90% overall survival 
(Ellison et  al. 2011, 2011). Outcomes in patients 
with SHH tumors are inferior, though strongly age-
dependent as the 10-year OS is 77% and 51% in 
infants and children, respectively (Kool et al. 2012; 
Ramaswamy et al. 2013). Despite presenting with 
metastatic disease in 17% of infants and 22% of 
children, SHH tumors most often recur locally 
(Kool et al. 2012; Ramaswamy et al. 2013). Group 
3 and Group 4 occur nearly twice as often in males, 
accounting for the male predominance in medul-
loblastoma as a whole. Forty-seven percent of 
Group 3 medulloblastomas present with metasta-
ses and, while they do not have significantly worse 
prognoses than those without metastases, this sub-
group overall suffers the poorest outcomes with 
long-term survival in less than 50% of patients 
(Kool et al. 2012; Northcott et al. 2011). Group 4 
patients, on the other hand, have significantly dif-
ferent outcomes associated with the presence of 
metastases, ranging from nearly 40% OS (metasta-
ses present) to greater than 70% (metastases absent) 
(Kool et al. 2012). In patients that experience recur-
rence, the molecular subgroup remains consistent, 
and although outcomes are uniformly poor, Group 
4 patients have the longest survival following 
recurrence (Ramaswamy et al. 2013).

Atypical teratoid/rhabdoid tumors (ATRTs) 
are embryonal CNS tumors with rhabdoid fea-
tures that were initially described in the 1990s 
(Zuccoli et al. 1999). Since their initial descrip-
tion their incidence has increased, while the inci-
dence of other PNETs has declined, more likely 
representative of a change in classification than a 
change in biological patterns of disease (Ostrom 

et al. 2014). The incidence of ATRT in childhood 
is approximately 0.1 per 100,000 with a peak 
between 1 and 2 years of age and no gender pre-
disposition observed in the USA (Ostrom et  al. 
2014, b; Hilden et al. 2004; von Hoff et al. 2011; 
Woehrer et  al. 2010). They account for 10% of 
CNS tumors in patients less than 1 year of age, 
but only 1.6% of all childhood brain tumors 
(Ostrom et al. 2014). The wide range of reported 
OS, between 28 and 48%, may be affected by 
delays in appropriate diagnosis, as one report 
noted a 5-year OS of only 15% in patients who 
were initially misdiagnosed (Ostrom et al. 2014; 
Hilden et al. 2004; von Hoff et al. 2011; Woehrer 
et  al. 2010; Athale et  al. 2009; Lafay-Cousin 
et  al. 2012). Most reports conclude that meta-
static disease at presentation is not prognostic, 
while descriptions of the prognostic impact of 
age differ (Ostrom et al. 2014; Hilden et al. 2004; 
von Hoff et al. 2011; Woehrer et al. 2010; Athale 
et al. 2009; Lafay-Cousin et al. 2012). The loca-
tion of ATRTs, however, does appear to change 
with age, as patients under 1 year of age most 
commonly have infratentorial disease and the 
incidence of supratentorial disease increases with 
age (Ostrom et al. 2014). The characteristic loss 
of INI1 in these tumors is most commonly 
somatic, although germline mutations have been 
reported and can result in a rhabdoid tumor pre-
disposition syndrome (RTPS) (Sredni and Tomita 
2015; Taylor et  al. 2000). The development of 
ATRTs has also been associated with low birth 
weight and twin pregnancies (Heck et al. 2013).

Pineoblastomas are malignant tumors of the 
pineal gland that, like other PNETs, are histologi-
cally similar to medulloblastomas, but display a 
distinct biology (Li et  al. 2005). While some 
pineal tumors, such as germ cell tumors, occur 
more commonly in males, reports suggest pineo-
blastoma may be more common in females (Villa 
et  al. 2012; Fauchon et  al. 2000). Although 
patients with bilateral retinoblastomas may 
develop a pineoblastoma, “trilateral retinoblas-
toma” occurs in only 1% of patients with bilateral 
retinoblastoma and only in the setting of germ-
line mutations (Ramasubramanian et  al. 2013). 
While the majority of pineoblastoma cases 
appear sporadic, cases also have been reported as 
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part of Turcot syndrome and with germline 
DICER1 mutations (Ikeda et  al. 1998; Gadish 
et al. 2005; Sabbaghian et al. 2012).

1.4  Ependymoma

Virchow initially described ependymomas in the 
nineteenth century as CNS tumors originating 
from the walls of the ventricular system (Virchow 
1863–67). Though ependymomas likely consist 
of several discrete subgroups that can be distin-
guished by location and molecular profile, most 
reports evaluate ependymomas as a whole or by 
grade, leaving their epidemiologic understanding 
incomplete. Ependymoma incidence in the USA 
is 0.3 and 0.29 per 100,000 children aged 0–14 
years and 0–19 years, respectively, and has not 
increased since 1973; nearly one-third of cases 
occur in children under the age of 4 years (Ostrom 
et al. 2014; McGuire et al. 2009). Although 46% 
of ependymomas in adults are spinal, location 
varies according to age in children (Vera-Bolanos 
et al. 2015). The mean age for spinal, supratento-
rial, and infratentorial ependymomas are 12.2, 
7.8, and 5 years, respectively (McGuire et  al. 
2009). The gender incidence may be affected by 
age and location, as the overall male-to-female 
ratio is 1.3:1, though males are more commonly 
affected by supratentorial ependymomas (1.4:1) 
and less commonly affected by spinal ependy-
moma (0.7:1) than females (McGuire et al. 2009; 
Dohrmann and Farwell 1976). Presentation with 
metastatic disease is rare in pediatric ependymo-
mas but is more common in infants, although 
reports vary on whether supratentorial or infraten-
torial tumors are more likely to metastasize 
(Zacharoulis et al. 2008; Allen et al. 1998).

Currently, the treatment of ependymoma pri-
marily varies according to age, grade, and loca-
tion. In 2015, a new molecular classification was 
proposed though it has yet to be validated. It 
divides ependymomas into anatomical compart-
ments: supratentorial (ST), posterior fossa (PF), 
and spinal (SP); tumors in each compartment 
are then divided into one of three subgroups: a 
subependymoma group and two other genetic 
or epigenetic subgroups (Pajtler et  al. 2015). 

Supratentorial ependymomas are distinguished 
by either RELA fusions (ST-EPN-RELA), which 
occur at a median age of 8 years and result in 
frequent disease progressions, or YAP1 fusions 
(ST-EPN-YAP1), which occur at a median age 
of 1.4 years (Pajtler et al. 2015). Posterior fossa 
ependymomas are subdivided into those with a 
CpG methylator phenotype (PF-EPN-A), which 
account for 48% of all pediatric ependymomas 
and experience poor outcomes, and those that are 
not hypermethylated (PF-EPN-B), which often 
occur in older patients (EPN-PFB) (Pajtler et al. 
2015; Parker et al. 2014; Witt et al. 2011).

Although histologic classification of WHO 
grade II or III in pediatric ependymoma may not 
offer prognostic significance, several WHO grade 
I subsets are clearly less aggressive neoplasms 
(Perilongo et al. 1997; Ross and Rubinstein 1989; 
Robertson et al. 1998). Subependymomas repre-
sent less than 1% of CNS tumors in children, are 
designated WHO grade I, and have essentially no 
metastatic potential (Scheinker 1945; Ragel et al. 
2006). Myxopapillary ependymomas, also WHO 
grade I, have a median age of presentation of 36 
years, yet are not uncommon in children with 
reports of patients as young as 6 years old being 
affected (Barton et al. 2010; Woesler et al. 1998). 
Despite their WHO grade I designation, the pedi-
atric variant may be more aggressive than that 
seen in adults with a suggestion of dissemination 
in as many as 58% of patients (Fassett et  al. 
2005). Neurofibromatosis type II (NF2) is the 
most common hereditary predisposition for epen-
dymoma, most often causing intramedullary spi-
nal tumors of the cervical spine (Bianchi et  al. 
1994; Plotkin et al. 2011). Pediatric ependymo-
mas have also been reported in Turcot B, MEN1, 
and Li–Fraumeni syndromes (Chan et al. 1999; 
Metzger et al. 1991).

