Copyrighted Material

Activate at expertconsult.com

Searchable Full Text Online

PATTERN RECOGNITION SERIES

Practical Surgical Neuropathology

A Diagnostic Approach

Arie Perry Daniel J. Brat

Constrational Material

Practical Surgical Neuropathology

Pattern Recognition Series Series editors: Kevin O. Leslie and Mark R. Wick

Practical Bone and Joint Pathology Edited by Gene P. Siegal and Barry R. DeYoung

Practical Breast Pathology Edited by Kristen Atkins and Christina Kong

Practical Cytopathology Edited by Matthew Zarka and Barbara Centeno

Practical Dermatopathology Written by James W. Patterson

Practical Gynecology Edited by Joseph T. Rabban and Olga B. Ioffe

Practical Hepatic Pathology Edited by Romil Saxena

Practical Lung Pathology, 2nd edition Edited by Kevin O. Leslie and Mark R. Wick

Practical Lymph Node Pathology Edited by Steven Kroft and Kaaren Reichard

Practical Renal Pathology Edited by Donna Lager and Neil Abrahams

Practical Soft Tissue Pathology Edited by Jason L. Hornick

Practical Surgical Neuropathology Edited by Arie Perry and Daniel J. Brat

Practical Surgical Neuropathology

A Diagnostic Approach

Arie Perry мD

Professor of Pathology and Neurological Surgery Vice Chair, Department of Pathology Director of Neuropathology Division and the Neuropathology Fellowship Program University of California at San Francisco (UCSF) San Francisco, California

Daniel J. Brat MD, PhD

Professor and Vice Chair, Translational Programs Director, Division of Neuropathology Department of Pathology and Laboratory Medicine Emory University School of Medicine Atlanta, Georgia

CHURCHILL LIVINGSTONE ELSEVIER

1600 John F. Kennedy Blvd. Ste. 1800 Philadelphia, PA 19103-2899

PRACTICAL SURGICAL NEUROPATHOLOGY: A DIAGNOSTIC APPROACH

ISBN: 978-0-443-06982-6

© 2010 by Churchill Livingstone an affiliate of Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

With respect to any drug or pharmaceutical products identified, readers are advised to check the most current information provided (i) on procedures featured or (ii) by the manufacturer of each product to be administered, to verify the recommended dose or formula, the method and duration of administration, and contraindications. It is the responsibility of practitioners, relying on their own experience and knowledge of their patients, to make diagnoses, to determine dosages and the best treatment for each individual patient, and to take all appropriate safety precautions.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Practical surgical neuropathology : a diagnostic approach / [edited by] Arie Perry, Daniel J. Brat.

p. ; cm. Includes index.

ISBN 978-0-443-06982-6

1. Brain–Tumors–Diagnosis. 2. Nervous system–Diseases–Diagnosis. 3. Pathology, Surgical. I. Perry, Arie. II. Brat, Daniel J. III. Title.

[DNLM: 1. Nervous System Diseases-surgery. 2. Nervous System Diseases-pathology. 3. Pathology, Surgical-methods. WL 368 P8947 2010]

RC280.B7P723 2010

616.99'481-dc22

2009053489

Acquisitions Editor: William Schmitt Publishing Services Manager: Joan Sinclair

Printed in China

Last digit is the print number: 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOK AID International Sabre Foundation

Contributors

Daniel J. Brat, MD, PhD

Professor and Vice Chair, Translational Programs Director, Division of Neuropathology Department of Pathology and Laboratory Medicine Emory University School of Medicine Atlanta, Georgia

David A. Decker, MD

Department of Neurology University of Florida College of Medicine McKnight Brain Institute Gainesville, Florida

Michelle Fèvre-Montange, PhD

Université de Lyon Lyon, France

Christine E. Fuller, MD

Professor of Pathology Director of Neuropathology and Autopsy Pathology Medical College of Virginia/Virginia Commonwealth University Richmond, Virginia

Gregory N. Fuller, MD, PhD

Professor of Pathology (Neuropathology) The University of Texas Graduate School of Biomedical Sciences Professor and Chief Section of Neuropathology The University of Texas M.D. Anderson Cancer Center Houston, Texas

