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v

Treating aortic disease has always been an important but often complex area 
of cardiovascular surgery. This is not only because of the aorta’s role as the 
body’s largest and most vital artery but also because aortic disease can take a 
variety of forms with a broad range of consequences, from slowly progres-
sive, asymptomatic disease to sudden death by rupture.

The surgical treatment of aortic disease, particularly aortic aneurysm, is 
one of my long-time interests. In 1949, during my residency at Johns Hopkins, 
I was assisting surgeon Grant Ward with an emergency procedure and ended 
up performing one of the first excisions of an aortic aneurysm. Later, during 
my early years at Baylor College of Medicine in the 1950s, my friend and 
mentor Michael E. DeBakey and I, along with some of our colleagues, devel-
oped techniques for replacing aneurysmal aortic segments, first with homo-
grafts and later with synthetic grafts. In addition to treating aortic aneurysm, 
we used these techniques in the first successful repair of a case of chronic 
aortic dissection in 1954. Also of great interest to us were methods of pre-
venting ischemic injury, particularly to the brain and spinal cord, during these 
procedures. It pleases me to see how much progress has been made in aortic 
surgical techniques, technology, and protective adjuncts since those days.

In this book, Surgical Management of Aortic Pathology, Olaf H. Stanger 
and my long-time colleagues John R. Pepper and Lars G. Svensson have 
assembled the knowledge of many great minds (and hands) in the field of 
aortic surgery and related disciplines. This volume contains valuable infor-
mation on a wide range of topics, including the biological underpinnings of 
aortic disease; modern diagnostic methods; open surgical, endovascular, and 
hybrid techniques of repairing the various aortic segments and the aortic 
valve; and methods of protecting vital organs against ischemia during these 
often complex procedures.

I congratulate Drs. Stanger, Pepper, and Svensson, as well as the many 
contributors, for creating a comprehensive work on a vital subject.

 Denton A. CooleyHouston, TX, USA

Foreword
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Current knowledge suggests that the aorta, long seen from a purely mechanis-
tic view as a more or less rigid tube, is in fact a highly functional, metaboli-
cally active, hemodynamically responsive, and adaptive structure with 
laminar flow.

The editors have sought to review and understand the aorta as an organ per 
se. Neither disease nor treatment can be understood in isolation because any 
change caused by pathology or intervention inevitably affects upstream and 
downstream segments. Accordingly, this comprehensive work not only 
includes fundamentals of anatomy and development, but is further focused on 
advances in imaging, genetics, physiology, molecular biochemistry, and all 
current treatment options and strategies.

Over time numerous concepts have emerged to explain certain aortic 
pathologies, but most conditions are much more complex than previously 
thought, with interactions and potential overlap of mechanisms adding to the 
complexity.

Perhaps the most important evolution has been brought about by advanced 
imaging tools visualizing flows, forces, lesions, and changes with previously 
unthinkable precision. Each patient represents a highly individual case with 
multiple conditions that influence function, morphology, adaptions, interac-
tion, progression, and risk. Genetic understanding has also grown rapidly and 
patients, particularly those with hereditary diseases, are increasingly well 
informed. In an era of rapid genetic analysis, they seek advice on how to 
prevent aortic rupture, dissection, and death. This presents new challenges as 
it is difficult to counsel individuals who are seen at such an early stage of their 
disease that means of accurately predicting their specific outcomes have yet 
to be developed.

Given the great diversity of disease and treatment concepts, the challenge 
of individual decision-making calls for highly specialized interdisciplinary 
management involving cardiac and vascular surgeons, interventional cardi-
ologists and radiologists, imaging experts, geneticists, and others. Ideally, 
each patient will have an individually tailored treatment concept.

Aside from acute aortic events, most aortic diseases are indolent and often 
discovered by chance. At the same time, as more and more patients are diag-
nosed and undergo treatment, the group of “survivors” grows constantly, with 
the ever-present risk of pathology progression and exposure to future compli-
cations. Since patients must be followed longer, with management of disease 
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progression and associated complications, specialist care of patients with aor-
topathy is a life-long commitment.

With expanding insight into the mechanisms that underlie aortic diseases, 
myths and paradigms are challenged and questioned, reviewed, and adapted. 
Clearly, not one technique or standard protocol will fit all patients’ condi-
tions. Conventional concepts, i.e., excision and local replacement of an aortic 
dissection entry tear, are now considered insufficient to cause false lumen 
collapse and subsequent remodeling with a near normal prognosis in most, if 
not all, cases. New techniques, particularly interventional and hybrid tech-
niques, are developing rapidly and taking their places in the toolbox. But do 
they translate into better overall outcome?

“The more we know the less we understand,” but progress is clearly being 
made in parallel with new controversies to resolve. We are honored and 
thankful that these many experts on aortic medicine and surgery readily 
agreed to contribute to this comprehensive volume, sharing their knowledge, 
experience, and modern outlooks. We hope that this book will provide the 
reader with stimulating and valuable new insights into the ongoing quest for 
optimal patient care.

We wish to acknowledge the valuable support of Genie Lamont (Graz, 
Austria), and Wilma McHugh (Springer; Heidelberg, Germany) in the prepa-
ration of this book.

And foremost we are very grateful to the editorial skill and persistence of  
Sara Baumberger (Project Coordinator; Berne, Switzerland) which proved 
indispensable in the compilation of this extensive work.

London, UK; Munich, Germany Olaf H. Stanger
London, UK John R. Pepper
Cleveland, OH, USA  Lars G. Svensson
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A Brief History of Aortic Pathology 
and Surgery

Olaf  H. Stanger

1.1  The Earliest Descriptions 
and Concepts

“What’s past is prologue” (William Shakespeare, 
“The Tempest,” Act 1, Scene 1).

Several early authors are credited with the first 
mention of the aorta and its abnormal variations, 
but at times when even the function of vessels 
was obscure, it is difficult to say what role and 
relevance were attributed to their observations.

The oldest written narrative of aortic patholo-
gies is found in the Ebers Papyrus, named after 
the German Egyptologist Georg Ebers (1837–
1898), who purchased the 2 meter scroll with 108 
columns of text in 1872  in Thebes. He brought 
the papyrus to Leipzig where it is still kept in the 
university library. It is among the oldest and most 
important medical papyri from ancient Egypt, 
written in hieratic script and dating to 1550 b.c., 
but believed to have been copied from earlier 
texts. The papyrus contains a basic description of 
the human heart with “vessels attached for every 
member of the body” [1]. Furthermore, the text 
identified peripheral and abdominal aneurysms, 
i.e., “when his abdomen palpitates, it is caused by 
a swelling therein” [2].

The term “aorta” seems to have first been 
applied by Aristotle (384–322 b.c.). In his works 

Historia animalium, De somno, and particularly 
De partibus animalium, Aristotle refers to the 
heart as the center and origin of blood connected 
with two great vessels (later identified as veins 
and aorta) and defined the aorta as primary (arte-
rial) outflow of the left ventricle. He then 
describes all the other vessels as branches of the 
great vessel and the aorta, and he assumed a two- 
way blood transfer (blood produced from nutri-
tion travels toward the heart only to be collected 
and distributed into the vessels) [3]. Whereas he 
envisioned the heart as the container and origin of 
blood, he stated that all blood leaves the heart but 
none returns, and so was unaware of circulation. 
Although he was not fully clear about the func-
tion of the mentioned vessels, the existence of a 
“great artery” and the “aorta” is clear.

At that time veins and arteries were first dis-
tinguished, and the term “aneurysma” 
(áνεύρυσμα), meaning widening or dilation, was 
introduced.

Next, the prolific Greek physician Galen of 
Pergamon (129/131–c. 200/216), a most promi-
nent figure in medicine and arguably the most 
accomplished of all medical researchers in antiq-
uity, upon physical examination described “local-
ized pulsatile swellings” and a ruptured 
aneurysm: “when an aneurysm is wounded, the 
blood is spouted out with so much violence that it 
can scarcely be arrested” [4].

Galen also recognized distinct differences 
between venous (dark) and arterial (bright) blood. 
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Although his anatomical experiments on animal 
models led him to a more advanced understand-
ing of the circulatory system, his work contained 
scientific errors, i.e., the belief that the circula-
tory system consists of two separate one-way 
systems of distribution, rather than a single uni-
fied system of circulation. He thought venous 
blood was generated in the liver, whence it was 
distributed and consumed by all organs of the 
body. Similarly, he postulated that arterial blood 
originated in the heart, whence it was distributed 
and consumed by all organs of the body. The 
blood was then regenerated in either the liver or 
the heart, completing the cycle [5]. Galen’s 
understanding of anatomy was importantly influ-
enced by Hippocrates’ then prevailing humoral 
theory, and his reports were the only anatomical 
reference for many centuries, although mainly 
derived from animal (monkeys, pigs) vivisec-
tions. Particularly Galen’s erroneous conception 
that venous blood passes through tiny pores in 
the heart’s septum, moves from the right to the 
left chambers, and is mixed with inhaled air from 
the lungs long inhibited any new thought. Galen’s 
doctrines dominated medical thinking for many 
centuries, and particularly his writings on anat-
omy became the mainstay of the medieval physi-
cian’s academic curriculum. They remained 
uncontested until printed descriptions and illus-
trations of human dissections were published in 
the seminal work De humani corporis fabrica by 
Andreas Vesalius (1514–1564) in 1543 and 
when William Harvey (1578–1657) published 
his treatise entitled De motu cordis in 1628, in 
which he established that the pumping heart 
drives blood circulation [6, 7].

The works of Antyllos, a Greek surgeon of the 
Roman period and contemporary of Galen (sec-
ond century A.D.), have only survived in the writ-
ings of Or(e)ibasius from Pergamon (325–403), 
who collected most of the fragments of Antyllos’ 
works [8]. He himself wrote The Synagogue 
Medica and classified aneurysms as either due to 
dilatation of the arteries (with cylindrical form) or 
caused by rupture of the artery (with round form) 
emptying blood into tissues [9]. Antyllos alleg-
edly belonged to the “pneumatist” medical school, 
described false traumatic and true aneurysms, and 

proposed that aneurysms were a consequence of 
clotting. He was the first to recommend surgical 
treatment of small  peripheral aneurysms by proxi-
mal and distal arterial ligation followed by central 
incision of the sac and evacuation of the throm-
botic material (Fig. 1.1) [10]. He did not resect the 
sac, considering it dangerous to do so, because 
pulsation puts violent tension on the ligatures, 
potentially displacing them and leading to fatal 
bleeding, and advised: “Those who tie the arter-
ies, as I advise, at each extremity, but amputate 
the intervening dilated part, perform a dangerous 
operation. The violent tension of the arterial 
pneuma often displaces the ligatures.” He also 
opposed surgery for large aneurysms but did oper-
ate on peripheral aneurysms. Antyllos expressed 
the (still valid) dilemma in stating: “To decline 
treatment of any aneurysms is foolish, but it is 
also dangerous to operate on all of them” [8]. 
Antyllos’ detailed technique is the earliest record 
of therapy of aneurysms. Importantly, this was 
recommended as state of the art by Albucasis 
(Abu al-Qasim al-Zahrawi; 936–1013) 800 years 
later [11] and, in fact, was the best surgical treat-
ment available until the end of the nineteenth cen-
tury (Fig. 1.2) [12].