1.5  Germ Cell Tumors

Germ cell tumors (GCTs) are a heterogeneous 
group of cancers with variable classification and 
nomenclature depending on the particular organ 
involvement. In the CNS, they are divided into 
germinomas, non-germinomatous germ cell 
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tumors (NGGCT), and teratomas. The most com-
mon locations for GCTs are the suprasellar and 
pineal regions. GCTs account for 4% of pediatric 
CNS tumors with an incidence of 0.2 and 0.22 per 
100,000  in children aged 0–14 and 0–19 years, 
respectively (Ostrom et al. 2014). Males account 
for 76% of all CNS GCTs, 58% of pituitary 
GCTs, and a remarkable 93% of pineal GCTs 
(Goodwin et  al. 2009). In both sexes there is a 
small spike at birth and a much greater spike in 
adolescence with incidences peaking at roughly 
age 15. Race also influences incidence patterns, 
as in the USA nearly 20% of patients were Asian 
or Pacific Islander with an incidence of 0.26 per 
100,000, double the 0.13 per 100,000  in white 
children 0–15 years of age (Goodwin et al. 2009). 
CNS GCTs also account for a greater percentage 
of pediatric CNS tumors in Japan, Korea, Taiwan, 
and China at 7.8%, 11.2%, 14%, and 7.9%, respec-
tively (Cho et al. 2002; Mori and Kurisaka 1986; 
Wong et al. 2005; Zhou et al. 2008). Klinefelter 
syndrome is associated with the development of 
pediatric germ cell tumors including intracranial 
germinomas (Arens et al. 1988). Down syndrome 
and NF1 have also been reported in patients with 
intracranial germinomas (Hashimoto et al. 1995; 
Wong et al. 1995).

1.6  Family History

Despite the increasing awareness of CNS tumor 
genetic predispositions, further discussed within 
another chapter, there is still little evidence of the 
development of CNS tumors in the parents or sib-
lings of affected children. The studies reporting 
increased pediatric CNS tumor incidence among 
siblings have been plagued by small numbers and 
an inability to exclude genetic predisposition 
syndromes; however, a larger Nordic cohort of 
patients showed no association among siblings 
outside of genetic predisposition syndromes 
(Draper et al. 1977; Farwell and Flannery 1984; 
Miller 1971; Winther et  al. 2001). There have 
been several reports regarding the association of 
parental age with pediatric CNS tumors: two 
studies identified increased parental age as a risk 
factor, while one found only advanced maternal 

age to be a significant risk (Hemminki et al. 1999; 
Johnson et al. 2009; Yip et al. 2006). A review of 
Sweden’s Family-Cancer Database, consisting of 
over 13,000 CNS tumor diagnoses, found that 
oldest siblings were at increased risk for several 
childhood malignancies and this risk increased 
with the number of younger siblings (Altieri et al. 
2006). The existence of three or more younger 
siblings resulted in a relative risk of 1.34, 2.3, 
2.61, and 3.71 of astrocytoma, medulloblastoma, 
ependymoma, and meningioma, respectively 
(Altieri et al. 2006).

1.7  Birth History

As early as 1968, Kobayashi had published a 
report of the association between congenital 
anomalies and childhood cancer (Kobayashi 
et al. 1968). A review of 90,400 children found 
patients with congenital anomalies had a risk 
ratio of 5.8 (CI 3.7–9.1) of developing cancer in 
their first year of life (Agha et al. 2005). The risk 
was also increased for central nervous system 
and sympathetic nervous system tumors individ-
ually at a risk ratio of 2.5 (CI 1.8–3.4) and 2.2 (CI 
1.4–3.4), respectively. A Bjørge et al. study of 5.2 
million children and their families in Norway and 
Sweden also found patients with congenital 
anomalies had an increased cancer risk that 
extended into early adulthood (Bjorge et  al. 
2008). Furthermore, patients with CNS malfor-
mations were also at the highest risk of develop-
ing CNS malignancies, with a standardized 
incidence rate (SIR) of 58 (CI 41–80) and 8.3 
(Louis et  al. 2007; Stokland et  al. 2010; Fisher 
et  al. 2008; Arora et  al. 2009; Fernandez et  al. 
2003; Gajjar et  al. 1997; Hayostek et  al. 1993; 
Khatib et  al. 1994; Smoots et  al. 1998; Becker 
et  al. 2015; Jones et  al. 2008; Hoffman et  al. 
1993) in Norway and Sweden, respectively. To 
assess potential cancer risk associated with con-
genital anomalies even outside of the setting of 
chromosomal defects, a review of the California 
Cancer Registry (CCR) found that between 1988 
and 2004, children with congenital anomalies 
without chromosomal defects had a 1.8-fold 
increased risk of CNS cancer (Fisher et al. 2012). 
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A further examination found a particularly 
increased risk in medulloblastoma (OR 1.7, CI 
1.1–2.6), PNET (OR 3.64, CI 1.5–8.6), and germ 
cell tumors (OR 6.4, CI 2.1–19.6), as well as an 
increased risk in mothers with greater than two 
fetal losses after 20 weeks of gestation (OR 3.13, 
CI 1.3–7.4) (Partap et al. 2011).

Many large studies have evaluated the impact 
of birth weight on the risk of developing CNS 
tumors, with several suggesting an increased 
birth weight carries a greater relative risk, 
although the most common specific tumors types 
varied among studies (Bjorge et al. 2013; Harder 
et  al. 2008; MacLean et  al. 2010; Milne et  al. 
2008; Schmidt et  al. 2010). In an examination 
matching each case (17,698) to 10 controls, 
Bjørge found an increased childhood cancer risk 
for higher birth weight infants, and also infants 
with larger head circumferences (Bjorge et  al. 
2013). Additionally, in an evaluation of Nordic 
children, Schmidt found a gestational age-
adjusted birth weight of greater than 4.5  kg 
increased the risk of all CNS tumors (OR 1.27, 
CI 1.03–1.6), with the greatest increase among 
embryonal tumors (Schmidt et  al. 2010). When 
3733 CNS tumors from the CCR were matched 
to controls, Maclean et  al. found an increased 
birth weight of 4 kg associated with an increased 
risk of CNS tumors, especially HGGs (MacLean 
et  al. 2010). A meta-analysis of eight studies 
found that increased birth weight was associated 
with increased incidence of astrocytomas and 
medulloblastomas, but not ependymomas 
(Harder et al. 2008). Conversely, a study of over 
600,000 live births in Western Australia between 
1980 and 2004 found no association between 
birth size and the development of CNS tumors 
prior to age 14 (Milne et al. 2008).