Eyas M. Hattab, MD

Associate Professor Department of Pathology and Laboratory Medicine Indiana University School of Medicine Medical Director, Immunohistochemistry Laboratory Clarian Pathology Library Indianapolis, Indiana **Eva Horvath, PhD** Pathology Consultant Endocrine Pathology Research St. Michael's Hospital Toronto, Ontario, Canada

Anne Jouvet, MD, PhD

Associate Professor of Pathology Centre de Pathologie et Neuropathologie EST Groupement Hospitalier EST Hospices Civils de Lyon Lyon, France

Scott E. Kilpatrick, MD

Pathologists Diagnostic Services Forsyth Medical Center Winston-Salem, North Carolina

B. K. Kleinschmidt-DeMasters, MD

Professor and Head, Division of Neuropathology Department of Pathology University of Colorado Health Science Center Denver, Colorado

Kalman Kovacs, MD, PhD

Professor of Pathology Department of Laboratory Medicine St. Michael's Hospital University of Toronto Toronto, Ontario, Canada

M. Joe Ma, MD, PhD

Assistant Professor of Pathology Department of Medical Education University of Central Florida College of Medicine Pathologist Department of Pathology Florida Hospital—Orlando Orlando, Florida

Ricardo V. Lloyd, MD Professor of Pathology Department of Anatomic Pathology Mayo College of Medicine Rochester, Minnesota

Sonia Narendra, MD

Pathology Resident SUNY Upstate Medical University Syracuse, New York

Werner Paulus, MD

Professor of Neuropathology University of Muenster Director Institute of Neuropathology University Hospital Muenster Muenster, Germany

Arie Perry, MD

Professor of Pathology and Neurological Surgery Vice Chair, Department of Pathology Director of Neuropathology Division and the Neuropathology Fellowship Program University of California at San Francisco (UCSF) San Francisco, California

Richard A. Prayson, MD

Head, Section of Neuropathology Department of Anatomic Pathology Cleveland Clinic Foundation Cleveland, Ohio

Bernd W. Scheithauer, MD

Professor of Pathology Department of Anatomic Pathology Mayo College of Medicine Consultant Mayo Clinic Rochester, Minnesota

Robert E. Schmidt, MD, PhD

Professor and Chief Division of Neuropathology Washington University School of Medicine St. Louis, Missouri

Ana I. Silva, MD

Hospital Assistant Department of Anatomic Pathology Hospital São Marcos Graga, Protugal

Robert J. Spinner, MD

Professor Neurologic Surgery, Orthopedics and Anatomy Mayo Clinic Rochester, Minnesota

Tarik Tihan, MD, PhD

Professor Department of Pathology University of California San Francisco San Francisco, California

Kenneth L. Tyler, MD

Reuler-Lewin Family Professor of Neurology and Professor of Medicine and Microbiology Departments of Neurology, Medicine, Microbiology University of Colorado Denver Health Sciences Center Neurology Service, Denver VA Medical Center Denver, Colorado

Alexandre Vasiljevic, MD

Centre de Pathologie et Neuropathologie EST Groupement Hospitalier EST Hospices Civils de Lyon Lyon, France

Franz J. Wippold, II, MD

Professor and Chief Neuroradiology Section Mallinckrodt Institute of Radiology Washington University School of Medicine Attending Neuroradiologist Barnes-Jewish Hospital, Attending Neuroradiologist St. Louis Children's Hospital St. Louis, Missouri Adjunct Professor of Radiology/Radiological Sciences F. Edward Hérbert School of Medicine Uniformed Services University of the Health Sciences Bethesda, Maryland

James M. Woodruff, MD

Emeritus Attending Physician Department of Pathology Memorial Sloan-Kettering Cancer Center New York, New York

Anthony T. Yachnis, MD

Professor and Director of Anatomic Pathology Department of Pathology, Immunology, and Laboratory Medicine University of Florida College of Medicine Gainesville, Florida

Series Preface

It is often stated that anatomic pathologists come in two forms: "Gestalt"-based individuals, who recognize visual scenes as a whole, matching them unconsciously with memorialized archives; and criterion-oriented people, who work through images systematically in segments, tabulating the results—internally, mentally, and quickly—as they go along in examining a visual target. These approaches can be equally effective, and they are probably not as dissimilar as their

descriptions would suggest. In reality, even "Gestaltists" subliminally examine details of an image, and, if asked specifically about particular features of it, they are able to say whether one characteristic or another is important diagnostically.