Fig. 1.1 Surgical treatment of aneurysms as described by 
Antyllos. Proximal and distal ligation followed by central 
incision of the sac and removal of thrombotic material 
(from Ref. [10], with permission)

O. H. Stanger



3

1.2  The Great Leap Forward 
from Antiquity

Advancements in the vascular field were negligi-
ble until the sixteenth century, with a new breed 
of scientists whose own studies and observations 
made them question the received wisdom from 
antiquity. Flemish physician Andreas Vesalius 
laid the overdue foundation of exact modern 
human anatomy and was the first author to rely 
solely on his own observations of actual human 
anatomical dissections (Fig.  1.3a–d) [13]. He 
could thereby identify many errors passed down 
from Galen and others that derived from conflict-
ing information from animal vivisection. Vesalius 
identified aneurysms of the thoracic and abdomi-
nal aorta (and considered them untreatable) and 
diagnosed a traumatic aneurysm in a rider who 
fell off his horse [14]. His colleague and friend, 
French surgeon Ambroise Paré (1510–1590) of 
Paris, is best known for reintroducing (and estab-
lishing) vascular ligature as treatment of choice 
for injured blood vessels (Fig.  1.4a–f) [15]. He 
warned of opening an aneurysm due to the inevi-
table fatal bleeding and considered aneurysms of 
internal parts to be incurable: “we cannot cure 
large aneurysms of the armpit or groin, for on 
cutting into them so large quantity of the blood 
and vital spirits escapes that the patient dies” 
[16]. He thought of vascular calcifications as “a 
gift from God” to prevent rupture of the aneu-
rysm. His was one of the earliest accounts of 
aneurysms presumably caused by the spirochete 
that causes syphilis, then called the “French dis-
ease”: “The aneurismaes which happen in the 
internall parts are uncurable. Such as frequently 
happen to those who have often had the unction 

and sweat of the cure of the French disease, 
because the blood being so attenuated and heated 
therewith that it cannot be contained in the recep-
tacles of the Artery, it distends it to that large-
nesse as to hold a man’s fist; Which I have 
observed in the dead body of a certain Taylor, 
who by an Aneurisma of the Arterious veine sud-
denly whiles hee was playing at Tennis fell 
downe dead, the vessel being broken; his body 
being opened I found a great quantity of blood 
powred forth into the capacity of the chest, but 
the body of the Artery was dilated to that large-
ness I formerly mentioned, and the inner Coate 
thereof was bony. For which cause within a while 
after I shewed it to the great admiration of the 
beholders in the Physitions Schole whilest I pub-
liquely dissected a body there; the whilst he lived 
said he felt a beating and a great heate over all his 
body by the force of the pulsation of all the 
Arteryes, by occasion whereof he often 
swounded” [17].

German physician Daniel Sennert(us) (1572–
1637) dealt with aortic dissections as separation 
of the aortic wall layers in a broader context [18], 
and German barber surgeon Matheus Gottfried 
Purmann (1648–1711) operated on a series of 
antecubital aneurysms in the 1680s, putting liga-
tures above and below the aneurysm and opening 
and removing the sac (Fig.  1.5) [19, 20]. 
Giovanni Maria Lancisi (1654–1720) of Rome 
published De motu cordis et aneurysmatibus in 
1728, providing descriptions of the etiology and 
pathology of aneurysms, including case studies 
(Fig. 1.6a, b) [21].

The founder of modern pathology, Giovanni 
Battista Morgagni (1682–1771), is best known 
for introducing the concept that every disease 

Fig. 1.2 Technique by 
Antyllos is still the state 
of the art in the 
eighteenth century [12]
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a

c

d

b

Fig. 1.3 (a–d) De humani corporis fabrica (Andreas 
Vesalius, 1543). (a, b) Title page. Vesal looks to us while 
performing an autopsy, (c) depiction of the main arterial 

blood vessels of the human body, (d) descending aorta 
(arteria magna) with side branches [13]
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Fig. 1.4 (a–f) Opera chirurgia (Ambroise Paré, 1594). (a) Title page, (b) abdominal anatomy, (c) most arterial injuries 
were traumatic in origin, (d–f) surgical instruments suggested by Paré [15]

a b

c

d
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Fig. 1.5 Chirurgia curiosa (Gottfried Purmann, 1699). 
Antecubital aneurysm [19]

e f

Fig. 1.4 (continued)

to be followed by a tumor on the upper part of the 
sternum. … He was instructed to think serious 
and humble of his departure from life, which was 
inevitable and very soon to occur” [22]. To 
Morgagni it was beyond doubt that the syphilitic 
toxin corrodes the vessel wall, causing 
dilatation.

The previous year, King George II of 
England (1683–1760) had died suddenly at 
Kensington Palace from pericardial tamponade 
caused by a ruptured aortic dissection. The case 
was very accurately described in the autopsy 
report by Frank Nicholls (1699–1778), the 
King’s personal physician: “… the pericardium 
was found distended with a quantity of 
 coagulated blood, nearly a pint…; the whole 
heart was so compressed as to prevent any blood 
contained in the veins from being forced into the 
auricles; therefore the ventricles were found 
absolutely void of blood…; and in the trunk of 
the aorta we found a transverse fissure on its 
inner side, about an inch and a half long, through 
which some blood had recently passed under its 
external coat and formed an elevated ecchymo-
sis” [23, 24].

The Italian surgeon-anatomist Antonio 
Scarpa (1752–1832), secretary to Morgagni, 
quoted the writings of Sennert in his own book 
and thought of atherosclerosis as the main driver 
for aneurysms (Fig. 1.8) [25].

Arterial injuries were common when phlebot-
omy and bloodletting were applied for a wide 
range of diseases. In the armpit, the needle fre-
quently  lacerated the brachial artery instead of 

originates in a distinct anatomical location, as 
indicated by the title of his most important work 
(Fig.  1.7a–c). He left a study on dissecting 
 aneurysms in 1761 [22]. He reported several 
cases in which blood forced its way through the 
wall “coming out under the external coat of the 
artery,” and on a patient with acute aortic dissec-
tions, “A man … was taken by pain in the right 
arm and shortly thereafter in the left arm, … soon 

O. H. Stanger
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the veins, with false aneurysms, arteriovenous 
fistula, and potentially fatal rupture as sequelae. 
In the eighteenth century, riding boots often 

caused painful aneurysms of the popliteal artery, 
which, unsurprisingly, were particularly common 
in coachmen.

a b

Fig. 1.6 (a, b) De motu cordis et aneurysmatibus (Giovanni Maria Lancisi, 1728). (a) Title page, (b) thoracic anatomy [21]

a b c

Fig. 1.7 (a–c) De sedibus et causis morborum per anatomen indagatis (Giovanni Battista Morgagni, 1761). (a) Portrait 
of Giovanni Battista Morgagni. (b) Title page. (c) Thoracic anatomy [22]
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English surgeon John Hunter (1728–1793) 
is well known for his famed ligation of the pop-
liteal artery. He acquired a critical attitude 
toward traditional medical practice under the 
influence of his teacher William Cheselden 
(1688–1752), who was fundamental in estab-
lishing surgery as medical science, breaking 
away from the Company of Barbers to form the 
Company of Surgeons in its own right, which 
later became the Royal College of Surgeons (of 
London, 1800; of England, 1843). Accordingly, 
Hunter’s work represents the emergence of sur-
gery as a scientific discipline based on anatomy 
and physiology. He thought that an aneurysm 
develops when the arterial wall loses elasticity 
and becomes too weak to withstand the force of 
blood, which, however, does not say much about 
the cause. From experiments in peeling off the 
outer part of the carotid artery in dogs without 
aneurysm formation, he concluded that trauma 
was not an important cause [26].

For the treatment of femoral aneurysms, he 
assumed that ligation above and below the aneu-
rysm would suffice, and perfusion to the lower 
limb would find its way through smaller collat-
eral side vessels. To prove his theory, Hunter 

conducted a series of experimental femoral 
artery occlusions in animals [27]. Upon sacri-
fice a few weeks later, he injected colored resin 
into the artery, demonstrating collaterals ensur-
ing sufficient perfusion. Based on this finding, 
he concluded that with sufficient collaterals, an 
artery could be safely ligated and that ligation 
should be done at a distance from the diseased 
part of the aneurysm to avoid erosion and 
 rupture [28].

Opportunity for proof of concept came with 
the treatment of a popliteal aneurysm in a 
45-year-old coachman, Samuel Smart, on 
December 12, 1785. Hunter put a ligature on 
the superficial femoral artery high in the thigh 
in the area now known as Hunter’s canal 
(Canalis adductorius). The patient survived for 
15  months, the aneurysm having shrunk to a 
hard knot and the limb surviving. Afterward 
Hunter was able to buy the leg from Smart’s 
widow and found “a completely thrombosed 
aneurysm, somewhat larger than a hen’s egg” 
[29]. This postmortem specimen can still be 
seen in the Hunterian Museum of the Royal 
College of Surgeons in Lincoln’s Inn Fields 
(Fig. 1.9).

Opposition to Hunter’s method was soon to 
come, and the surgical establishment including 
Percival Pott (1714–1788) intensively 
defended the common treatment of symptom-
atic popliteal aneurysm, which meant limb 
amputation [30].

Although, with reference to Antyllos, 
Hunter was not the first to treat peripheral 
aneurysms by ligature, he pioneered the idea of 
justifying application of surgical techniques on 
the basis of experimental evidence and clinical 
success.

Anatomist William Hunter (1718–1783), 
John’s elder brother, had produced a manu-
script in 1757 [31], in which he discriminated 
between true and false aneurysms, describing 
them as dilated and pulsatile vessels, and also 
named a third type of aneurysm “that was 
formed partially by a wound or rupture of some 

Fig. 1.8 A treatise on the anatomy, pathology, and surgi-
cal treatment of aneurysms (Antonio Scarpa, 1808). 
Illustration of thoracic anatomy [25]
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of the coats of the artery, and partly by a dilata-
tion of the rest” [32]. He was the first to 
describe arteriovenous fistulae, predominantly 
the result of phlebotomy and injuries to the 
brachial artery, along with the hissing noise 
heard on auscultation. Another type of aneu-
rysm was caused by infections, most frequently 
as a complication of syphilis, although their 
infectious nature was not yet known and they 
were rather attributed to a dissolute lifestyle, 
particularly among soldiers.

Post-venesection brachial artery pseudoaneu-
rysms were treated surgically with proximal liga-
ture by French surgeons Dominique Anel 
(1678–ca. 1730) [33] and Pierre-Joseph Desault 
(1744–1795) in 1785 [34].

John Hunter had taught that ligation could be 
used for aneurysms of the subclavian, carotid, 
and femoral arteries. One of his students was Sir 
Astley Cooper (1768–1841), who after experi-
mentation developed retroperitoneal access to the 
aorta in a cadaver model. In 1805 he performed 
one of the earliest ligations of the right common 
carotid artery in a human. And in 1817, in anal-
ogy to Hunter’s concept, he ligated the distal 
aorta to control a large ruptured left-sided exter-
nal iliofemoral aneurysm in a 38-year-old porter, 
expecting thrombosis and obliteration of the 
lesion. He managed to get his finger around the 
aorta through a small transperitoneal incision, 
passed a single heavy silk ligature around with a 
needle, and tied the knot. In consequence, how-
ever, one leg became ischemic, and the patient 
survived for barely 48  h. The lesson was that 
Hunterian ligation was appropriate for aneurysms 
of small- and intermediate-sized vessels but 
proved universally fatal in patients with aortic 
aneurysms. The postmortem specimen is pre-
served and remains on display in the Gordon 
Museum of Pathology at King’s College London 
(Fig. 1.10a, b).

Jean-Nicolas Corvisart des Marets (1755–
1821), personal physician to Emperor Napoléon 
I (1769–1821), was prominent in medical circles 
and had an interest in cardiology. He published 
works on diseases and organic lesions of the heart 
and the great vessels [35]. Besides describing 
dilatative cardiomyopathy and congestive heart 
failure, he provided a detailed evolution of aneu-
rysms of the aorta [36]. In an ascending aortic 
aneurysm, he described the thrill and retromanu-
brial dullness to percussion.