1.8  Immune System

Although allergic conditions have been consis-
tently reported as inversely associated with adult 
gliomas, reports in children have varied (Chen 
et al. 2011). In pediatrics, an initial report from 
the United Kingdom found that maternal asthma 
resulted in a decreased relative risk of their chil-

dren developing a CNS tumor, particularly 
PNETs (Harding et al. 2008). Another study eval-
uating 272 matched case–control pairs in Canada 
found asthma associated inversely with the devel-
opment of CNS tumors, especially ependymo-
mas, while the relationship with eczema was not 
significant (Roncarolo and Infante-Rivard 2012). 
Furthermore, the use of asthma controller medi-
cations was found to be associated with an 
increased risk. However, a study of 352 pediatric 
brain tumors in Denmark, Norway, Sweden, and 
Switzerland found no association with asthma or 
eczema (Shu et al. 2014).

Studies evaluating the influence of prior infec-
tious history on the development of pediatric 
CNS tumors have been conflicting. Harding et al. 
found infants without social interaction with 
other infants in the first year of life had an 
increased risk (OR 1.37, CI 1.08–1.75) of CNS 
tumors, especially PNET, compared to those who 
had such interaction (Harding et  al. 2009). 
Attendance in day care also appeared to show a 
protective benefit, though not statistically signifi-
cant. A Canadian study also found a reduced risk 
in patients with day care attendance, and, unlike 
Harding’s study, breastfeeding was found to be 
protective against the development of brain 
tumors (Shaw et al. 2006; Harding et al. 2007). 
Conversely, Anderson et al. found no association 
with day care attendance but that patients with 
more frequent sick days in the first 6 years of life 
had an increased incidence of gliomas and 
embryonal tumors (Andersen et al. 2013).

1.9  Environmental Exposure

Radiation therapy (RT), used decades ago to treat 
tinea capitis and more recently to treat childhood 
acute lymphoblastic leukemia (ALL), is known to 
cause secondary CNS tumors, especially menin-
giomas, p53 mutated glioblastomas, and PNETs 
(Kleinerman 2006; Ohgaki and Kleihues 2005). 
Fifty-three percent of secondary neoplasms in 
survivors of childhood ALL occur in the CNS 
and 89% of those are associated with prior cranial 
irradiation (Mody et al. 2008; Schmiegelow et al. 
2013). The timing and outcome are dependent 
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on pathology, as non-meningioma CNS tumors 
occur between 6.5 and 9.8 years and meningio-
mas occurred between 12.3 and 18.3 years after 
treatment, with OS of 18% and 96%, respectively 
(Schmiegelow et  al. 2013). Prenatal diagnostic 
imaging has been evaluated as a potential can-
cer risk, but studies from the United Kingdom, 
Sweden, and Denmark did not describe a signifi-
cant increase in pediatric CNS tumors in patients 
exposed to prenatal X-rays compared to controls 
(Mellemkjaer et al. 2006; Rajaraman et al. 2011; 
Stalberg et al. 2007). Diagnostic head X-rays also 
have not been associated with the development 
of CNS tumors (Khan et  al. 2010). However, 
CT scans contribute to a slightly elevated risk of 
CNS tumors, with risk decreasing with increas-
ing age at first CT scan exposure (Pearce et  al. 
2012; Mathews et al. 2013).

Magnetic fields, radio waves, and mobile 
phone use have not been found to be associated 
with an increase in pediatric brain tumors (Aydin 
et  al. 2011; Elliott et  al. 2010; Ha et  al. 2007; 
Kheifets et al. 2010).

Although many different maternal medica-
tions have been evaluated, none have been found 
to consistently increase the risk of pediatric CNS 
tumors in offspring. A German study found an 
association between maternal prenatal antibiotic 
use and an increased risk of medulloblastoma 
(OR 2.07, CI 1.03–4.17) and astrocytoma (OR 
2.26, CI 1.09–4.69) (Kaatsch et  al. 2010). 
Although the odds ratio was similarly elevated in 
a Canadian study, the results were not statisti-
cally significant (OR 1.7, CI 0.8–3.6) (Shaw et al. 
2006). A 2010 Swedish study evaluating poten-
tial associations with prenatal medications and 
the development of pediatric CNS tumors in chil-
dren 0–14 years of age found no association with 
antibiotics, antifungals, antacids, analgesics, 
antiasthmatics, antiemetics, antihistamines, 
diuretics, folic acid, iron, laxatives, or vitamins, 
but did find an association with antihypertensives 
(OR 2.7, CI 1.1–6.5), particularly β-blockers (OR 
5.3, CI 1.2–24.8) (Stalberg et al. 2010). An asso-
ciation between prenatal antihypertensive use 
and the development of pediatric CNS tumors, 
however, was not found in a German study evalu-
ating pediatric CNS tumors diagnosed between 

1992 and 1997 (Schuz et  al. 2007). Amide or 
amine-containing medications can potentially be 
carcinogenic after conversion to N-nitroso com-
pounds (NOCs) in the stomach, though three 
studies have all found little or no support for an 
association between maternal exposure and cen-
tral nervous system tumors in subsequent chil-
dren (Cardy et al. 2006; Carozza et al. 1995).

Prenatal vitamins, especially iron and folic 
acid, consistently have been shown to decrease 
the risk of pediatric CNS tumors (Bunin et  al. 
2005, 2006; Ortega-Garcia et  al. 2010; Milne 
et al. 2012).

Although prenatal alcohol exposure can have 
a variety of toxic effects on the developing child, 
there is no clear increased risk of pediatric CNS 
tumors (Infante-Rivard and El-Zein 2007; Milne 
et al. 2013). The role of maternal tobacco smok-
ing during pregnancy is unclear, as several reports 
have found no association (Filippini et al. 2002; 
Huncharek et  al. 2002; Norman et  al. 1996), 
while a review of the Swedish Birth Register of 
births between 1983 and 1997 found a hazard 
ratio of 1.24 (CI 1.01–1.53) (Brooks et al. 2004).

Pesticide exposure may have an association 
with pediatric CNS tumors. A review of 4723 
patients from the North of England found no sig-
nificant relationship between occupational expo-
sure to pesticides and risk of any childhood 
cancer (Pearce et al. 2006). In contrast, a study 
from the USA found that paternal pesticide expo-
sure was associated with an increased risk of his 
child developing an astrocytoma (OR 1.8, CI 
1.1–31), but not PNET (Shim et al. 2009). A sep-
arate study investigating paternal hobbies did 
identify exposure to pesticides as increasing the 
risk of medulloblastoma and PNET (Rosso et al. 
2008). An Australian study also found precon-
ception exposure to pesticides increased the risk 
of pediatric CNS tumors (Greenop et al. 2013). 
The effect of residential pesticides may be con-
tingent on particular predispositions as polymor-
phisms in PON1, a gene responsible for 
organophosphorous metabolism, may increase 
the risk of pediatric CNS tumors in exposed 
patients (Searles Nielsen et al. 2010).

An investigation of the risk of pediatric CNS 
tumors among children of parents working in a 
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wide variety of occupations found no clear asso-
ciations (Mazumdar et  al. 2008). However, a 
separate analysis found that brain tumors were 
more common in children of mothers working 
in electronic component manufacturing (OR 
13.78, CI 1.45–129) and garment and textile 
workers (IR 7.25, CI 1.42–37) (Ali et al. 2004). 
There also appears to be an increased incidence 
of CNS tumors among children whose parents 
are exposed to diesel fuel, but not other exhausts 
(Peters et  al. 2013). Paternal polycyclic aro-
matic hydrocarbon exposure has also been 
linked to a subsequent increase in pediatric CNS 
tumors (OR 1.4, CI 1.1–1.7) (Cordier et  al. 
2004).