In accordance with these concepts, in 2004 we published a textbook entitled *Practical Pulmonary Pathology: A Diagnostic Approach* (PPPDA). That monograph was designed around a *pattern-based* method, wherein diseases of the lung were divided into six categories on the basis of their general image profiles. Using that technique, one can successfully segregate pathologic conditions into diagnostically and clinically useful groupings.

The merits of such a procedure have been validated empirically by the enthusiastic feedback we have received from users of our book. In addition, following the old adage that "imitation is the sincerest form of flattery," since our book came out other publications and presentations have appeared in our specialty with the same approach.

After publication of the PPPDA text, representatives at Elsevier, most notably William Schmitt, were enthusiastic about building a *series* of texts around pattern-based diagnosis in pathology. To this end we have recruited a distinguished group of authors and editors to accomplish that

task. Because a panoply of patterns is difficult to approach mentally from a practical perspective, we have asked our contributors to be complete and yet to discuss only principal interpretative images. Our goal is eventually to provide a series of monographs which, in combination with one another, will allow trainees and practitioners in pathology to use salient morphological patterns to reach with confidence final diagnoses in all organ systems.

As stated in the introduction to the PPPDA text, the evaluation of dominant patterns is aided secondarily by the analysis of cellular composition and other distinctive findings. Therefore, within the context of each pattern, editors have been asked to use such data to refer the reader to appropriate specific chapters in their respective texts.

We have also stated previously that some overlap is expected between pathologic patterns in any given anatomic site; in addition, specific disease states may potentially manifest themselves with more than one pattern. At first, those facts may seem to militate against the value of pattern-based interpretation. However, pragmatically, they do not. One often can narrow diagnostic possibilities to a very few entities using the pattern method, and sometimes a single interpretation will be obvious. Both of those outcomes are useful to clinical physicians caring for a given patient.

It is hoped that the expertise of our authors and editors, together with the high quality of morphologic images they present in this Elsevier series, will be beneficial to our reader-colleagues.

> Kevin O. Leslie, MD Mark R. Wick, MD

Preface

When Kevin Leslie and Mark Wick approached us a few years ago to write a new neuropathology textbook for a patterns-oriented organbased series, it was with some trepidation that we ultimately accepted. After all, there are already some excellent texts available on this topic, and we have both contributed chapters to some of these in the past. However, the *patterns approach* used in the Leslie and Wick *Practical Pulmonary Pathology* book is somewhat novel, and we were not aware of others placing a major emphasis on this tactic toward neuropathology diagnosis. As our work progressed, we found

additional ways of enhancing the reader's experience and we are quite excited about the final product! Our primary target audience is the general surgical pathologist and pathology trainees. However, while we focused most on common issues of surgical neuropathology, rarer entities and clinicopathologic correlations are also well covered and illustrated. Therefore, we believe that this book will also be useful to neuropathologists and clinical colleagues from related medical specialties such as neurosurgery, neurology, neuroradiology, neuro-oncology, and pediatrics. In order to readdress the important question of why one should buy yet another neuropathology textbook, we provide the following list of strengths.

• Patterns-based diagnostic approaches: In addition to offering the traditional disease-based approach to nervous system pathology (Chapters 5 through 25), this book provides instructive algorithms based on 8 major (scanning magnification) patterns (immediately following the introduction) and 20 minor (higher magnification) patterns (Chapter 1). This material can be particularly helpful to less experienced morphologists who may feel lost or overwhelmed by the myriad diagnostic possibilities. After the reader obtains an appropriately focused differential, he or she can quickly turn to more detailed discussions of specific entities in later chapters of the book. Alternatively, one can start with basic clinicoradiologic patterns combining patient age, location, and neuroimaging features to create a differential diagnosis (Table 1-1). In fact, these two approaches are easily combined to further narrow the differential. To further enhance this strategy, the key clinicopathologic features for 21 common differentials and the immunoprofiles for 26 common tumors are summarized in Tables 1-3 and 1-4, respectively. Major neuroimaging patterns are listed in Box 4-1.