French surgeon René Théophile Laennec 
(1781–1826) not only invented the stethoscope 
but reported several cases of chronic aortic dis-
section diagnosed using that instrument [37]. He 

Fig. 1.9 Popliteal aneurysm surgically treated by John 
Hunter (1785) (original specimen). Hunterian Museum of 
the Royal College of Surgeons in Lincoln’s Inn Fields 
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was the first to use the term “dissecting aneu-
rysm” (“L’anévrysme disséquant”) (Fig.  1.11a, 
b) [37], although, a few years earlier in 1802, 
Jean Pierre Maunoir (1775–1830) had 
described the pathological process more pre-
cisely: “Elles se rompent dans un point, et la 
tunique externe ou celluleuse, fait poche et 
s’oppose seule à l’effusion du sang qui passe par 
la déchirure des tuniques internes” [38], but this 
went largely unnoticed.

Single cases of fatal ascending aortic aneu-
rysm ruptures were reported by Scottish sur-
geons Allan Burns (1781–1813) [39] and 
Joseph Hodgson (1788–1869) (Fig.  1.12a, b) 
[40]. In fact, these two works were the first and 
most important textbooks on heart disease and 
cardiovascular pathology in English, notably 
written by two surgeons. Burns had then dis-
sected 14 cases of aortic aneurysm and gave an 
excellent account of the symptoms. While prais-
ing Scarpa’s work on aneurysm, he disagreed 
with the view that it always resulted from a 
localized rupture of the inner coat and described 
diffuse cylindrical dilatation of the aorta with 
intact coats, a condition later described by 
Hodgson [41]. In 1824 Adolph Wilhelm Otto 
(1786–1845) provided probably the first descrip-
tion of coarctation of the aorta complicated by 

aortic dissection and the presence of a bicuspid 
aortic valve (BAV) (Fig. 1.13) [42].

In Vienna, Joseph Škoda (1805–1881), an 
expert in physical diagnosis and representative 
of the legendary Second Vienna Medical 
School, applied auscultation and percussion 
with unheard-of precision. He was once called 
for consultation to Pierre Louis Jean Casimir 
de Blacas d’Aulps (1771–1839), a French 
nobleman and former French Minister to 
Austria, who  suffered from unexplained 
abdominal pain. Whereas three other famous 
fellow authorities diagnosed liver disease, 
Škoda found a leaking abdominal aneurysm 
instead based on auscultation and percussion 
and predicted imminent death. His diagnosis 
was confirmed by necropsy soon afterward, 
including the precise dimensions of the aneu-
rysm [43, 44]. His diagnostic skills were pre-
cise enough to allow the first pericardial 
puncture by Viennese surgeon Franz Schuh 
(1804–1865) in 1840 [45].

Descriptions of splitting of the aortic tunica 
media in cases of chronic dissection were 
 presented by Scottish pathologist William 
Henderson (1810–1872) [46] and the  presence 
of a distal reentry with a false aortic lumen by 
Thomas Bevill Peacock (1812–1882) [47, 48].

a b c

Fig. 1.10 (a and b) Ligature of abdominal aortic aneurysm performed by Sir Astley Cooper 1817 (original specimen). 
Gordon Museum of Pathology at King’s College London
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1.3  Concepts and Theories 
of Pathological Mechanisms

In 1839, Viennese pathologist Carl von 
Rokitansky (1804–1878) explained the differ-
ence between dissection and spontaneous rupture 
on the basis of two types of degenerative changes: 
either through delamination when the adventitia 
loses its supporting function for the inner walls or 
by longitudinal rents due to brittleness and break-
down in the intima and media [49–51]. For dis-
section, Rokitansky favored causal inflammation, 
while Karl Köster (1843–1904) suggested that 
mesarteritis extending along the vasa vasorum 
weakens the media [52].

Rudolf Virchow (1821–1902) in Berlin pri-
marily thought of atheromatous ulceration as the 
cause of dissection [53]. Another German pathol-
ogist, Friedrich von Recklinghausen (1833–
1910), in 1883 explained dissection as a 
consequence of inflammation [54], with “molec-
ular changes of the elastic structures or subcellu-
lar events” along with stress from elevated blood 
pressure occurring in the aortic wall [55].

Then in 1875 a relatively high prevalence of 
aortic aneurysms was observed in army soldiers 
as compared to sailors [56]. British army sur-
geon Francis Henry Welsh (1839–1910) had 
studied the records of 53 men who had died from 
ruptured aortic aneurysm and noted that two-
thirds had a documented history of syphilis [57]. 
Welsh felt this frequency was greater than would 
be expected in the general population and won-
dered whether syphilis could be the cause of the 
aortic aneurysm. It was not until 1905 that the 
German zoologist Fritz Schaudinn (1871–
1906) together with dermatologist Erich 
Hoffmann (1868–1959) in Berlin first observed, 
in autopsy specimens of aorta, the causative spi-
rochete that later became known as Treponema 
pallidum [58].

Sir William Osler (1849–1919) coined the 
term “mycotic aneurysm” in 1885, and in 1909 
he argued for syphilis as an important cause of 
aneurysm [59]. In 1920 Friedrich Ernst 
Krukenberg (1871–1946) first suggested rup-
ture of the aortic vasa vasorum to be responsible 
for aortic dissection [60].

a

b

Fig. 1.11 (a, b) De l’Auscultation Médiate, ou Traité du 
Diagnostic des Maladies des Poumons et du Coeur, 
Fondé Principalement sur ce Nouveau Moyen 
d’Exploration. (a) Title page. (b) One of the earliest men-
tions of “Anévrysme dissécant de l’aorte” (René 
Théophile Laennec, 1819) [37]
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Again, it was Thomas Peacock who reported 
on 19 cases of aortic dissection in 1843 [61], rec-
ognized the importance of the intimal tear, and 
hypothesized that dissection was the result of dis-
ruption of the “internal coats of the vessel” [61]. 
Peacock even described experiments in which 
fluids were injected between the adventitia and 
media of the aorta simulating dissection and 
observed a tendency to see the canal reopen into 

the original vessel; he wrote that this might be 
seen as “an imperfect natural cure of the disease” 
[62]. He also noted the difference in prognosis 
between dissections originating in the ascending 
aorta and those in the descending aorta. Having 
continued to collect cases, he published a series 
of 80 cases of dissection, dividing the process 
into three stages: (1) rupture of the internal aortic 
coats, (2) dissection and possible external rup-
ture, and (3) recanalization [61]. Peacock made 
great contributions toward the understanding of 
aortic dissection with his experiments and obser-
vations. In fact his data on mortality, gender and 
age distribution, location of dissection, and 
symptoms are in close agreement with current lit-
erature [24]. Thus Peacock [47, 48, 63], Baltic 
German pathologist Eugen Bostroem (1850–
1928) [64], and Franz Schede (1882–1976) [65] 
all proposed penetration of the aortic wall by 
blood entering from the lumen as the primary 
event of aortic dissection. In contrast, Victor 
Babes (1854–1926) and Teodor Mironescu 
(1876–1954) reported a case of dissecting 

a b

Fig. 1.12 (a, b) Tables depicting aortic saccular and atherosclerotic aneurysms (Joseph Hodgson, 1815) [40]

Fig. 1.13 First description of aortic coarctation compli-
cated by aortic dissection in the presence of bicuspid aor-
tic valve (BAV) (Adolph Wilhelm Otto, 1824) [42]
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 mesaortitis [66] and had also observed cases of 
dissection without tears and thus questioned the 
theory of primary penetration of the aortic wall as 
proposed by Peacock [67] and others. They rather 
thought of primary cleavage of the media as the 
triggering event of aortic dissection. Intramural 
hematoma (IMH) was subsequently described by 
Austrian pathologist-anatomist Hans Eppinger 
(1848–1916) [68, 69].

Pathologist Eduard v. Rindfleisch (1836–
1908) described the breakthrough of blood into 
the vessel wall due to wear and tear at certain pre-
dilected sites [70]. He assumed that pathologi-
cally reduced elasticity and resistance of the wall 
produced this tendency to rupture.

In 1934, pathologist Theodore Shennan 
(1869–1948) from Aberdeen published the data 
of the largest necropsy series (300 cases) col-
lected at the time and proposed four separate 
causal theories for aortic dissection: mechanical, 
inflammatory, degenerative, and congenital [71]. 
He noted that primary degenerative changes in 
the media with subsequent loss of elasticity were 
an important factor underlying the dissection 
process. The series by pathologist Albert 
E. Hirst (1915–) in 1958 even included 508 such 
cases [72]. Both reports were fundamental in pro-
viding important clinical information and essen-
tial for the understanding of the etiology and 
pathogenesis. The classic form of dissection is 
defined as entry of blood into the wall of the aorta 
with subsequent separation of the mural layers.

French pediatrician Antoine Marfan (1858–
1942) studied the symptoms of the syndrome that 
would later bear his name and also reported the 
first case of arachnodactyly in 1896 [73], but it 
was only in 1943 that Helen Taussig (1898–
1986) pointed out an association between Marfan 
disease and aortic medionecrosis [74]. Also in 
1943, the association between Marfan syndrome 
and aortic dissection was first noted by Lewis 
E.  Etter (1901–1979) and Lewis Pellman 
Glover (1900–1953) [75].

Swiss physician Otto Gsell (1902–1990) 
reported an aortic wall pathology in 1928 charac-
terized as cystic medionecrosis with focus on 
degeneration of the muscle elements in the media 
[76]. Nearly identical “idiopathic aortic medio-

necrosis,” later known as cystic medial degenera-
tion, was described in detail by Austrian 
pathologist Jakob Erdheim (1874–1937) [77]. 
This pathology, characterized by vacuolization of 
the media with noninflammatory loss of muscle 
cells and elastic fibers in the arterial wall, was 
subsequently accepted as the underlying cause 
for aortic dissection and rupture. This, however, 
came to be questioned as experience with larger 
case series increased and difficulties surfaced due 
to lack of adequate control series as the histologi-
cal appearance of the aorta varies considerably 
with age and even at different levels within the 
same aorta [78, 79].

From the time of Laennec, numerous theories 
of causality have developed, namely, that dissect-
ing aneurysms are due to trauma, chronic high 
blood pressure, infection, degenerative changes, 
inflammation, or disease of the vessel wall (of 
either the intima or the media or both). However, 
the sequence of events in the course of dissection 
was (and still is) a matter of debate, suggesting 
multiple and possibly interacting etiological 
factors.

1.4  Endovascular Treatment 
with Foreign Bodies

The standard treatment for thoracic aneurysms in 
the eighteenth and nineteenth century was com-
plete rest, systemic administration of potassium 
iodide, and starvation diet regulated according to 
Mr. Tufnell’s method [80]. Other recommenda-
tions included vinegar, iron perchloride, alcohol, 
zinc chloride, gelatin, sodium chloride, or ergot 
salts [81], albeit with inconsistent success and 
rather reflecting lack of better options. A new 
(indirect) approach to prevent rupture was the 
introduction of foreign material into the aneurys-
matic lesion to induce clotting.

1.4.1  Needles

This concept followed the idea that foreign bod-
ies, i.e., needles, would induce irritation and 
inflammation followed by clotting, thus reduc-
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ing flow into the aneurysm sac and stabilizing 
the aneurysm through subsequent obliteration of 
the artery.

Surgeon Benjamin Philipps (1772–1838) 
caused clot formation in the femoral and carotid 
arteries of dogs by inserting needles (1832), later 
to be supplemented by electrical current (one nee-
dle attached to the copper, the other to the zinc 
pole of a galvanic battery) in an effort to increase 
clot formation [82]. After sacrificing his experi-
mental animals, he found coagula around the nee-
dles and adherent to the vessel wall, which 
stimulated enthusiasm for the procedure. 
Simultaneously in Paris, Alfred-Armand Velpeau 
(1795–1867) conducted similar coagulation 
experiments [83]. Even aneurysms of the ascend-
ing aorta were treated with puncture for the sake of 
scratching the inner layer of the vessel and pro-
moting thrombus, though without success [84]. 
Results with simple needle puncture were unpre-
dictable, and the technique was ultimately aban-
doned, only to give way to wires and current.