In conclusion, pediatric neuro-oncology is a 
rapidly evolving field in which molecular investi-
gations are fueling a restructuring of tumor sub-
groups. Although pediatric CNS tumors have 
historically been distinguished by histopathology 
and location, driving mutations and epigenetic 
profiles are proving to not only be attractive ther-
apeutic targets but also epicenters for new clas-
sifications. The challenge will be to integrate 
former classification systems with the latter, and, 
perhaps just as importantly, to frame our histori-
cal data according to the new groupings so that 
the decades of lessons learned in epidemiology 
can continue to be applied in the pursuit of 
improving outcomes for children with CNS 
tumors.
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2.1  Introduction

The incidence of primary malignant and nonmalig-
nant central nervous system (CNS) tumors in chil-
dren and adolescents aged 0–19 years in the US 
is 5.42 per 100,000, and approximately 4620 new 
cases are expected to be diagnosed in the US in 
2015 (Ostrom et al. 2014). There is a rich variety of 
brain tumors found in children which is primarily 
a function of the patient’s age and location of ori-
gin, with the overall most common being pilocytic 
astrocytoma (Ostrom et al. 2014). It has been tradi-
tionally taught that approximately 60% of pediatric 
brain tumors are infratentorial, but the actual ratio 
of supratentorial to infratentorial pediatric tumors 
is dependent on the specific age group (Ostrom 
et al. 2015). Tumors can be broadly categorized as 
glial (e.g., astrocytomas, ependymomas), embryo-

nal (e.g., medulloblastomas, pineoblastoma), germ 
cell (e.g., germinoma, teratoma), and other (e.g., 
choroid plexus tumors, craniopharyngiomas).

Neurosurgery represents one of the main pil-
lars of pediatric neurooncologic care, along with 
medical and radiation oncology, pathology, and 
neuroradiology. Neurosurgical interventions 
include management of hydrocephalus, obtaining 
tissue for histopathological and molecular diag-
nosis, and tumor resection for oncologic (i.e., 
survival) and/or neurologic (e.g. seizure control) 
benefit. In this chapter, we will take the reader 
through the surgical management of pediatric 
neurooncologic patients from the preoperative, 
intraoperative, and postoperative phases of care.

2.2  Initial Evaluation

2.2.1  History and Examination

Clinical presentation is variable and dependent on 
the location of the tumor and the age of the patient. 
Most children will present with hydrocephalus, 
symptoms of raised intracranial pressure, focal 
neurologic deficit, or a seizure. Some tumors will 
be incidentally found as part of a workup for non-
specific symptoms, such as headaches or after a 
minor traumatic event. A detailed neurological 
exam should be performed on all patients; a thor-
ough knowledge of neuroanatomy can help quali-
tatively detail preoperative deficits, both minor 
and major. This is easier in older children, but 
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there are specific signs and symptoms that can be 
revealing in younger children.

Headache is a common symptom among 
patients with brain tumors and occurs with, or 
without, elevated intracranial pressure (ICP). 
These headaches are classically described as being 
worse in the morning and exacerbated by strain-
ing, coughing, or placing the head in a dependent 
location. Brain tumor headaches are frequently 
associated with nausea and may be temporarily 
relieved by the hyperventilation that occurs with 
vomiting. In a large study examining the epidemi-
ology of headaches associated with pediatric brain 
tumors, approximately two-thirds of patients had 
chronic or frequent headaches prior to their first 
admission (The epidemiology of headache among 
children with brain tumor. Headache in children 
with brain tumors. The Childhood Brain Tumor 
Consortium 1991). In this study, headaches 
tended to be triggered by straining, coughing, or 
sneezing, to gradually worsen over time, to cause 
vomiting followed by relief, and to be severe 
enough to wake the child from sleep. Personality 
changes, school problems, and focal neurologic 
deficits were also associated with headaches. In a 
similar study, the most common symptom at pre-
sentation in children with brain tumors was head-
ache; all of the patients with headaches also had 
other symptoms, including mental status changes, 
papilledema, eye movement derangements, hemi-
motor or sensory abnormalities, tandem gait dif-
ficulty, or abnormal deep tendon reflexes, present 
at the time of diagnosis (Wilne et al. 2006).

The two cranial nerves that can be affected by 
hydrocephalus or elevated ICP are the trochlear 
(4th) and abducens (6th). The trochlear nerve 
innervates the superior oblique muscle, which 
intorts, depresses, and adducts the eye. Patients 
with acquired weakness of the 4th nerve report 
vertical and oblique diplopia that is worse in 
down-gaze and gaze away from the affected eye, 
resulting in difficulty reading. Patients will adopt 
a characteristic head tilt away from their affected 
eye to reduce their diplopia, which is called the 
Bielschowsky’s sign. The abducens nerve inner-
vates the lateral rectus, which abducts the eye. 
Weakness of the 6th cranial nerve results in a lat-

eral gaze palsy and horizontal diplopia that is 
worse with gaze toward the affected eye.

Posterior fossa tumors often present with 
symptoms of obstructive hydrocephalus, which 
in turn leads to elevated intracranial pressure. 
Headache and vomiting are hallmark features, 
particularly if present in the morning. In infants, 
hydrocephalus presents with a full or bulging 
fontanelle, separation of sutures, rapid head 
growth, macrocephaly, irritability, lethargy, or 
poor feeding/failure to thrive. Sundowning—or 
setting sun sign—describes downward deviation 
of both eyes, revealing an area of sclera above the 
irises. This usually occurs with advanced hydro-
cephalus with stretching of the third ventricle and 
upper brainstem. The pupils are sluggish and 
respond to light unequally.

Pineal region tumors can result in hydro-
cephalus and Parinaud’s syndrome. Parinaud’s 
syndrome, or dorsal midbrain syndrome, is a 
constellation of eye findings that includes upgaze 
palsy, convergence-retraction nystagmus, light-
near pupillary dissociation (Argyll Robertson 
pupil), and lid retraction called Collier’s sign 
(Baloh et al. 1985). When upgaze palsy is com-
bined with lid retraction, it produces the setting 
sun sign. This syndrome is often seen with pineal 
region tumors that place pressure on the rostral 
interstitial nucleus of the medial longitudinal 
fasciculus and the posterior commissure, which 
mediate upgaze and the consensual pupillary 
light reflex, respectively.

Diencephalic syndrome, also known as Russ-
ell’s syndrome, is characterized by progres-
sive and severe failure to thrive (Zafeiriou et al. 
2001). It is seen exclusively with suprasellar 
pilocytic astrocytoma tumors affecting the ante-
rior hypothalamus. The child often appears ema-
ciated despite being alert and active and has a 
“pseudohydrocephalic” face from severe loss of 
adipose tissue and a normal head circumference. 
Neurocutaneous syndromes—such as the neuro-
fibromatoses, tuberous sclerosis, and Von Hippel-
Lindau disease—are characterized by specific 
nervous system tumors associated with clinical 
exam findings. The details of these syndromes 
are beyond the scope of this chapter.

P. Ryan Lingo et al.
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2.2.2  Seizures

Supratentorial tumor location, age  <  2 years, 
and hyponatremia are independent risk factors 
for a first-time seizure in pediatric patients 
with a brain tumor (Hardesty et  al. 2011). 
Seizures cause cerebral hyperemia and can 
thus precipitate a herniation event in the set-
ting of preexisting increased intracranial pres-
sure. They can also be the clinical manifestation 
of an intratumoral hemorrhage. If the patient 
is in status epilepticus, secondary brain dam-
age may also occur through tissue hypoxia or 
acidosis. Guidelines are available that detail 
when imaging should be conducted in a child 
with a first-time nonfebrile seizure (Hirtz 
et al. 2000).