- **Background data:** The nervous system is particularly challenging because of its remarkable anatomic and cellular complexity. For instance, the histology changes completely from one area to another, engendering diverse diagnostic differentials depending on the site of involvement. Therefore, a review of basic *neuroanatomy* and *histopathology* may help (Chapter 2). In addition, the use of *ancillary techniques* is rapidly evolving, and therefore an overview of immunohistochemistry, electron microscopy, and molecular diagnostics is provided in Chapter 1.
- Intraoperative consultation and optimal processing: Nothing seems to provoke a panic attack more reliably than the "neuro frozen," yet there is often little practical guidance available for this common setting. Furthermore, *artifacts* induced by frozen sections and many other procedures implemented by either the neurosurgeon or the pathologist can present serious pitfalls and may preclude an accurate diagnosis. These important topics are discussed in Chapter 3.
- **Neuroradiology:** As will be mentioned several times in this book, neuroradiology increasingly provides the most relevant *gross pathology* for nervous system biopsy interpretation, particularly when the tissue sample is small. In this context the pathologist must become at least an amateur neuroradiologist so that important radiologic-pathologic correlations are not missed. This critical topic is summarized and illustrated in Chapter 4.
- The authors: In addition to being international authorities on their topics, the authors were carefully selected for their clarity and *enthusiasm for teaching*. They are highly sought conference speakers, writers, and recipients of teaching awards. One is also known for a somewhat unconventional but highly popular teaching method. Dr. Perry's innovative use of "neuropathology songs" to help medical students remember key features of neurological disorders has been the topic of several newspaper and radio reports. By the time this book is published, a CD recording should be complete and readers interested in a fun approach to musically reinforcing their knowledge base should visit www.neuropathsongs.com.

- The images: One can scarcely find a more visually oriented medical specialty than pathology. Therefore, if the average picture is worth 1000 words, then the average pathology picture must be worth at least 10,000. With this in mind, we took great care to find the best images possible, making sure that the text is *amply illustrated with generously sized high-quality figures*. Given the focus of this book on surgical neuropathology, most of the "gross photos" are naturally magnetic resonance images. Nonetheless, we did not hesitate to utilize some postmortem photos and discussions when these clearly enhanced the reader's understanding. This was particularly true for the infectious/inflammatory, vascular, and neurodegenerative disorders covered in Chapters 21, 24, and 25, respectively.
- The text: In order to highlight the most salient features of each disorder, *italics* are used throughout the text for quick reference, as are helpful *summary tables* and *boxes*.

We have endeavored to create a practical guide for those who work with biopsies of the nervous system and the patients from whom they were derived. We sincerely hope that you find it useful and enjoyable.

> Arie Perry, MD Daniel J. Brat, MD, PhD

Acknowledgments

As with any project of this magnitude, it simply can't be done alone. I am extremely grateful to my talented coeditor, Dan Brat, and to all my wonderful coauthors for injecting countless hours of additional time and effort into their already busy schedules in order to create an exceptional product. For any diagnostic prowess I may possess, I owe an incredible debt to my surgical neuropathology mentor, Bernd Scheithauer of the Mayo Clinic, as most of my "pearls of wisdom" are easily traced back to him. I was particularly thrilled that he agreed to contribute two chapters on topics for which he is clearly one of the world's authorities: pituitary pathology and peripheral nerve sheath tumors. For autopsy neuropathology, Joe Parisi was an equally outstanding mentor. In addition, I would especially like to thank Robert Schmidt for being such a remarkably supportive "boss" and close friend over my 12 years at Washington University in St. Louis. I particularly enjoyed our cordial competitions over who could shoot (and improve with Adobe Photoshop) the best photomicrographs (Bob: I think I won!). Particularly useful for this book was our practice of sharing with one another images from interesting cases as they came through our clinical service. A number of Bob's masterpieces are sprinkled throughout several chapters and perhaps a few of mine have snuck into his chapter. Special thanks also go to Franz ("Jay") Wippold of the Mallinckrodt Institute for Radiology with whom I've coauthored several review articles for a series entitled "Neuropathology for the Neuroradiologist." It seems only fitting that he now offers his remarkable expertise to teach us some basic "neuroradiology for the neuropathologist." In broader terms, I'd like to thank my parents, Gabriel and Bathsheba, for their incredible support and for giving me an innate desire to excel. My brother Ron similarly supported me through some challenging times. Lastly, I'm eternally grateful to my wife, Andrea, and my kids, Ryan and Jaclyn, for putting up with me and my long hours at work over the last few years.