1.4.2  Wires

To further enhance clot formation, English sur-
geon Charles H. Moore (1821–1870) and British 
physician Charles Murchinson (1830–1879) 
began to pack aneurysms with wire. They were 
inspired by a fibrin-covered bullet recovered 
from an autopsy on a sailor who had died of a 
gunshot wound to the chest. The metallic bullet 
that Moore found within the ascending aorta was 
embedded in fibrin, and it was concluded that a 
foreign body would attract fibrin, support the 
mass entangling it, and lead to the eventual filling 
of the cavity of the aneurysm. A foreign body that 
would be less irritating and superior to simple 
needle insertion was thought to be a wire that 
might be passed in through a small cannula [85]. 
Moore and Murchinson were the first to attempt 
percutaneous endovascular aneurysm repair by 
causing sac thrombosis through direct needle 
cannulation and wire packing. In 1864 they 
inserted 26 yards (!) of wire coils into a large tho-
racic aneurysm via direct aneurysm puncture 
(Figs.  1.14 and 1.15) [84–87]. They recounted 

that they observed a declining pulse, reduction in 
the size of the aneurysm, and overall clinical 
improvement. One might call it a success because 
the aneurysm had indeed partially thrombosed; 
however, the patient succumbed to sepsis and dis-
tal embolism. At autopsy, the coils of wire were 
filled with “fibrinous coagulum” and were “firmly 
adherent” [85].

Other investigators amended Moore’s tech-
niques by developing coils from different materi-
als. Richard Levis (1827–1890) from 
Philadelphia and John Henry Bryant (1867–
1906) from London used horsehair to treat sub-
clavian and popliteal aneurysms, respectively, 
but both patients suffered rupture shortly after 
treatment [86]. Other surgeons used iron wire, 
steel wire, silvered copper wire, gold wire, coil, 
and metal watch springs, but with none or very 
limited success (Fig. 1.16) [88]. Instead, the full 
range of complications became obvious, such as 
hemorrhage from subtotal packing and distal 
embolization of wire or thrombus [81].

Sir D’Arcy Power (1855–1941) attributed the 
disappointing and often variable results to under-
estimation of the aneurysm size and hence 
incomplete wire insertion. He therefore used the 
“Colt apparatus” invented by George Herbert 

Fig. 1.14 Description of a case in which an aneurysm of 
the ascending aorta was treated with insertion of wire 
(1864) [85]

O. H. Stanger
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Colt (1878–1957) of Aberdeen, which consisted 
of “a trocar and cannula, a ramrod, a tube and a 
wisp that contained fine steel wires that expanded 
to form a miniature umbrella” (Figs.  1.15 and 
1.17a–c) [87, 89], and reported “a case of aneu-
rysm of the abdominal aorta treated by the intro-
duction of silver wire” in 1903 [90]. The Colt 
device was remarkably advanced for the time 
because it opened into a three-dimensional shape. 
Although ultimate results were poor, an author 
concluded that “wiring is a good method of 
relieving pain, … , but one that may not alter the 
natural history of the disease” [91].

1.4.3  Electrothrombosis 
(Galvanopuncture)

The next step was galvanopuncture, or the attempt 
to induce inflammation and clot formation with 
electrical current around the electrodes. Others the-
orized that coagulation resulted from the oxidation 
of blood cells and proteins or from the chemical 
deposition of albumin or through decomposition of 
salts in the blood through the acid produced at the 
positive pole [81]. Whatever the exact mechanism 
is, it was thought that current could potentially lead 
to occlusion of aneurysms.
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Fig. 1.15 Endovascular treatment with foreign bodies. Endovascular treatment concepts for blood vessel constriction 
in aneurysms [87]
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In one of the earliest contributions in 1824, 
Charles Scudamore (1779–1849) passed a gal-
vanic current through blood, which then formed a 
dense black coagulum at the positive electrode 
[92]. In 1832, German physiologist Johannes 
Müller (1801–1858) published investigations 
describing the effects of galvanism on blood and 
egg white, among others [93].

Peripheral aneurysms were sometimes treated 
then by electrocoagulation, but thoracic aneu-
rysms were tackled in similar fashion only in 
1846, first by Luigi Ciniselli (1803–1878), who 
is credited with having popularized the technique 
of galvanic puncture. In 1856 he published data 
from 50 cases involving electropuncture of aortic 
aneurysms with a mortality rate of only 14% (as 
compared with 33% for ligature) and a 50% suc-
cess rate overall in comparison (Fig.  1.15) [81, 
87, 94], stimulating interest in the technique. He 
also reported a case of aneurysm of the descend-
ing aorta that he treated by galvanopuncture 
across the chest. In 1870 he published 23 cases 
that he had collected over time, whereby 6 
patients recovered (though 3 of them relapsed a 
few months later) [95].

The experiments by surgeon John Duncan 
(1839–1899) and Sir Thomas Richard Fraser 
(1841–1920) using egg albumin and canine arter-
ies supported the concept of albumin decomposi-
tion as the mechanism of current-related 
coagulation [96]. Duncan used to introduce both 
poles (steel needles) into an aneurysm and pass a 

current for 20 min [97]. The positive needle was 
covered with gutta-percha (alternatively vulca-
nite), the negative with glass, and both were 
inserted into the aneurysm through the skin and 
thorax (Fig. 1.18a–c) [98, 99]. The electric circuit 
was closed with a battery of Bunsen cells. 
Typically, blood clotted and the puncture sites 
bled. Duncan concluded that the operation 
delayed death only slightly, if at all. Other sur-
geons also had fatal outcomes. Complications 
included distal migration of the wires, formation 
of emboli, end limb ischemia, sepsis, and forma-
tion of distal aneurysms from the altered hemo-
dynamics [100].

Rather than giving up on this technique, 
Alfonso Corradi (1833–1892) of Bologna added 
electrical current in 1879 to Moore’s original 
wire work, with silver and copper wire coils 
causing (electro)thrombosis. The passage of cur-
rent through the coil was intended to encourage 
thrombosis, and it was suggested that an  electrical 
current applied to a permanently inserted metal-
lic coil would combine the dual benefits of wire 
insertion and electrothrombosis. The method 
became widely referred to as “Moore-Corradi 
method” and was widely used for years [101].

Surgeon Joseph Ransohoff (1853–1923) of 
Cincinnati also used this procedure by passing 
electric current through wire to enhance coagula-
tion [102]. Guy LeRoy Hunner (1869–1957) in 
1900 compiled 28 cases of aneurysms of the 
aorta treated by wiring according to the Moore- 
Corradi method [101]. Although most cases at 
the time generally died less than 1 year after the 
procedure due to rupture and sepsis, one case in 
this particular series managed to survive for at 
least 38 years [103]. Several accounts of galvano-
puncture in thoracic (arch) aneurysms were 
given, some with encouraging results [104], 
where it was felt that the walls of the sac have had 
become stronger, thus lessening the risk of exter-
nal rupture. Others were less fortunate, with fatal 
outcomes [105].

Arthur Blakemore (1897–1970) of New York 
explained the unsatisfying results with underesti-
mation of the aneurysm size and incomplete wire 
insertion. Subsequently he proposed a novel 
method of determining the amount of wire 

Fig. 1.16 Wire introduced into an aneurysm to promote 
coagulation (from Ref. [88], with permission)
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Fig. 1.17 (a–c) Colt’s apparatus for wiring aneurysms. 
(a) Early instrument with cages for wiring aneurysms; (b) 
diagrammatic section through Colt’s instrument III in situ. 
Sac of aneurysm (A), expanding cage (B), compressed 
cage (C), solder at the center of the cage (D), collar on the 

cannula (E), cartridge (F), ramrod (G); (c) flag-labelled 
side view of Colt’s instrument No. 2. A. Fixed handle (A), 
moveable handle (B), reel (C), milling tool (D), coil of 
wire (E), stud (F) [90]
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required to achieve thrombosis. Instead of the 
size of the aneurysm, he used blood velocity as a 
guide to the amount of wire required by heating 
the wire to 80 °C and estimating wire length from 
the difference of the diminished current required 
for reheating it in a second step. The rationale 
was that the rate of cooling of the first segment of 
wire inserted was relative to the velocity of blood 
flow (Fig. 1.19a–c) [107]. It was still in 1938 that 
Blakemore rediscovered and applied the previ-
ously described method of wire and application 
of an electrical current to induce thrombosis of 
the aortic aneurysm sac and reported 11 so treated 
cases with thoracic or abdominal aortic 
 aneurysms [108].

But in general, results from wire insertion in 
aneurysms were poor, and the method was ulti-
mately abandoned. Summarizing the merits of 
electrolysis (electrothrombosis), English surgeon 
Timothy Holmes (1825–1907) noted that “the 
circumstances which are favorable to a perfect 
success occur very rarely in practice” [109]. 
Words of warning also came from David Agnew 
(1818–1892), Ransohoff, and Rudolph Matas 
(1860–1957) who cautioned against the wires 
[81]. Matas even described wire insertion as 
“semisurgical” or “quasimedical” and regarded 
galvanopunctures as technique that “appeal to us 

more as placebos than as real remedies” [110]. 
Power believed that “electrolysis seemed reminis-
cent of a time when little was known of the physi-
ological processes connected with the clotting of 
blood” [91], and Ransohoff stated that “electroly-
sis fails, as a rule.” Instead, he recommended total 
extirpation of superficial aneurysms [102].

Very clearly, new concepts were needed.

1.5  Dawn of a New Era

1.5.1  Endoaneurysmorrhaphy

When Rudolph Matas of New Orleans reported 
an internal repair technique known as “endoaneu-
rysmorrhaphy,” it represented a major step for-
ward in the surgical treatment of aneurysms. He 
thought that aneurysms could be cured by a radi-
cal operation that would replace ligature and first 
performed his procedure in May 1888 on a 
patient with a large brachial artery aneurysm of 
the left arm [111]. After ligation of the proximal 
and distal arteries, an incision was made into the 
aneurysm and the clot removed. The orifices of 
the blood vessels that entered the sac were then 
sutured from within, which preserved the collat-
eral blood supply to the extremity.

a b

Fig. 1.18 (a–c) Electrolysis. (a) Galvanopuncture nee-
dles. (a) Insulated by vulcanite. (b) Uninsulated and mul-
tiple. The size varies with the case. (b) Aortic aneurysm 

before operation (left) and the same 2 months after the 
operation by electrolysis (right) [99]
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Matas subsequently described using oblitera-
tive, restorative, and reconstructive techniques of 
endoaneurysmorrhaphy (Fig.  1.20a–c) [112]. In 
the obliterative form (used mainly in fusiform 
aneurysms), sutures were placed from within the 
sac aneurysm so as to occlude the proximal and 
distal artery; the walls were sewn together to 
obliterate the sac [113]. The other two techniques 
were modifications preserving arterial patency 
and were used preferably in sacciform aneu-
rysms. This could be achieved by placing a cath-

eter in the main arteries and obliterating the 
aneurysm sac around the catheter with sutures.