Antiepileptic drugs (AED)—such as phenyt-
oin, phenobarbital, and carbamazeipine—induce 
the cytochrome P450 system and can reduce 
the efficacy of many common chemothera-
peutics (Guerrini et  al. 2013). Conversely, val-
proic acid inhibits the cytochrome P450 system 
and can increase levels of chemotherapeutics. 
Levetiracetam is a newer AED that has proven 
efficacious in preventing tumoral seizures with a 
low side-effect profile and no significant induc-
tion of the cytochrome P450 system (Zachenhofer 
et al. 2011). It is the first-line AED at our institu-
tion for children who suffer from seizures caused 
by a brain tumor.

2.2.3  Cerebral Edema

Brain tumors can cause vasogenic (i.e., intersti-
tial) edema, which results from breakdown of the 
tight junctions between brain capillary endothe-
lial cells and leakage of plasma filtrate into the 
interstitial space. Vasogenic edema is more 
marked in the white matter than the gray matter. 
Children are often started on steroids (e.g., dexa-
methasone) shortly after being diagnosed with a 
brain tumor. Steroids help with vasogenic edema, 
hydrocephalus (headaches, nausea/vomiting), 
and poor appetite, all of which cause the child to 
feel and look significantly better.

2.2.4  Preparation for Tumor 
Resection: Management 
of Hydrocephalus

For the vast majority of children, treatment of 
hydrocephalus is done by resecting the tumor. 
Prophylactic endoscopic third ventriculos-
tomy (ETV) at the time of surgery has been 
shown to reduce the risk of post-resection 
hydrocephalus from approximately 27 to 6% 
in patients with posterior fossa tumors and 
hydrocephalus (Sainte-Rose et  al. 2001). 
However, since resection alone effectively 
treats the majority of patients with posterior 
fossa tumor-induced hydrocephalus, pre-
resection ETV is an unnecessary surgery, if 
tumor resection is to be carried out in a timely 
manner. However, if the patient’s hydrocepha-
lus will not resolve with resection (e.g., CSF 
dissemination), or there is no immediate role 
for resection (e.g., pineal mass), or no resec-
tion at all (e.g., diffuse pontine glioma), then 
long-term hydrocephalus management can be 
achieved either by placing a ventricular shunt 
or by performing an ETV.  The ETV Success 
Score was developed to help surgeons deter-
mine the likelihood of ETV succeeding in a 
particular child, taking into consideration age, 
hydrocephalus etiology, and whether the child 
currently has a shunt or not.

Patients who present in extremis from severe 
hydrocephalus may require emergent placement 
of an external ventricular drain (EVD) (Lin and 
Riva-Cambrin 2015; El-Gaidi et al. 2015). Care 
must be taken not to drain too much cerebrospi-
nal fluid in patients with posterior fossa tumors as 
this can precipitate upward transtentorial hernia-
tion (Osborn et al. 1978). Ascending transtento-
rial herniation results in a clinical syndrome of 
nausea and vomiting, followed by progression to 
stupor and coma with small nonreactive pupils 
and loss of vertical gaze. Radiographically, there 
is displacement of the midbrain and cerebellum 
through the tentorial notch, causing flattening of 
the quadrigeminal cistern and a “spinning top” 
appearance to the midbrain from compression of 
the posterior aspect of the midbrain.

2 Principles of Pediatric Neurosurgery



20

2.2.5  Preparation for Tumor 
Resection: Neuroimaging

Computed tomography (CT) scans are very useful 
in the initial evaluation because they are quick and 
sensitive for detecting hydrocephalus, hemorrhage, 
edema, and ectopic calcifications. Once the child is 
deemed stable, he or she should have a magnetic 
resonance image (MRI) of the brain both with and 
without contrast. Unless the index of suspicion is 
low, an MRI of the full spine (with and without 
contrast) should also be obtained to look for lepto-
meningeal—or “drop”—metastases. Standard 
MRI brain sequences include T1 (with and without 
contrast), T2, FLAIR, diffusion weighted imaging 
(DWI) with the apparent diffusion coefficient map 
(ADC), and susceptibility weighted imaging 

(SWI). ADC maps have been shown to correlate 
with tumor cellularity in pediatric brain tumors 
(Choudhri et al. 2015a). Sometimes brain tumors 
can resemble other pathologies, such as infection 
or demyelinating disease. Magnetic resonance 
(MR) perfusion and spectroscopy can help distin-
guish tumors from other such conditions by high-
lighting increased blood flow and products of cell 
turnover, like elevated choline and depressed 
N-acetylaspartate, respectively.

Vascular imaging studies, such as MR or CT 
angiogram/venogram, are useful if tumors 
involve major intracranial arteries, veins, or sino-
venous structures. Traditional angiography is 
also a valuable preoperative tool when tumors are 
felt to be hypervascular and may benefit from 
preoperative embolization (Fig.  2.1). If such 

a b

c d

Fig. 2.1 T1 weighted (T1W) MRI with contrast of an 
interhemispheric hemangioma (a). Angiogram demon-
strates vascular supply through the pericallosal artery (b). 

Microcatheterization of the tumor for embolization (c). 
Post embolization angiogram (d)
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embolization is performed, resection should fol-
low within 24–48  h as the embolization may 
cause new or worsening cerebral edema.

Eloquent location of a tumor is particularly 
challenging for the surgeon. Functional MRI 
(fMRI), magnetoencephalography (MEG), tran-
scranial magnetic stimulation (TMS), and dif-
fusion tensor imaging (DTI) are modalities 
that provide further knowledge of the patient’s 
functional neuroanatomy (Ottenhausen et  al. 
2015). These imaging studies may localize elo-

quent regions, such as the primary motor cor-
tex, Broca’s and Wernicke’s area, or subcortical 
tracts like the corticospinal, geniculocalcarine, or 
arcuate fasciculus. Functional MRI relies on the 
theory of neurovascular coupling and assumes 
that when functional networks within the brain 
are activated, perfusion-induced changes occur 
regionally in the blood oxygen-level that can be 
detected by MRI. In young children, motor map-
ping can be performed with passive movement 
(Fig. 2.2) (Choudhri et al. 2015c). MEG detects 

a
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Fig. 2.2 Axial and coronal T2 weighted (T2W) MRI shows 
a low-grade glioma within the left precentral gyrus (a, b). 
Axial T2W image with functional MRI (fMRI) overlay from 
passive movement of the right lower extremity shows cortical 
activation along the medial margin of the tumor within the 
precentral gyrus near the vertex (c). Axial T2W image with 
fMRI overlay from passive movement of the right upper 
extremity shows cortical activation in the precentral gyrus 

inferolateral to the tumor (d). Resected tumor specimen (e). 
Operative setup utilizing frameless neuronavigation and a 
surgical microscope with the patient’s head positioned 180° 
away from anesthesia to facilitate intraoperative MRI (iMRI) 
scanning (f, g). iMRI suite and scanner (h). Coronal T2W 
image from initial iMRI demonstrates residual tumor (i). 
Coronal T2W image from second iMRI after further resec-
tion demonstrates a gross total resection (j)
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the magnetic fields created by bioelectrical cur-
rents as a result of neuronal activation and is, 
therefore, a direct marker of neuronal activity. 
Navigated TMS uses a magnetic field to induce 
a cortical electrical field and thus elicits or inhib-
its neuronal activity. A single pulse is used to 
elicit a motor response, or repetitive pulses are 
used to inhibit language function thereby map-

ping functional motor and language areas that are 
sufficient—and possibly necessary—to evoke a 
physiological response. DTI is the only preop-
erative method for visualizing subcortical white 
mater tracts (Fig.  2.3) (Choudhri et  al. 2014b). 
All of these functional imaging techniques are 
more accurate for mapping motor areas than lan-
guage areas.