Arie Perry, MD

The writing and editing of a comprehensive and authoritative textbook should not be entertained by the impatient or the faint of heart. Because of his wealth of knowledge, high standards, persistence, and overall good nature, I can think of no better collaborator on such an effort than Arie Perry. I look forward to updated editions as well as new neuropathology songs in the years to come. The collection of authors that we were able to gently persuade to contribute to this text is truly impressive. They deserve our deepest appreciation for allowing us to tap into their hard-earned expertise for this project. For their efforts, I hope this text will be widely acknowledged for the excellence it brings to the field of neuropathology. My own abilities to assist in this effort are directly attributed to those who drew me into neuropathology and to those who trained me both in person and at a distance. Joe Parisi and Bernd Scheithauer were larger than life figures that attracted a young medical student at the Mayo Clinic into the field of neuropathology and have continued to be role models. Peter Burger provided mentorship and enormous opportunity during residency and fellowship at Johns Hopkins Hospital and is most responsible for any academic successes I have had or will have. Finally, the family of Brats has always been a source of stability, inspiration, and thorough entertainment. Thanks to Paul, Dave, Jim, and Nancy Elaine.

Daniel J. Brat, MD, PhD

Practical Surgical Neuropathology Major Patterns

Pattern	Diseases to Be Considered
Parenchymal infiltrate with hypercellularity	Diffuse glioma CNS lymphoma Infections Active demyelinating disease Cerebral infarct Reactive gliosis
Solid mass (pure)	Metastasis Ependymoma Subependymoma Subependymal giant-cell astrocytoma (SEGA) Central or extraventricular neurocytoma Pineocytoma Embryonal tumor (e.g., AT/RT) Choroid plexus papilloma Hemangioblastoma Paraganglioma Pituitary adenoma
Solid and infiltrative process	 Pilocytic astrocytoma Pleomorphic xanthoastrocytoma Glioblastoma/gliosarcoma (and other high grade gliomas) Ganglioglioma Dysembryoplastic neuroepithelial tumor (DNT) Embryonal tumor (e.g., medulloblastoma/CNS PNET) Choroid plexus carcinoma Germ cell tumors Craniopharyngioma CNS lymphoma Sarcoma Histiocytic disorders Abscess and other forms of infection

Pattern	Diseases to Be Considered
Vasculocentric process	 CNS lymphoma Intravascular lymphoma Angiocentric glioma Ependymoma Vasculitis Meningioangiomatosis Active demyelinating disease Amyloid angiopathy Arteriolosclerosis Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) Vascular malformations Infections (e.g., aspergillosis) Neurosarcoidosis Thromboembolic disease
Extra-axial mass	Meningioma Hemangiopericytoma Solitary fibrous tumor Hemangioblastoma Sarcomas Schwannoma and other nerve sheath tumors Metastasis Melanoma or melanocytoma Secondary lymphoma or leukemia Paraganglioma Pituitary adenoma Neurosarcoidosis Granulomatous infections Inflammatory pseudotumors Calcifying pseudotumor of the neuraxis Primary bone tumors (e.g., chordoma) Histiocytic disorders (e.g., Rosai-Dorfman disease)
Meningeal infiltrate	 Meningeal carcinomatosis, gliomatosis, melanosis, melanomatosis, sarcomatosis, or hemangioblastomatosis Metastatic medulloblastoma/CNS PNET Secondary lymphoma or leukemia Histiocytic disorders Meningitis Neurosarcoidosis Infectious granulomatous diseases Collagen vascular disorders Sturge-Weber syndrome

Pattern	Diseases to Be Considered
Destructive/necrotic process	Cerebral infarct Radiation necrosis or treatment effects Infections Vasculitis CNS lymphoma in an immunosuppressed patient Intravascular lymphoma CADASIL Severe demyelinating disease Metabolic/toxic disease
Subtle pathology or near-normal biopsy	Nonrepresentative biopsy specimen Subtle diffuse glioma (WHO grade II) Hypothalamic hamartoma Cortical dysplasia or tuber Mesial temporal sclerosis Intravascular lymphoma Meningioangiomatosis Mild encephalitis Cerebral malaria Ischemic disease Neurodegenerative diseases Benign cysts Metabolic or toxic disorder Reactive gliosis or "glial scar"