With regard to the etiology of vascular aneu-
rysms, Matas wrote that “the sins, vices, luxuries 
and worries of civilization clog the arteries with 
the rust of premature senility, known as arterio-
sclerosis or atheroma, which is the chief in the 
production of aneurysms” [114]. There was 
another major leap forward in aortic surgery 
when in 1923 Matas successfully ligated the 
infrarenal aorta proximal to a large leaking luetic 

a

c

b

Fig. 1.19 (a–c) Progressive constrictive occlusion of the 
aorta with wiring and electrothermic coagulation. (a) A 
roentgen ray of the abdomen taken after wiring and elec-
trothermic coagulation of a very large arteriosclerotic 
aneurysm. The lesion has been stabilized now in excess of 
8 years since operation. Note concentration of wire at the 
upper aortic-aneurysm junction for its impedance effect. 
(b) The electrical equipment employed in electrothermic 
coagulation of aneurysms. The equipment used to convert 

AC current to ungrounded DC current is illustrated on the 
left. Mounted on the portable table is an ohmmeter, 
ammeter, voltmeter, and ratiometer. The latter is cali-
brated to show the average temperature of wire imbedded 
within an aneurysm during heating. (c) Lilly capacitance 
manometric tracings taken simultaneously from the bra-
chial artery and the femoral artery via fine plastic cathe-
ters. Note the rise in brachial artery pressure upon gradual 
occlusion of the aorta distal to the renal arteries [106, 107]
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abdominal aortic aneurysm [115]. The patient 
survived nearly 18  months, and this original 
report, of the first successful ligation of the 
abdominal aorta since Cooper in 1817, later was 
supplemented with very detailed pictures [116]. 
Over the years Matas acquired vast expertise in 
treating aneurysms and reported his personal 
experience of 620 cases in 1940 [117]. Of these 
101 were endoaneurysmorrhaphies, and he fur-
ther emphasized the importance of testing the 

collateral potential before proximally ligating an 
aneurysm. The reconstructive endoaneurysmor-
rhaphy that involved removing the diseased part 
and reconstructing the tunnel through the remain-
ing healthy part was used until direct repair with 
graft replacement was introduced in the 1950s.

In the same year that Matas performed his first 
ligation on an abdominal aneurysm, French 
Surgeon René Leriche (1879–1855) stated that, 
“the ideal treatment of arterial thrombosis is the 

b
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Fig. 1.20 (a–c) Endoaneurysmorrhaphy as described by 
Matas. (a) Technique of obliterative endoaneurysmorrha-
phy. The aneurysms opened to expose orifices of the par-
ent artery and a large branch artery (a). These orifices are 
closed by sutures (b), and the aneurysmal cavity is obliter-
ated by bringing the walls together (c). (b) Technique of 
restorative endoaneurysmorrhaphy. The aneurysm is 
opened to expose the communication with the parent 
artery (a). This opening is closed with a continuous suture 

(b). The aneurysmal cavity is then obliterated (c). (c) 
Technique of reconstructive endoaneurysmorrhaphy. With 
the aneurysm opened widely, the communication with the 
parent artery is closed by suture, a portion of the aneurys-
mal wall being used to prevent narrowing of the arterial 
lumen (a and b). A segment of rubber tubing is used as a 
guide in placing the sutures (from Ref. [112], with 
permission)
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replacement of the obstructed segment with a 
vascular graft” [118]. Later, in 1936, he advo-
cated bilateral sympathectomy for treatment of 
aortic occlusive disease, but it was abandoned in 
due course. In 1948, he coined the term “Leriche 
syndrome” for occlusive disease of the terminal 
abdominal aorta [119].

Jose Goyanes (1876–1964) of Madrid per-
formed the first successful replacement of a human 
artery (with an interposition graft from the popli-
teal vein) in 1906 to bridge an excised popliteal 
aneurysm [120]. Other surgeons such as James 
Hogarth Pringle (1863–1941) of Glasgow, 
Bertram Bernheim (1880–1958) of Baltimore, 
and Erich Lexer (1867–1937) soon followed, 
using saphenous vein grafts to bridge defects in 
popliteal and axillary arteries [121, 122].

Surgical treatment was hampered by difficult 
imaging and diagnosis; in fact, most cases of aor-
tic dissection were postmortem findings [72]. 
Substantial advance was made with the introduc-
tion of clinical angiography with sodium iodide 
contrast medium by Barney Brooks (1884–
1952), at Vanderbilt University, in 1923 [123]. 
António Egas Moniz (1874–1955) of Lisbon 
performed the first cerebral arteriography in 1927 
(although Moniz was nominated twice for the 
Nobel Prize for his groundbreaking work in cere-
bral imaging, it was his work in psychosurgery 
that won him the Prize in 1949), and fellow 
Portuguese Reynaldo dos Santos (1880–1970) 
used translumbar aortography in 1929 (Fig. 1.21a, 
b). These pioneering achievements preceded 
today’s imaging methods and remained the only 
clinical tools for early diagnosis at the time.

1.5.2  Fenestration

In an effort aimed to relieve acute arterial isch-
emia in the lower extremities in patients with aor-
tic dissection, David Gurin of Great Neck 
(1904–1992), James W.  Bulmer (1892–1975), 
Richard Derby (1881–1963, husband of 
President Theodore Roosevelt’s daughter Ethel), 
and colleagues performed the first fenestration 
through localized reentry in the right external 
artery in 1935 [125]. Upon opening the vessel 

through the non-dissected anterior wall, they 
found the true lumen narrowed by the dissection. 
They then incised the intima and media from 
within the vessel, creating an opening into the 
false lumen with flow into the lower extremities 
after removal of the clamp; closing the vessel 
restored pulsation in the extremity. A minor mod-
ification of fenestration was proposed by Robert 
S. Shaw (1920–2003), who opened the abdomi-
nal aneurysm sac and extracted a soft clot from 
its lumen, so permitting free bleeding from 
above, and then created a small window into the 
true aortic lumen [126]. Shaw also coined the 
term “fenestration.”

Whereas others like Matas operated on true 
aneurysms, the fenestration by Gurin was the first 
attempt to tackle acute aortic dissection. 
Nevertheless, flap fenestration was soon 
 recognized to be palliative as it failed to restore the 
mural integrity of the ascending aorta and arch.

1.5.3  (Cellophane) Wrapping

Cellophane film was invented by the Swiss textile 
engineer Jacques E.  Brandenberger (1872–
1954) in 1908. It was produced as a polymer of 
cellulose and subsequently became an invaluable 
material for waterproofing products. The ability 
of cellophane to constrict blood vessels was first 
demonstrated by physiologist Irvine Page 
(1901–1991) who, besides discovering the sero-
tonin and the renin-angiotensin system (RAS), 
created an experimental model of hypertension 
by wrapping cellophane around dog’s kidneys, as 
first described in 1939 [127]. In a subsequent 
necropsy study of the wrapped kidneys, they 
were found to be shrunken and encased in a dense 
fibroblastic and collagenous layer 4  mm thick 
[128]. The development of polyethylene cello-
phane was an important breakthrough as it pro-
duced a more intense fibrotic reaction than other 
types of the polymer.

Based on these observations, cellophane 
wrapping was further investigated by Herman 
E. Pearse (1899–1983) of Rochester using ordi-
nary alcohol-soaked DuPont cellophane No. 
300  T [129]. He demonstrated that cellophane 
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could gradually obliterate the lumen of blood 
vessels, such as the internal carotid artery or aorta 
in dogs. The reaction produced a partly hyalin-
ized fibro-collagenous layer with progressive 
constriction and obliteration of the lumen.

Cellophane was first used clinically for aneu-
rysms in 1943 by Paul W. Harrison (1883–1962) 
and Jacob Chandy (1910–2007) who successfully 
treated two arteriovenous aneurysms of the subcla-
vian arteries with cellophane, resulting in their 
gradual elimination (Fig. 1.22) [130]. First attempts 
to palliate the aneurysmal dilatation of a chronic 
dissection of the descending aorta with cellophane 
wrapping were reported by Osler Abbott (1912–
1976) [131] and James Edgar Paullin (1881–
1951), both at Emory [132]. W.  Dean Warren 
from Charlottesville (1924–1989) tried Orlon fab-
ric (Fig.  1.23a, b) [133]; others used fascia lata 
(Fig.  1.24) [134], polyvinyl sponge, and dermal 
wrapping, but these were soon abandoned because 
the aneurysms grew relentlessly.

Several reports indicated that pure polyethylene 
cellophane was nonreactive, whereas the standard 

“impure” material obtained from the primary man-
ufacturer, E.I.  DuPont Nemours Company of 
Wilmington, Delaware, proved highly reactive, 
according to John K. Poppe of Portland (1911–
2012), who reported excellent results with the com-
pound in treating syphilitic aneurysms [135–137].

Arguably the most prominent patient to receive 
cellophane wrapping for treatment of an abdomi-
nal aneurysm was physicist and Nobel laureate 
Albert Einstein (1879–1955). In December 
1948, surgeon Rudolf Nissen (1896–1981) 
treated his “grapefruit-sized” abdominal aneu-
rysm by wrapping it to induce a “foreign body 
reaction” potentially leading to scarring and rein-
forcement of the aortic wall, so limiting expan-
sion. Einstein recovered and left the hospital to 
return home and continue his physics work symp-
tom-free until he died from complications after 
the inevitable rupture more than 5 years later.

Later, Michael E.  DeBakey (1908–2008) 
found polyethylene wrapping unsuitable as a 
treatment for aortic aneurysms and rejected the 
technique [138].

angle of 12th rib
and midline

four finger-
breadths from
midline

Fig. 1.21 Translumbar aortography. Left: Site of needle injection for translumbar aortography. Patient is prone. Right: 
Approximate area of aorta which is needled (from Ref. [124], with permission)
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So far, the various procedures that have been 
proposed and used in the surgical treatment of 
aneurysms of the aorta have been classified into 
three major categories: (1) those designed to pro-
mote thrombosis and fibrotic organization by par-
tial, complete, or gradual occlusion or ligation of 
the aorta, by the introduction of foreign material, 
or by the stimulation of periarterial fibroblastic 
reaction (cellophane), (2) endoaneurysmorrhaphy, 
and (3) extirpation of the lesion.

1.6  Working Toward Definitive 
Surgical Solutions

A new era in the treatment of aneurysms began in 
the 1950s with a shift from indirect (palliative) 
treatments to direct repair. The groundwork was 
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Fig. 1.22 Subclavian aneurysm cured by cellophane 
wrapping and fibrosis. Illustration of changes in aneu-
rysm. Preoperative impression (A), immediately postop-
erative with applied cellophane (B), condition at time of 
first follow-up examination after 2  months (C), marked 
shrinkage of the aneurysm after 7  months (D), and last 
observation 11  months post operation (E) (from Ref. 
[130], with permission)

INNOMINATE A.

SUP. VENA CAVA

DISSECTING
ANEURYSM

ORLON FABRIC
BAND PUL. A.

PERICARDIUMRT. CORONARY A.

a b

Fig. 1.23 (a, b) Aortic wrapping with Orlon fabric. 
Left: Photograph of the opened aorta at autopsy. Note 
(1) false aneurysm just below the subclavian artery, (2) 
transverse tear of proximal internal opening, (3) minor 
involvement of renal arteries, (4) Orlon prosthesis with 

surrounding fibrous sheath, and small thrombus at aortic 
suture line. Right: A band of Orlon is applied to the 
intrapericardial aorta (from Ref. [133], with 
permission)
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laid by French surgeon Alexis Carrel (1873–
1944) and Charles Guthrie (1880–1963), who 
experimented with homograft aortic substitutes 
and vascular anastomosis techniques in the early 
1900s. In 1912, the Nobel Prize for Physiology 
and Medicine was awarded to Alexis Carrel “in 
recognition of his work on vascular suture and 
the transplantation of blood vessels and organs.” 
He had worked together with Guthrie in refining 
vascular anastomotic techniques for vein grafts in 
the arterial system, demonstrating that arterial 
suturing and reconstruction with xenografts were 
feasible. Carrel used grafts of vena cava to replace 
segments of the thoracic aorta in experimental 
animal models [139]. Recognizing the dangers of 
spinal cord ischemia, he used paraffin tubes as 
shunts for distal blood flow. Taken together, this 
was important and fundamental work for what 
was yet to come, but aortic replacement was far 
from reality.