a

c

b

Fig. 2.3 Axial T2W image in a 5-year-old male shows a 
multicystic lesion centered in the right cerebral peduncle, 
consistent with a thalamopeduncular glioma (a). Axial T1W 
image with overlay of DTI data shows anterolateral displace-

ment of the posterior limb of the internal capsule (red arrow-
heads) (b). Coronal T1W image with “tractography” overlay 
shows the course of the fibers of the corticospinal tract along 
the lateral aspect of the lesion (red arrowheads) (c)
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2.2.6  Preparation for Tumor 
Resection: Neoadjuvant 
Chemotherapy

In some tumors found in newborns, infants, and 
young children, the risk of excessive blood loss 
with resection is great; the best example of this is 
choroid plexus carcinoma. Infants have small 
blood volumes; transfusing multiple blood vol-
umes can lead to coagulopathy and electrolyte 
imbalance. Therefore, these patients may be best 
served by first treating the tumor with chemo-
therapy (i.e., neoadjuvant chemotherapy) before 
pursuing resection. Tumors will often shrink and 
become cystic and the reduction in vascularity is 
notable, resulting in safer and more complete 
tumor removal (Iwama et  al. 2015; Van Poppel 
et al. 2011).

2.2.7  Preparation for Tumor 
Resection: Family Counseling

One of the most important steps in preparing a 
pediatric patient for a brain tumor resection is 
talking with the parents and family about the 
patient’s prognosis, the risks, and the goals of 
surgery without overwhelming and confusing 
them with statistics and medical terminology. 
While there are general risks associated with any 
craniotomy, such as bleeding and wound infec-
tion, it is more important to stress the poten-
tial—or even anticipated—neurologic deficits 
specific to the location and size of the tumor. 
Neurologic injury may occur as a result of the 
surgical approach or during extirpation of the 
mass. Examples include Parinaud’s syndrome 
with a pineoblastoma, posterior fossa syndrome 
in a young boy with a medulloblastoma, or cra-
nial neuropathies with a cerebellopontine angle 
ependymoma. It is usually easier for the family 
to psychologically deal with new postoperative 
neurologic deficits if they’ve learned about them 
before surgery. It is equally important to define 
the expectations of surgery, such as total resec-
tion, subtotal resection, or biopsy, as well as the 
potential need for further surgical procedures 
(e.g., ventriculoperitoneal shunt, feeding tube), 

therapies (e.g., physical, speech), and expected 
length of hospital stay.

2.2.8  Preparation for Tumor 
Resection: Teamwork

Orchestrating a successful surgery requires the 
integration of multiple individuals and services, 
including anesthesiology, operating room nurses 
and technologists, and neuroradiology for intra-
operative MRI cases. It is important to have a 
preoperative “huddle” with all team members to 
discuss positioning, need for vascular access, 
estimated length of surgery, anticipated blood 
loss, specific blood pressure management, need 
for any intraoperative neuromonitoring, and air-
way management (i.e., whether the patient will 
be extubated or remain intubated after surgery). 
One way to set a preoperative threshold for blood 
transfusion is to define the maximal allowable 
blood loss. Maximal allowable blood loss is the 
estimated blood volume of the patient multiplied 
by the difference between the patient’s starting 
and minimal allowable hematocrits, divided by 
the starting hematocrit. For example, a 5 kg infant 
with an estimated blood volume of 75  cc/kg, a 
starting hematocrit of 30, and a minimal accept-
able hematocrit of 22 would have a maximal 
allowable blood loss of approximately 100 cc. If 
further bleeding is anticipated, transfusion of 
blood should be initiated.

2.3  Tumor Resection

In this section we will discuss surgical manage-
ment and approaches to the more common loca-
tions and types of pediatric brain tumors, such as 
the pineal region/posterior third ventricle, poste-
rior fossa, and suprasellar area. Each child’s brain 
tumor is unique; in many respects, its surgical 
management should be as well. Much of what 
can be done by the neurosurgeon depends on the 
age of the child, the type of tumor, its location 
and therefore the risks associated with resection, 
and whether or not there are local or distant 
metastases. For many nonmetastatic childhood 
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intracranial neoplasms, the goal of initial surgery 
is complete resection (i.e., gross total resection 
(GTR)), defined as no conclusive evidence of 
residual tumor on the intra- or immediate postop-
erative MRI, when deemed feasible. Such phi-
losophy applies to tumors like medulloblastoma, 
ependymoma (infra- and supratentorial), primi-
tive neuroectodermal tumor (PNET), and virtu-
ally all low-grade tumors.

Intraoperative magnetic resonance imaging 
(iMRI) has revolutionized surgical management 
of pediatric brain tumors by allowing the sur-
geon to confirm a gross total resection, while the 
patient is still under general anesthesia and their 
wound is open (Choudhri et  al. 2014a, 2015b). 
This high-dollar technology greatly reduces the 
risk of having to take the child back to the oper-
ating room for continued resection, but with the 
drawbacks of added operating room (OR) time, 
challenges in interpreting the intraoperative 
images, and significant new safety issues (Shah 
et  al. 2012). It also requires close cooperation 
and communication with the anesthesiology 
team, MR technologist, OR safety officer, and 
neuroradiologist.

2.3.1  Posterior Fossa (Excluding 
Brainstem Tumors)

The posterior fossa, as mentioned previously, is 
a common site for pediatric tumors. The “big 
3” tumors are medulloblastoma, ependymoma, 
and pilocytic astrocytoma. Each has their own 
unique imaging features. Medulloblastomas and 
ependymomas are typically found within the 4th 
ventricle, whereas pilocytic astrocytomas are 
most often located within the cerebellum (i.e., 
the vermis or hemispheres). Medulloblastomas 
are hypercellular and therefore appear hyper-
dense on the initial CT.  Pilocytic astrocytomas 
often have a cystic component with enhancing 
nodule(s). Ependymomas classically project 
through the foramen Luschka into the cerebel-
lopontine angle, or through the foramen mag-
num into the cervical spinal canal (i.e., “plastic 
ependymoma”). Midline or fourth ventricular 
tumors are approached via a standard midline 

suboccipital craniotomy, whereas hemispheric 
tumors require a lateral suboccipital approach. 
Although we have seen the dawn of a new era in 
which tumors are being classified at the molecu-
lar level, resulting in subclassification and novel 
“targeted” chemotherapeutic options, the surgi-
cal goal of these tumors remains maximal safe 
resection (Gajjar et al. 2014).

2.3.2  Brainstem Tumors

Brainstem tumors can be broadly categorized as 
being radiographically focal or diffuse/infiltra-
tive (Green and Kieran 2015). The classic exam-
ple of an infiltrative pediatric brainstem tumor is 
a diffuse intrinsic pontine glioma (DIPG). 
Children with these tumors are typically young 
and present with a combination of long-tract and 
cranial nerve findings. DIPG is a radiographic 
diagnosis, surgery is relegated to the manage-
ment of hydrocephalus, and the only known 
treatment that has some effect, albeit temporary, 
is radiation (Bredlau and Korones 2014). For 
pontine tumors that are “atypical” in appearance, 
a biopsy is warranted. Focal tumors are more 
often low-grade, and most commonly are piloc-
tyic astrocytomas. All focal tumors (with the 
exception of tectal gliomas), whether benign or 
malignant, should be considered for resection 
(Klimo et al. 2013, 2015a). Tectal gliomas have a 
well-known indolent biologic behavior, and like 
DIPG, surgery is limited to the treatment of 
hydrocephalus. Resection of focal brainstem 
tumors requires careful planning, high-quality 
preoperative imaging (including tractography), 
and detailed discussions with the parents on what 
neurologic deficits to expect.