Pattern 1 Parenchymal infiltrate with hypercellularity

Elements of the pattern: The brain biopsy specimen shows intact cortical architecture, but a hypercellular infiltrate is evident at scanning magnification. In this particular example, an additional finding is *secondary structure* formation, with subpial condensation, perivascular aggregates, and perineuronal satellitosis. This growth pattern is most common in diffuse gliomas.

Additional Findings	Diagnostic Considerations	Chapter:page
Secondary structures of Scherer	Diffuse gliomas	Ch. 5:63
Extensive bilateral cerebral involvement	Gliomatosis cerebri Lymphomatosis cerebri	Ch. 5:71, 80 Ch. 14:316
Angiocentric pattern	CNS lymphoma Angiocentric glioma Meningoencephalitis/Infections Active demyelinating disease	Ch. 14:315 Ch. 17:361 Ch. 21:468 Ch. 22:485
Microcystic pattern	Diffuse gliomas	Ch. 5:63
Pleomorphism	Astrocytoma/glioblastoma Infections, especially PML	Ch. 5:63 Ch. 21:470
Monomorphism	Oligodendroglioma Some lymphomas	Ch. 5:93 Ch. 14:315
Lymphocytic infiltrate	Gemistocytic astrocytoma CNS lymphoma Meningoencephalitis/Infections Active demyelinating disease	Ch. 5:70 Ch. 14:315 Ch. 21:468 Ch. 22:485
Foamy histiocytes	CNS lymphoma Active demyelinating disease Cerebral infarct	Ch. 14:315 Ch. 22:485 Ch. 24:528
Cytologic atypia or anaplasia	Diffuse gliomas CNS lymphoma	Ch. 5:63 Ch. 14:315
Viral inclusions or organisms	Meningoencephalitis/Infections	Ch. 21:468
None	Reactive gliosis	Ch. 1:8, Ch. 5:74

Pattern 1 Parenchymal infiltrate with hypercellularity

Pattern 2 Solid mass (pure)

Elements of the pattern: The biopsy specimen shows a very sharply demarcated intracerebral mass. The increased cellularity imparts a blue color to the tumor, whereas foci of central necrosis appear pink. An additional finding was gland formation, consistent with metastatic adenocarcinoma.

Pattern 2 Solid mass (pure)

Additional Findings	Diagnostic Considerations	Chapter:page
Mucin-filled glands	Metastatic adenocarcinoma	Ch. 13:287
Perivascular pseudorosettes	Subependymal giant-cell astrocytoma Ependymoma Central or extraventricular neurocytoma Pineocytoma Metastasis (neuroendocrine) Paraganglioma Pituitary adenoma	Ch. 5:88 Ch. 6:103 Ch. 7:135 Ch. 8:152 Ch. 13:287 Ch. 13:296 Ch. 18:372
Nodularity	Subependymoma Metastasis (neuroendocrine) Paraganglioma Pituitary adenoma	Ch. 6:104 Ch. 13:287 Ch. 13:296 Ch. 18:372
Gliofibrillary processes	Subependymal giant-cell astrocytoma Ependymoma Subependymoma	Ch. 5:88 Ch. 6:103 Ch. 6:104
Papillary pattern	Choroid plexus papilloma Papillary ependymoma Metastatic carcinoma Pituitary adenoma	Ch. 6:113 Ch. 6:106, 109 Ch. 13:287 Ch. 18:372
Hypervascularity	Choroid plexus papilloma Hemangioblastoma	Ch. 6:113 Ch. 20:440
Neuropil/neuronal rosettes	Central or extraventricular neurocytoma Pineocytoma	Ch. 7:135 Ch. 8:152
Adjacent piloid gliosis	Craniopharyngioma Hemangioblastoma	Ch. 18:402 Ch. 20:440
Epithelioid cytology	Choroid plexus papilloma Metastatic carcinoma	Ch. 6:113 Ch. 13:287
Small primitive cells	Embryonal tumor (AT/RT) Metastatic carcinoma (small cell)	Ch. 9:165, 179 Ch. 13:287
Melanin pigment	Melanoma (usually metastatic)	Ch. 13:291, Ch. 6:353
Clear cells	Clear cell ependymoma Central or extraventricular neurocytoma Pineocytoma Hemangioblastoma Metastatic carcinoma	Ch. 6:107 Ch. 7:135 Ch. 8:152 Ch. 20:440 Ch. 13:287
Cytologic anaplasia	Embryonal tumor (AT/RT) Metastatic carcinoma	Ch. 9:165, 179 Ch. 13:287