It took a long time until October 19, 1944, 
when Clarence Crafoord (1899–1984) of 
Sweden pioneered the resection of coarctation 

with the first successful end-to-end reanastomo-
sis and restoration of continuity of the aorta 
[140], followed by Robert Gross (1905–1988), 
of Boston, on July 6, 1945 (Fig. 1.25a) [141], and 
Harris B.  Shumacker (1908–2009) [142]. 
Gross was also the first (in 1948) to successfully 
replace a longer segment of a resected coarcta-
tion with a preserved arterial homograft 
(Fig. 1.25b) [143, 144].

Before the introduction of extracorporeal cir-
culation in 1953, direct excisional repair of the 
thoracic aorta was limited to cases where side 
clamping was possible. The first were direct exci-
sions of aneurysms of the subclavian artery, the 
innominate artery, and the aortic arch. Denton 
A.  Cooley (1920–2016) did three spectacular 
operations as early as the 1940s, one in 1945 with 
clamping of the ascending aorta, excision of an 
eroded part, and oversewing of it. In 1949, as a 
resident working with Alfred Blalock (1899–
1964), he operated on a patient who had just 
recently undergone coarctation resection but then 
developed a massive and paper-thin false aneu-
rysm of the right subclavian artery. Blalock at the 
time was away, and Cooley excised the aneurysm 
successfully. On his return to Baltimore, Blalock 
remarked that, “if you are confronted with a seri-
ous surgical problem that has no proven solution, 
take a trip to Hawaii and your resident will han-
dle it” [145]. And then in 1951, just having joined 
DeBakey in Houston, he had the opportunity to 
resect an aneurysm of the aortic arch with the 
same tangential clamp-and-resection technique 
and oversewing of the defect. In fact, this is 
believed to have been the first aneurysm repair of 
its kind (Fig. 1.26a, b) [146] and became the pre-
ferred technique for sacciform aneurysms of the 
thoracic aorta. Henry Bahnson (1920–2003) in 
Pittsburgh reported the first successful excision 
of a saccular aneurysm of the ascending aorta in 
1953 [147].

First repair attempts at dissections of the 
descending aorta by DeBakey et  al. were exci-
sion of the dilated part, reunion of dissected wall 
layers, and restoration of continuity using end-to- 
end anastomosis [148]. The same was attempted 
in the dissected ascending aorta with excision of 
the entry, followed by reunion of the dissected 

Fig. 1.24 Wrapping of the aorta. Wrapping with fascia to 
prevent aneurismal expansion [134]
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layers both proximally and distally and ultimately 
creation of an end-to-end anastomosis, as done 
by Charles Hufnagel (1916–1989) and Peter 
W.  Conrad (1927–2013) [149] of Georgetown 
University (Washington, D.C.) and George 
C.  Morris (1924–1996) in Houston [150]. 
Alternatively, patch reconstruction after resection 
of the false channel was used [151].

1.6.1  (Homo)graft Interposition

Another shift from direct excisional repair to graft 
replacement began with the use of cadaveric 
allografts (homograft) as no synthetic material was 
yet available. Based on early work by Carrel and 
Guthrie [152, 153] and Gross (Fig. 1.27) [154], 
homograft preservation was perfected, and artery 
banks were established in the 1940s and 1950s.

Homograft replacement of the aorta had ini-
tially been used in children with congenital heart 
disease after resection of aortic coarctation, first 
by Henry Swan in Colorado (1913–1996) [155], 
Russel Brock (1903–1980) in London [156], 
Gross (Fig. 1.25b) [144], and Paul W. Schafer 
(1915–) in Kansas [157].

Just after it had become clear that the 3-year 
survival rate for patients with untreated abdomi-
nal aortic aneurysms (AAAs) was only 50%, 
with two-thirds of deaths resulting from aneurys-
mal rupture (Fig.  1.28) [158], several surgeons 
independently performed successful abdominal 
aortic aneurysm reconstruction within just 1 
month’s time.

On November 14, 1950, Jacques Oudot 
(1913–1953) performed the first homograft 
replacement of an obstructed (thrombosed) aortic 
bifurcation, followed by the first crossover bypass 

a b

Fig. 1.25 (a, b) Treatment of aortic coarctation with 
homologous grafts. Left: Ideal form of therapy for coarc-
tation of the aorta; above, thoracic aorta with a rather short 
zone of constriction; below, removal of the narrowed area 
and reconstruction of a full-sized aortic pathway by end- 

to- end, everting anastomosis using interrupted mattress 
stitches of silk. Right: above, the findings at operation; 
below, complete removal of involved segment and 
replacement by a graft (from Ref. [144], with 
permission)
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in the same patient with insertion of a graft 
between the two external iliac arteries [159]. 
Autopsy of the patient 3  years later revealed a 
thrombosed homograft [160]. On February 26, 
1951, Norman Freeman (1903–1975) and 
Frank Leeds (1914–2003) in San Francisco suc-
cessfully treated an aortic aneurysm with a vein 
inlay autograft from the left common iliac vein 

sutured into the abdominal aorta and iliac arteries 
and then wrapped the aneurysmal sac around the 
reconstruction for external support of the vein 
graft [161, 162].

And on March 2, 1951, Paul W. Schafer and 
Creighton A.  Hardin (1918–2013) in Kansas 
resected an abdominal aneurysm with an indwell-
ing polyethylene bypass shunt after clamping the 
aorta and replacing it with a human homograft. 
The patient died after 29 days from a leak in the 
native aortic wall [157]. Freeman reported rees-
tablishing circulation in the legs with a splenoil-
iac anastomosis as an extra-anatomic bypass 
technique [163]. But likely most memorably, on 
March 29, 1951, French surgeon Charles Dubost 
(1914–1991) successfully resected an abdominal 
(infrarenal) aortic aneurysm with a 15-cm-long 
homograft replacement via a left extraperitoneal 
approach (Fig. 1.29) [160, 164–166]. The patient 
survived for 8  years. The report from Paris in 
1951 that an abdominal aortic aneurysm had 
been successfully resected greatly influenced sur-
geons throughout the world who, until then, had 

a b

Fig. 1.26 (a, b) Aneurysmectomy (innominate artery 
and adjacent aorta). Left: Incision for thoracocervical 
approach (inset). Aneurysm arising in the innominate 
artery at its origin from the aortic arch. A Crawford clamp 
has been applied tangentially across the superior border of 
the aortic arch to occlude the origin of the innominate 
artery and aneurysm. Distal control of circulation in the 

aneurysm is obtained by temporary occlusion with tape 
around the right common and subclavian arteries. Right: 
Lateral aortorrhaphy following excision of aneurysm. The 
supraclavicular extension of the aneurysm through the 
eroded manubrium has been inverted and the thrombus 
evacuated (from Ref. [146], with permission)

Fig. 1.27 Early homograft preparation and implantation 
experiments. Graft of abdominal aorta (dog to dog). The 
graft section had been stored in 10% homologous serum 
and balanced salt solution for 6 days and then had been 
implanted into a recipient animal which was kept for 
6  months before sacrifice (from Ref. [154], with 
permission)
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regarded such an operation as being beyond the 
limits of surgery.

Although the first procedure by Schafer and 
Hardin resulted in the patient’s death after 
29 days due to hemorrhage from a leak [157], the 
following operations by Dubost [164], Ormand 
Julian (1913–1987) in Chicago [167], Brock 
[168], DeBakey and Cooley [169], and Bahnson 
[147] were successful. Likewise, ruptured 
abdominal aneurysms were successfully treated 

between March 1953 and December 1954 by 
Bahnson [170], Frank Gerbode in Stanford 
(1907–1984) [171], Cooley and DeBakey [172], 
and Hushang Javid in Chicago (1921–) [173].

The first replacement of a descending thoracic 
aortic aneurysm with resection and homograft 
replacement was performed on April 2, 1951 by 
Conrad Lam (1905–1990) in Detroit, and the 
patient survived for 3 months before succumbing 
to infection [174]. During the procedure, blood 
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Fig. 1.28 Survival rates 
for patients with 
abdominal aortic 
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for traced patients who 
had abdominal aortic 
aneurysm as compared 
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the normal population of 
age 65 years (from Ref. 
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Fig. 1.29 Charles Dubost. Diagram of Dubost’s first aortic aneurysm replacement with homograft (March 29, 1951) 
(from Ref. [160], with permission)
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flow distal to the operative site was maintained 
through a polyethylene tube inserted into the 
lumen of the vessel above and below the aneu-
rysm (Fig. 1.30a, b). Lam concluded that leaving 
the aneurysmal sac intact as Matas suggested 
predisposes to infection, and full resection would 
be the preferable technique.

DeBakey and Cooley had removed abdominal 
aneurysms completely in their first patients in 
1952 [169]. Removal was also strongly advo-
cated by Bahnson in 1953 [147], and it became 
clear that resection and complete replacement of 
the diseased aorta would eventually be the 
 ultimate treatment of choice. DeBakey and 
Cooley had been developing techniques for com-
plex aneurysm repair and spinal cord protection 
during thoracic surgery for some years prior, and 
they performed a successful resection and seg-

mental graft replacement for fusiform aneurysms 
of the descending aortic aneurysm on January 5, 
1953 [175], followed by Shumacker and Harris 
in 1956 [176].

The next major breakthrough took place in 
1954, when the Houston team performed a series 
of successful surgical treatments of dissecting 
thoracic aortic aneurysms (Fig.  1.31) [177]. 
DeBakey and his associates went on to accumu-
late vast clinical and surgical experience in the 
management of AD patients, reporting a 20-year 
follow-up of 527 surgically treated patients as 
early as 1980 [178]. Ironically, Michael DeBakey 
himself underwent and survived open surgery for 
type A aortic dissection at the age of 97, arguably 
the oldest patient in history to do so.

Ascending aortic replacement required the 
development of cardiopulmonary bypass and was 
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Fig. 1.30 (a, b) 
Resection of the 
descending aorta and 
replacement with 
homograft. (a) Lucite 
tube used to conduct 
blood through the graft 
during the suturing. (b) 
The operative procedure 
for resection and 
replacement of the 
descending aorta (from 
Ref. [174], with 
permission)
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first performed in 1956, again by Cooley and 
DeBakey [179], successfully replacing the 
ascending aorta with a homograft. Replacement 
of the aortic arch, with its inherent risk of cere-
bral ischemia, was understandably more chal-
lenging. Schafer and Hardin in 1951 [157] and 
Cooley, Mahaffey, and DeBakey in 1955 [180] 
failed in performing arch replacements using 
bypass shunts and hypothermia only. It was only 
with cardiopulmonary bypass that DeBakey and 
colleagues were first able to successfully replace 
the aortic arch as reported in 1957 [181].

By now, every section of the thoracic aorta 
from the arch to the diaphragm had been resected 
successfully and replaced by homografts [182]. 
Enthusiasm for homografts had swelled, and use 
was widely accepted in the early 1950s but then 
waned because of short supply and difficulty with 
the harvesting and banking of the grafts but fore-
most because of frequent structural degeneration 
and late complications of the grafts [182]. In fact, 
short-term results up to 3 years had been gratify-
ing, but long-term outcome with homografts was 
poor, and aorta banks began to be closed [144]. 
At this point it was obvious that further progress 
would not be possible without a suitable flexible 

conduit to replace resected segments of the aorta, 
and a search was begun for a more stable, long- 
term, synthetic conduit material.