2.3.3  Pineal Region/Posterior Third 
Ventricle

There is a wide variety of tumors that may arise 
in this region of the brain; examples include 
pineoblastoma and germ cell tumors (Fig.  2.4). 
Because these patients often present with obstruc-
tive hydrocephalus secondary to occlusion of the 
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aqueduct of Sylvius, surgical management is 
most often directed at treating the hydrocephalus 
by way of an endoscopic third ventriculostomy, 
obtaining cerebrospinal fluid (CSF) for germ cell 
markers (i.e., beta human chorionic gonadotro-
pin, alfa fetoprotein), and angling the endoscope 
posteriorly to obtain tissue for biopsy. If the 
germ cell markers are elevated, then by defini-
tion the child has a non-germinomatous germ cell 
tumor (e.g., choriocarcinoma, endodermal sinus 
tumor) and initial treatment is chemotherapy. If 
the germ cell markers are negative and the biopsy 
is consistent with a germinoma, then the child is 

treated with radiation with or without chemother-
apy with a very high chance of cure, even with 
metastatic disease. A nondiagnostic biopsy with 
negative CSF markers usually requires an open 
biopsy. The three surgical approaches that we use 
to resect or biopsy tumors in the pineal region/
posterior third ventricle are the supracerebellar-
infratentorial, the occipital-transtentorial, and 
the posterior transcallosal (Kennedy and Bruce 
2011).

2.3.4  Sellar/Suprasellar

The two most common suprasellar tumors in 
children are craniopharyngiomas and optic path-
way-hypothalamic astrocytomas. Children who 
present with diabetes insipidus (DI) and an 
enhancing mass along the pituitary stalk or hypo-
thalamic region typically have one of two pathol-
ogies: germinoma or eosinophilic granuloma 
(histiocytosis X). It is exceedingly rare for optic 
pathway-hypothalamic astrocytomas or cranio-
pharyngiomas to present with DI.  Pure sellar 
lesions are rare, but may include craniopharyn-
gioma, micro- or macroadenomas (functioning or 
non-functioning) in older children, and the non-
neoplastic Rathke’s cleft cyst.

Controversy continues among neurosurgeons 
as to the role of surgery with craniopharyngio-
mas. There are those who feel that craniopharyn-
giomas should be maximally resected without 
adjuvant therapy (Elliott et  al. 2010); others 
believe in a less aggressive surgical approach in 
order to avoid significant morbidity (i.e., neu-
rologic, endocrine, or cognitive dysfunction) 
followed by radiotherapy (Klimo et  al. 2015b). 
We generally ascribe to the latter philosophy. 
Purely cystic craniopharyngiomas can be treated 
with placement of an Ommaya catheter to aspi-
rate the tumor cyst, followed by radiotherapy or 
the injection of intracystic chemotherapy (e.g., 
bleomycin), immunotherapy (e.g., interferon), or 
radioactive agents (e.g., P-32) (Cavalheiro et al. 
2010; Mottolese et  al. 2001; Zhao et  al. 2010). 
Surgical approaches for craniopharyngiomas are 
dictated by the location of the tumor (Fig.  2.5) 
and include subfrontal, transsylvian, and anterior 

a

b

Fig. 2.4 Sagittal T1W + C image in a 2.5-year-old girl 
with a history of bilateral retinoblastoma shows an 
enhancing pineal mass (red arrowhead), consistent with a 
“tri-lateral” retinoblastoma (a). Sagittal T1W + C image 
from an iMRI scan shows successful resection of the 
tumor (red arrowhead). Note the open craniotomy (red 
arrow), which would have facilitated further resection, if 
needed (b)
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d

Fig. 2.5 The variety of imaging appearances of cranio-
pharyngioma. This variety underscores the need for 
patient-specific surgical and treatment plans. Sagittal 
T1W image shows a cystic suprasellar lesion (a). Sagittal 
T1W image shows a suprasellar cystic lesion with intrin-
sic T1 hyperintense signal, representing proteinaceous 
secretions (b). Sagittal T1W image post contrast shows a 
multicystic suprasellar lesion with enhancing rims, with 

the components having different central T1 characteristics 
related to different proteinaceous contents (c). There is 
also caudal retroclival extension. Sagittal T1W image post 
contrast shows a central solid enhancing component with 
multiple smaller cystic components (d). Sagittal T1W 
image post contrast shows a large central solid enhancing 
component, with several internal cystic areas and a single 
posteriorly directed cyst within the third ventricle (e)
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transcallosal approaches. Intrasellar craniopha-
ryngiomas can be resected through a transnasal-
transsphenoidal route, using a microscope or 
endoscope (Jane et al. 2010).

Optic pathway-hypothalamic tumors are gen-
erally not thought to be curable by surgery alone, 
except in the rare case of a prechiasmatic optic 
nerve glioma with no functional vision. These 
tumors originate from non-resectable areas of the 
brain and can often be diagnosed by imaging 
alone. They are associated with neurofibromato-
sis type I (i.e., von Recklinghausen disease). 
Surgery is reserved for biopsy or subtotal resec-
tion in those cases where there is significant 
symptomatic mass effect or where the tumor has 
caused obstructive hydrocephalus by growing 
cephalad into the third ventricle (Goodden et al. 
2014). The primary treatment modalities for 
these tumors are chemotherapy and/or radiother-
apy. The same approaches used for craniopharyn-
gioma can be used for this tumor, with the 
exception of the transnasal approach.

2.3.5  Supratentorial

The goal of surgery for most supratentorial 
tumors should be maximal resection. Extraaxial 
tumors, such as meningiomas, are rare in chil-
dren. As previously discussed, functional imag-
ing modalities should be used in cases where the 
tumor is in close proximity to eloquent areas 
(Fig. 2.2). Awake craniotomy is difficult to per-
form in a child, so we rely heavily on these pre-
operative mapping tests. For a child whose tumor 
cannot be completely resected but who has debil-
itating seizures as a result of it, surgery to resect 
the epileptogenic part of the tumor (e.g., tempo-
ral lobectomy) can have a substantial positive 
impact on the quality of that child’s life.

2.4  Postoperative Care

After tumor resection, patients are brought to the 
intensive care unit (ICU) for close neurologic and 
cardiorespiratory monitoring. Almost all patients 
are extubated while still deeply sedated in the 

OR so as to avoid any coughing or bucking as 
they awaken with the endotracheal tube in place 
and during transport to the ICU.  Such reflexes 
can rapidly increase the patient’s systemic blood 
pressure and intracranial venous pressure, which 
could lead to hemorrhage within the fresh resec-
tion cavity, especially if there is a raw, residual 
tumor surface. For excessively long cases or those 
with high volume fluid resuscitation, extubation 
may be delayed until neurologic and cardiopul-
monary systems are assessed and stabilized.

The most common immediate postoperative 
issues that require close monitoring are intracra-
nial hemorrhage, seizure, hydrocephalus, and 
endocrinologic derangements. Strict blood pres-
sure control is paramount since postoperative 
hypertension can result in hemorrhage within the 
resection cavity (Basali et al. 2000). Prompt and 
adequate treatment for pain and agitation often 
improves the patient’s blood pressure. A maxi-
mum allowable systolic blood pressure is typi-
cally set for the first 24–48  h after surgery, 
followed by gradual relaxation of the parameter. 
The blood pressure limit is age dependent, but an 
oft-recommended limit is less than 140 mmHg. 
We consider a nicardipine drip an easy and effec-
tive method of titrating the patient’s blood pres-
sure. Hypotension is to be avoided, particularly 
in cases in which there was significant brainstem 
or spinal cord compression by the tumor, or if 
there was manipulation/dissection of major arter-
ies so as to maintain adequate tissue perfusion. 
Patients should be kept euvolemic to mildly 
hypervolemic.