1.6.2  Synthetic Grafts

The use of prosthetic grafts leads to a new stan-
dard of care, starting with Arthur Voorhees 
(1921–1992), who made his momentous contri-
bution in 1952 using a vinyon-N cloth as a plastic 
arterial substitute, and ending with Michael 
DeBakey and Denton Cooley who refined the 
design of the Dacron graft in 1954.

Arthur Blakemore was known for perform-
ing portacaval shunts in patients with portal 
hypertension and developed the Sengstaken- 
Blakemore tube for management of hemorrhag-
ing esophageal varices [183]. He was used to 
depressing cases with copious bleeding (venous 
and arterial) and is quoted as having said, “The 
only time I worry about bleeding is when I can 
hear it” [184]. When dealing with arterial occlu-
sive disease, he tried injections of vasodilator 
drugs and performed lumbar sympathectomies 
but was frustrated over abdominal aortic 
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Fig. 1.31 Surgical treatment of dissecting thoracic aortic 
aneurysm. Illustration showing the site of origin and 
extent of the dissecting process in the thoracic aorta (a). 
The aorta has been divided (b), the false lumen has been 

obliterated distally (c), and proximally a segment of the 
inner layer is being excised to create a reentry passage. 
The anastomosis is completed (d) (from Ref. [177], with 
permission)
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 aneurysms, having tried wires in the 1930s [108], 
also using the Colt apparatus. Now in the 1950s, 
Blakemore was involved in discovering a suit-
able graft material for aortic surgeries. Working 
in his animal laboratory in 1947, Voorhees inci-
dentally discovered that a silk suture inadver-
tently left in a ventricular cavity of an animal was 
covered with a slick layer resembling natural 
endocardial tissue cells and speculated that “a 
piece of cloth might react in a similar way” [185]. 
He was unaware of Julius Dörfler (1872–1952) 
[186] and Herbert W.  Carson (1870–1930), 
who had observed earlier that silk sutures left in 
the lumen of an artery become encapsulated by a 
fine veil-like coating [187], and of Guthrie, who 
30  years earlier had suggested that an implant 
need serve only as scaffolding for ingrowth of 
host tissue [188]. But as these findings went 
largely unnoticed, the important step was made 
when Voorhees proposed the concept of a fabric 
tube that “had to be strong, inert, stable, of the 
right porosity, supple, and yet easily transversed 
by a fine needle” [185]. The idea was that a fine 
mesh cloth could be used as an arterial graft, with 
fibrin plugs forming to stop leakage of blood 
through the walls of the prosthesis [189].

His first artificial artery was fashioned from a 
silk handkerchief. Next he turned to a bolt of 

vinyon-N cloth that worked even better. 
According to another source, an orthopedic resi-
dent, James Wallace Blunt (1918–2003), offered 
Voorhees the vinyon-N cloth after it had failed as 
a tendon replacement. It had originally been 
designed as sail or parachute cloth but proved too 
inert to hold dye. Voorhees constructed a tube 
resembling the silk model and began using it as 
an aortic prosthesis in dogs in demanding and 
tedious procedures. By the end of 1950, 30 dogs 
had received implants with satisfying early 
patency, and in 1951 he had enough material to 
publish an optimistic preliminary report [189]. 
Pore size turned out to be critical for ingrowth of 
fibroblasts, and without the latter, neo- 
endothelium could not form. In February 1953, 
Blakemore at Columbia Presbyterian Medical 
Center used a vinyon-N graft from his lab to 
replace a ruptured abdominal aneurysm, only 
because the local homograft bank was unable to 
supply material. It became the first synthetic graft 
ever used to replace the human aorta [184]. The 
outcome encouraged further implantations, and 
over the following year, 16 additional aneurysms 
were similarly treated with a 56% survival rate 
(Fig. 1.32) [190].

Nevertheless, vinyon-N rapidly gave way to 
competitive fibers with more favorable physical 
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Fig. 1.32 Aortic tubes constructed from vinyon-“N” cloth. Use of reinforcing cuffs over the proximal aortic segment 
and reinforcing strips about the line of anastomosis (from Ref. [190], with permission)
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properties, including Orlon, Teflon, Ivalon, 
Nylon, and finally Dacron. Norman Shumway 
(1923–2008) at Stanford University experi-
mented with rolled sheets of polyvinyl sponge 
(Ivalon) [191], and Shumacker used layered 
Nylon, incorporating a thin polyethylene film for 
hemostasis [192], whereas the Houston group 
used braided Nylon tubes experimentally 
(Fig. 1.33) [193]. To properly respect these early 
achievements, one must realize that prostheses 
were far from being delivered perfectly and 
 manufactured in all sizes. Instead, “tubes were 
cut and sewn in scrub rooms, … unsophisticated 
and often cranky” [194]. With all these fabrics, 
durability remained a problem. Some fibers dete-
riorated rapidly, while others failed to form a 
strong bond with surrounding tissues.

While Crawford in Houston worked on a 
technique for freeze-drying human arteries taken 
from autopsies, in 1954  W.  Sterling Edwards 
(1920–2004) was inspired by Voorhees’ enthusi-
asm for synthetic cloth for arterial grafts. Telling 
one of his patients, who happened to be an execu-

tive at Chemstrand Corporation, about his 
 difficulties with creating easy-to-sew and wrin-
kle-free nylon grafts, the patient helped set up a 
collaboration with a physical chemist at the com-
pany [195]. They soon introduced the concept of 
crimping cylindrical grafts to allow greater flexi-
bility without kinking and to provide better han-
dling characteristics [196]. The Edwards-Tapp 
braided nylon graft was manufactured by US 
Catheter and Instrument Corp., until Edwards 
switched his preference from nylon, with its dis-
appointing durability and degeneration in the 
phase of body fluids, to Teflon because of its 
superior tensile strength profile. Teflon prosthe-
ses remained commercially available until 1979.

However, it was the discovery and introduc-
tion of Dacron that opened a new chapter.

1.6.3  Dacron

Tubes of various plastic materials were 
employed, but all were found to have certain 

b

a

Fig. 1.33 Braided Nylon tube for implantation into the 
thoracic aorta. Left: Braided Nylon tube for implantation 
into the thoracic aorta. Right: Braided Nylon prosthesis 
196 after implantation into the thoracic aorta (dog). (a) 
The outer connective tissue sheath has been peeled away 

from prosthesis. (b) Longitudinal section of prosthesis 
and adjacent aorta showing loosely adherent, outer fibrous 
connective tissue sheath and the smooth adherent inner 
lining (from Ref. [193], with permission)
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disadvantages owing to design and physical 
characteristics that limited their adaptability and 
hindered their practical application. Beginning 
in 1954, DeBakey and his group began to exper-
iment with Dacron. This material was a polyes-
ter polymer that was developed around 1939 
and had been introduced in the USA by E.  I. 
DuPont de Nemours and Company, Inc., in 
1946. According to legend, DeBakey discovered 
the material in a department store more or less 
by accident when he was actually looking for 
nylon, but it was sold out and the clerk sug-
gested Dacron instead. Eventually DeBakey 
came to prefer this textile and used it to create 
the first artificial arterial patches and tubes using 
his wife’s sewing machine (Fig. 1.34).

After 2 years of testing on animals, DeBakey 
was satisfied with Dacron tubes that were easier 
to sew than vinyon [197, 198]. Cooperation with 
the Philadelphia College of Textiles and Science 
led to the development of a knitting machine 
capable of producing seamless knitted (instead 
of braided) Dacron grafts in various sizes and 
with bifurcations, made flexible by proper 
 crimping [139, 199].

The new material was now widely used by the 
group around DeBakey, Cooley, Morris, Oscar 
Creech (1916–1967), and Crawford. In fact, 
clinical experience was so highly gratifying that 
DeBakey employed this graft exclusively. Within 
less than 4 years, the group had implanted more 
than 1000 synthetic grafts with a 90% success 

rate, and this new arterial substitute was intro-
duced to the medical community in 1958 with the 
landmark paper reporting their highly satisfac-
tory results [200]. DeBakey et al. had collected 
803 cases of occlusive disease of the aorta and 
iliac and femoral arteries including 448 cases 
with aortoiliac (complete and incomplete) occlu-
sion. At first, the group had also routinely per-
formed lumbar sympathectomy as was standard 
at the time as a supplemental procedure but gave 
up on it because of the high incidence of distress-
ing post-sympathectomy neuralgia. Ultimately, 
flexible knitted Dacron tubes were judged to be 
the best arterial substitute available and came 
into wide use [200].

A review of chemical and physical data as 
well as in vivo experiments on a wide range of 
fabrics in 1955 concluded that “Dacron appeared 
to have the most desirable qualities in the overall 
evaluation” and was thus the best material for 
aortic substitution [198]. In 1956, vinyon-N was 
no longer commercially available, and both nylon 
and Orlon exhibited significant loss of tensile 
strength over time [201].

The Meadox Weaving Corp., an upholstery 
and drapery fabric manufacturer in New Jersey, 
collaborated with Ormond Julian and Ralph 
Deterling (1917–1992) of New  York to design 
and fabricate grafts. Beginning in 1954, they pro-
duced the first woven grafts, and in 1961, Meadox 
Medical Inc. teamed up with Cooley to produce a 
graft line carrying his name [202]. Bleeding con-
trol remained an issue, particularly in the fully 
heparinized patient undergoing CPB.  Grafts 
needed to be tightly woven with low porosity but 
at the cost of less desirable handling and suture 
characteristics. Cooley introduced the method of 
autoclaving a porous graft soaked with autolo-
gous plasma, which renders it completely imper-
vious to blood. Better sealing later became 
available, including impregnation with bovine 
collagen or albumin.

Since Cooley and DeBakey’s first successful 
replacement of the ascending aorta with a tube 
graft [179], this has become the standard proce-
dure for dealing with dissecting aneurysms and 
chronic nondissecting dilatations.

Fig. 1.34 Michael DeBakey at home sewing a Dacron 
vascular graft (c. 1955)
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1.7  The Aftermath

The ground had now been laid by the availability 
of a reliable substitute and the concept of com-
plete removal of the diseased segment. Since 
then, too many technical advances have been 
made to cover them all, and to mention the 
names of the many who have contributed to our 
current understanding of aortic disease and our 
management concepts would be beyond the 
scope of this survey.

Clearly, the most fundamental advancement 
was the development and introduction of the car-
diopulmonary bypass by John H.  Gibbon 
(1903–1973) in 1953 (Figs. 1.35 and 1.36) [203–
209]. DeBakey’s contribution, while still in med-
ical school in 1932, had been to assemble a 
hand-cranked roller pump, first used to transfuse 
blood directly from a donor to a patient and later 
adapted for use in the heart-lung machine. In 
1957 Cooley introduced the left heart bypass to 
replace the descending aorta [210].

a

b

c

Fig. 1.35 (a–c) John Gibbon’s heart-lung machine. (a) 
Equipment used by John Gibbon in early laboratory 
experiments in extracorporeal circulation. (b) Heart-lung 

machine Gibbon Model I (1949). The first oxygenator 
built by IBM. (c) Heart-lung machine Gibbon Model II 
(1951) (from Ref. [207], with permission)
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Routine use of cardiopulmonary bypass greatly 
simplified aortic surgery allowing, among other 
things, controlled (deep) hypothermia and brain 
perfusion. Wilfred G.  Bigelow (1912–2005) of 
Toronto developed the idea of reducing a patient’s 
body temperature before an operation to lower 
metabolism and oxygen need [211]. After basic 
research in animal models, Floyd John Lewis 
(1916–1993) at the University of Minnesota per-
formed the first successful human open-heart 
operation (September 2, 1952), closing an atrial 
septum defect in a child, after inducing hypother-
mia by wrapping the child in cooling blankets 
[212]. Notably, this and subsequent operations, 
also by Henry Swan, who carried on with this 
technique, were performed without cardiopulmo-
nary bypass in large patient series. As mentioned 

before, Cooley failed in replacing an aortic arch 
using bypass shunts and hypothermia only [180], 
and a solution for organ protection, particularly 
the brain, remained paramount. After cardiopul-
monary bypass became widely available, 
C.  Walton Lillehei (1918–1999), who had par-
ticipated in Lewis’s historic operation, and John 
W.  Kirklin (1917–2004) in Rochester observed 
spontaneous cooling in patients undergoing sur-
gery with beneficial consequences. Rather than 
relying on this “side effect,” Will C. Sealy (1912–
2001) at Duke University introduced the heat 
exchanger to the DeWall oxygenator for con-
trolled induction of hypothermia and rewarming 
[213], progressively allowing more complex and 
time-consuming procedures. Donald Ross 
(1922–2014) and Brock in London advocated the 
use of deep hypothermia induced with the heart-
lung machine [214] and so stimulated wider inter-
est in further study of this technique.

The breakthrough for wide acceptance came 
with the work of Randall B. Griepp (1940–) and 
colleagues at Mount Sinai in New  York. The 
introduction of deep hypothermic circulatory 
arrest (DHCA) in the mid-1970s dramatically 
reduced the incidence of neurological damage 
following aortic surgery [215]. Griepp, however, 
also stressed the limits of hypothermic circula-
tory arrest for cerebral protection [216].

Subsequently, the Crawford [217, 218] and 
Cooley [219, 220] groups used deep hypothermia 
for arch interventions and also suggested using 
moderate hypothermia for open repair of proxi-
mal aortic arch anastomoses [221]. Nicholas 
Kouchoukos (1937–) in St. Louis pioneered the 
use of profound hypothermic circulatory arrest 
for repair of descending thoracic and thoracoab-
dominal aneurysms [222, 223]. The combination 
of cardiopulmonary bypass and total circulatory 
hypothermic arrest provided a major advance that 
greatly enhanced the safety of distal aortic 
procedures.

The use of cerebral perfusion was reconsid-
ered and then revived by William H.  Frist 
(1952–) and colleagues [224]. Subsequent 
advances focused on improving brain protection 
by defining an approximately 30-min time limit 
for circulatory arrest [225], which could be 
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Fig. 1.36 Cardiopulmonary bypass. Plan of cardiopul-
monary bypass used for prosthetic replacement of the 
ascending aorta (from Ref. [208], with permission)
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extended with cerebral perfusion techniques such 
as uni- and bilateral retrograde (RCP) and ante-
grade cerebral perfusion (ACP) [226].

To simplify clinical management of aortic dis-
sections, many classification systems were sug-
gested, but only the Stanford and DeBakey 
nomenclatures have prevailed over the time. The 
“Stanford classification” differentiates among 
aortic dissections based on whether the ascending 
aorta is involved, regardless of the site of tear and 
irrespective of the distal extent of dissection 
[227]. The “DeBakey classification” [228], which 
was modified in 1982 to more closely resemble 
the Stanford classification [178], classifies dissec-
tions not involving the ascending aorta as type III; 
those limited to the ascending aorta are DeBakey 
type II, and dissections involving the ascending, 
arch, and descending aorta are classified as type I.

Treatment of aortic dissection was greatly 
influenced by Myron W.  Wheat (1924–2012) 
and others who evaluated the merits of open ver-
sus pharmacological management against the 
background of persistently high operative mor-
tality. In contrast to aortic dissection with involve-
ment of the ascending aorta, the majority of 
patients with uncomplicated type B aortic dissec-
tion treated medically were found to survive the 
acute phase, thus giving rise to medical therapy 
rather than surgery [229, 230]. Management of 
patients with type B dissection was fundamen-
tally modified and later came to include interven-
tional treatment modalities. Wheat in 1965 also 
emphasized the role of blood pressure control in 
the medical management of acute aortic dissec-
tion [229], still the mainstay for aortic dissections 
in absence of complications.

Treatment of proximal aortic dissection with 
concomitant valve insufficiency was managed by 
narrowing of the annulus and valve bicuspidali-
zation [133] and with the concept of commissural 
resuspension and attenuation of the sinotubular 
junction [149, 231]. Ross, in 1962, and Sir Brian 
Barratt-Boyes (1924–2006) in 1964 success-
fully implanted the aortic homograft in the ortho-
topic position [232, 233].

Albert Starr (1926–) in 1963 excised the 
incompetent aortic valve in aortic root aneurysm, 
replacing it with a Starr-Edwards valve and 

replacing the aneurysmal ascending aorta with a 
graft [234]. In 1964 Wheat reported the first suc-
cessful replacement of the entire ascending aorta 
including the valve with a separate Starr-Edwards 
valve and a woven Teflon aortic prosthesis; a flap 
of aortic tissue around the coronary ostia was left 
to incorporate into the graft [235].

Some patients, however, required replacement 
of the aortic root as well. Subsequently, com-
bined operations were introduced that replaced 
the ascending aneurysm in conjunction with 
replacement of the aortic valve and reimplanta-
tion of the coronary arteries. In 1968, Hugh 
Bentall (1920–2012) at Hammersmith Hospital 
and Anthony De Bono reported their technique 
for complete replacement of the ascending aorta, 
using a composite mechanical valve and a Dacron 
conduit with reimplantation of the coronary ostia 
(Fig. 1.37) [236]. In cases with ascending aortic 
aneurysms with associated functional aortic 
insufficiency (but otherwise normal cusps), “aor-
tic valve sparing operations” were developed 
with the aim of preserving the native aortic valve. 
These procedures are known as the “reimplanta-
tion” technique as introduced by Tirone E. David 
(1944–) of Toronto [237, 238] and the “remodel-
ing” technique as described by Sir Magdi 
Yacoub (1935–) in London [239, 240] in the 
early 1990s.

Surgery on the aorta, except for its arch por-
tion, had become well established in the 1960s, 
including introduction of the “island technique” 
of brachiocephalic vessel reattachment, which 
simplified the procedure and reduced the number 
of anastomoses required [241]. However, the risk 
of multiple-stage operations required for the fre-
quently encountered aneurysms extending dis-
tally from the aortic arch remained a problem. In 
1983, Hans Georg Borst (1927–) in Hannover 
introduced the two-stage elephant trunk principle 
to simplify the second stage by leaving an 
extended vascular graft free within the descend-
ing aorta during the first-stage operation [242, 
243]. The technique was then refined [244] and 
later complemented with the “frozen elephant 
trunk” technique to allow repair of concomitant 
aortic arch and proximal descending aortic aneu-
rysms in a single-stage procedures with a 
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“hybrid” vascular graft [245]. One of the most 
promising recent innovations in aortic arch repair 
is the “trifurcated graft” technique (Fig.  1.38) 
[246, 247], along with a large number of deb-
ranching hybrid repair concepts using concomi-
tant endovascular stent grafts [248, 249].

Arguably the last major development to date 
in treating aortic disease has been the evolution 
of endovascular stent grafting. That new era of 
treatment started in 1986 when an alternative to 
surgically placed grafts emerged. Harrison 
Lazarus (1939–) of Salt Lake City had conceived 
and essentially completed the design of an 
 endovascular graft for abdominal aneurysm 
repair by the mid-1980s and filed for a US patent 
in 1986 (awarded in 1988) [250, 251]. The 
 pioneering clinical work is first and foremost 
associated with Nikolai Volodos (1934–) in Kiev, 
Ukraine [252–255], and Juan Parodi (1940–) of 
Argentina [256]. Volodos reportedly performed 
the  first- ever aortic repair with a stent graft in the 
1980s (in a patient suffering from a post-trau-
matic aneurysm of the distal descending thoracic 
aorta) (Fig. 1.39) [255], but this pioneering work 

has become widely known in the Western world 
only since the mid-1990s. Argentinian Julio 
Palmaz (1945–) of San Antonio invented and 
patented the balloon-expandable stent, which 
was later approved for use in peripheral arteries 
in 1991. Human endovascular abdominal 

Teflon

Starr
valve

Coronary
perfusion

5
1

2

3

4
Aortic ring

Fig. 1.37 Complete replacement of ascending aorta 
(Bentall and De Bono). Left: Starr valve has been sutured 
to aortic prosthesis: sutures have been placed in aortic ring 
before fixing the combined prostheses. Right: Combined 
prostheses in situ. Insets 1–4 show details of holes fash-

ioned in the side wall of the Teflon tube to reincorporate 
the coronary ostia within the lumen of the new ascending 
aorta. Inset 5 shows the vertical slit in the prosthesis (from 
Ref. [140], with permission)

Fig. 1.38 Aortic arch replacement with a trifurcated 
graft. With the main limb of the trifurcated graft clamped, 
antegrade selective cerebral perfusion is initiated 
through the axillary artery. The elephant trunk technique 
is used to reconstruct the arch, and the graft is anasto-
mosed to the proximal repair. The trifurcated graft is 
then anastomosed to the reconstructed aorta (from Ref. 
[247], with permission)
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Fig. 1.39 Pioneer of vascular stent graft design. Nikolai 
L. Volodos (from Ref. [255], with permission)

Fig. 1.40 Thoracic aortograms obtained before and after 
stent graft placement over the primary entry tear in aortic 
dissection. Left: Before stent graft deployment showing 
flow of contrast medium from the true lumen (T) across 

the entry tear (arrow) into the false lumen (F). Right: After 
stent graft placement. Only the true lumen is evident 
(from Ref. [261], with permission)

 aneurysm repair (EVAR) was performed by 
Parodi and associates in Buenos Aires and 
Palmaz on September 6, 1990, following exten-
sive experiments with stainless steel stents hand 
sewn to thin-walled Dacron tube grafts [257, 
258]. They launched the modern endovascular 
treatment revolution that led to profound trans-
formations that have changed everything in vas-
cular surgery.

Treatment modalities for thoracic aneurysms 
followed successful repairs of abdominal aortic 
aneurysms. Michael D.  Dake at Stanford 
reported the first endovascular thoracic (descend-
ing) aortic repair with a homemade endograft in 
1994 [259, 260], soon followed in 1999 by a 
report of earliest clinical experience with endo-
vascular stent graft intervention for acute type B 
aortic dissection (Fig.  1.40) [261]. As such, 
TEVAR intervention has added an entirely new 
dimension to the management of AD and aortic 
disease (Fig. 1.41) [262–264].

Rapid diagnosis and appropriate management 
decisions were greatly advanced with improved 
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Fig. 1.41 Stent graft with side branches. Left: A. 
Branched stent graft with one free-flow stent, one inter-
nal sealing stent, followed by reducing stents, from 
which emerge the proximal side branches. B. Detail of 
the emergence of the side branches from the main stent 
graft module. C. Iliac side branch device. Right: The 

three-dimensional CT angiography reconstruction shows 
a thoracoabdominal stent graft with four branches, in 
adjunct to left internal iliac artery revascularization with 
iliac side branch device and contralateral embolization 
of internal iliac artery (from Ref. [262], with 
permission)

imaging modalities, such as CTA, CT, TEE, TTE, 
and MRI. Today’s clinical management is further 
greatly enhanced by recognition of “aortic syn-
dromes” and distinct pathologies such as pene-
trating atherosclerotic ulcers (PAU), IMH, aortic 
ruptures, and dissection, apart from congenital 
syndromes.

The author is well aware that this brief review of 
aortic surgery cannot be complete, especially with 

regard to all the individuals who have contributed 
to the field over the centuries: “history, as it lies at 
the root of all science” can be understood as “the 
essence of innumerable biographies” [265].

This textbook looks deep into the past and, 
from there, toward the future with all its promis-
ing new directions, and as such it is to be hoped 
that it will help to take the history of aortic man-
agement one step further.
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