As discussed previously, obstructive hydro-
cephalus is a common presenting condition in 
children with brain tumors. Our general approach 
to such children is to resect the tumor in order to 
relieve the hydrocephalus, which we are success-
ful in achieving in many cases. Mechanisms of 
post-resection hydrocephalus include obstruction 
from residual tumor and subarachnoid block 
caused by leptomeningeal metastasis, operative 
blood products, or proteinaceous CSF. All patients 
with preoperative hydrocephalus, or who are at 
risk of developing hydrocephalus postoperatively 
(e.g., intraventricular tumor), need to be carefully 
monitored for persistent or new hydrocephalus, 
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respectively. Such evidence would include increase 
in ventricular size, inability to wean an external 
ventricular drain (EVD), development of a new or 
growing subdural hygroma or pseudomeningo-
cele, and clinical changes, such as irritability, 
headaches, emesis, full fontanelle, or depressed 
level of arousal. Postoperative hydrocephalus is 
treated with either an EVD, a shunt, or ETV.

The Canadian Preoperative Prediction Rule 
for Hydrocephalus (CPPRH) was devised in an 
attempt to identify patients before resection who 
are at risk for post-resection hydrocephalus 
(Riva-Cambrin et al. 2009). Variables predictive 
of post-resection hydrocephalus include age less 
than 2 (score of 3), papilledema (score of 1), 
moderate to severe hydrocephalus (score of 2), 
cerebral metastasis (score of 3), and specific esti-
mated tumor pathologies (score of 1). A total 
score of ≥5 places the patient at high risk. 
Estimated preoperative tumor pathologies based 
on imaging and clinical information that qualify 
for a score of 1 include medulloblastoma, epen-
dymoma, and dorsally exophytic brainstem gli-
oma. The modified CPPRH also adds the presence 
of transependymal edema as a risk factor 
(Foreman et  al. 2013). For children with favor-
able age (>2 years), pathology (e.g., tectal gli-
oma, pineal tumors), anatomy, and site of CSF 
blockage (obstruction between the third ventricle 
and the interpeduncular cistern), ETV is pre-
ferred over shunting as shunts are generally 
viewed as life-long implants that come with high 
risk of one or more shunt malfunction(s) (Gupta 
et  al. 2007; Vogel et  al. 2013). In cases where 
ETV is not appropriate or if the ETV fails, then 
ventricular shunting is the sole option.

If the patient has a postoperative seizure and is 
not already on an AED, then electrolytes and 
blood glucose should be checked expeditiously 
and any abnormalities should be promptly cor-
rected, especially low sodium and magnesium; a 
non-contrast CT scan of the head should be 
obtained to rule out any new hemorrhage, edema, 
or hydrocephalus and the patient should be given 
a bolus of an AED, such as phosphenytoin or 
levetiracetam (both ~ 20  mg/kg), followed by 
maintenance therapy. If the patient’s seizure lasts 
more than 5  min or if multiple seizures occur 

without full neurologic recovery in the interictal 
period, then the patient is considered to be in sta-
tus epilepticus, which is a medical emergency 
(Claassen et al. 2015).

Removal of sellar and suprasellar tumors, 
such as optic pathway gliomas or craniopharyn-
giomas, may lead to transient or permanent dis-
ruption of the hypothalamic-pituitary axis, and 
subsequent anterior and posterior pituitary lobe 
dysfunction. The endocrinopathies that are 
most problematic for neurosurgeons are the 
ones that can cause dramatic changes in the 
serum sodium level: central diabetes insipidus 
(DI), cerebral salt wasting (CSW), or the syn-
drome of inappropriate antidiuretic hormone 
release (SIADH). Central DI is caused by inad-
equate antidiuretic hormone release and results 
in excessive production of dilute urine and 
resultant hypernatremia. Urine output continu-
ously exceeding 3 cc/kg/h with a specific grav-
ity of 1.005 or less with a concurrent elevation 
in serum sodium above 145 is diagnostic. 
Without close monitoring of urine output and 
sodium levels in patients with or at risk for DI, 
sodium levels can easily exceed 160  mEq/L, 
resulting in severe dehydration, mental status 
changes, and seizures. The treatment is desmo-
pressin and free water replacement titrated to 
the patient’s urine output.

SIADH and CSW both cause hyponatremia. 
With severe hyponatremia (<125 mEq/L) or rapid 
drops in sodium, headache, confusion, seizures, 
and cerebral edema can occur. SIADH results 
from an abnormal release of antidiuretic hormone 
(ADH) in the absence of a physiologic osmotic 
stimulus, resulting in excess water retention. 
Patients are either hypervolemic from the retained 
water or sometimes euvolemic. Serum osmolality 
is low (<275 mOsm/kg of water) while the urine is 
concentrated (>100 mOsm/kg of water). Cerebral 
salt wasting also produces hyponatremia and low 
serum osmolality in the presence of concentrated 
urine; but unlike SIADH, patients are hypovole-
mic. Intracranial disease results in failure of the 
kidneys to conserve sodium by an unknown mech-
anism. The key difference is the treatment. Fluid 
restriction effectively corrects the hyponatremia 
caused by SIADH while volume replacement with 
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gentle sodium support treats CSW. In the setting of 
a malignancy, SIADH is more common. Cerebral 
salt wasting will also respond to a fluid challenge. 
Regardless of the etiology, if the hyponatremia is 
severe (Na  <  125  mEq/L) or symptomatic (i.e., 
confusion, seizures or coma), then correction with 
hypertonic (e.g., 3%) saline is indicated. However, 
care must be taken not to correct the sodium too 
quickly. In general, if the sodium level changed 
rapidly then the patient can tolerate rapid correc-
tion. The serum sodium must be checked every 
2–6  h. The goal is to correct the serum sodium 
1–2  mEq/L/h and limit the correction to 
8–10 mEq/L in 24 h. If the sodium is corrected too 
quickly, central pontine myelinolysis can rarely 
occur. Conversely, rapid correction of hypernatre-
mia can cause or exacerbate cerebral edema.

Given the high frequency of posterior fossa 
tumors, posterior fossa syndrome (PFS) deserves 
special mention. It is a syndrome consisting of 
mutism, oromotor and oculomotor apraxia, emo-
tional lability, axial hypotonia, and cerebellar/
brainstem dysfunction following resection of 
infratentorial tumors (Robertson et  al. 2006). 
Risk factors include young age, male sex, large 
midline tumors, brainstem invasion, and medul-
loblastoma. It is thought to result from bilateral 
surgical damage to the proximal efferent cerebel-
lar pathways (Patay 2015). Most patients wake-
up from surgery with intact speech but develop 
mutism within 1–4 days after surgery. Most 
recover fluent speech within 4 months with aver-
age duration of 6 weeks. Recovery begins with 
clumsy and broken speech slowly progressing to 
full sentences. However, up to one-third of chil-
dren will have lasting dysarthria after surgery. 
Irritability, inconsolable crying, impulsiveness, 
and disinhibition are the most frequent changes 
in affect. IQ and school performance are also 
affected, more commonly when the deep cerebel-
lar nuclei are damaged. Treatment generally 
requires prolonged rehabilitation, including 
physical, occupational, and speech therapy. 
Overall, improvement is universal but the degree 
of recovery is variable. Mutism and emotional 
lability are generally transient but long-term cog-
nitive and motor deficits are frequently recog-
nized in these children.
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