Pattern 3 Solid and infiltrative process

Elements of the pattern: The biopsy specimen shows a mostly solid-appearing neoplasm (*left half*), but has fuzzy or ill-defined margins with the adjacent brain parenchyma, consistent with at least a partially infiltrative component as well (*right half*, especially in white matter). Additional findings in this case were reticulin-rich spindled elements, GFAP-positive glial elements, and pseudopalisading necrosis, consistent with gliosarcoma.

Pattern 3 Solid and infiltrative process

Additional Findings	Diagnostic Considerations	Chapter:page
Biphasic growth (compact and microcystic), EGBs, Rosenthal fibers	Pilocytic astrocytoma Pleomorphic xanthoastrocytoma Ganglioglioma Dysembryoplastic neuroepithelial tumor	Ch. 5:82 Ch. 5:91 Ch. 7:125 Ch. 7:140
Pseudopalisading necrosis	Glioblastoma or gliosarcoma	Ch. 5:63, 66
Nodularity	Anaplastic oligodendroglioma Dysembryoplastic neuroepithelial tumor Ganglioglioma Desmoplastic or nodular medulloblastoma Germinoma or germ cell tumors	Ch. 5:93 Ch. 7:140 Ch. 7:125 Ch. 9:169 Ch. 15:336
Angiocentric pattern	CNS lymphoma Infections	Ch. 14:315 Ch. 21:477
Fascicles of spindled cells	Gliosarcoma Pleomorphic xanthoastrocytoma Primary CNS sarcoma (rare)	Ch. 5:70 Ch. 5:91 Ch. 11:219
Inflammation-rich	Pleomorphic xanthoastrocytoma Ganglioglioma CNS lymphoma Germinoma or germ cell tumors Abscess and other infections	Ch. 5:91 Ch. 7:125 Ch. 14:315 Ch. 15:336 Ch. 21:477
Adjacent piloid gliosis	Pleomorphic xanthoastrocytoma Craniopharyngioma	Ch. 5:91 Ch. 18:402
Glial cytology	Pilocytic astrocytoma Pleomorphic xanthoastrocytoma Glioblastoma or gliosarcoma Ganglioglioma Dysembryoplastic neuroepithelial tumor	Ch. 5:82 Ch. 5:91 Ch. 5:63, 66 Ch. 7:125 Ch. 7:140
Large ganglioid cells with vesicular nuclei and large nucleoli	Pleomorphic xanthoastrocytoma Ganglioglioma Dysembryoplastic neuroepithelial tumor CNS lymphoma (anaplastic large cell) Germinoma	Ch. 5:91 Ch. 7:125 Ch. 7:140 Ch. 14:330 Ch. 15:336
Epithelioid cytology	Choroid plexus carcinoma Germ cell tumors Craniopharyngioma	Ch. 6:113 Ch. 15:333 Ch. 18:402
Small primitive cells	Choroid plexus carcinoma Medulloblastoma/CNS PNET CNS lymphoma	Ch. 6:113 Ch. 9:165, 175 Ch. 14:315
Foamy cells	Pleomorphic xanthoastrocytoma Glioblastoma (occasionally) Histiocytic disorders Infections	Ch. 5:91 Ch. 5:63, 66 Ch. 14:326 Ch. 21:455

Pattern 4 Vasculocentric process

Elements of the pattern: The biopsy specimen shows a disease process that is clearly centered on blood vessels. Additional findings in this case were foci of angionecrosis and vascular or perivascular inflammation, consistent with vasculitis.

Pattern 4 Vasculocentric process

Additional Findings	Diagnostic Considerations	Chapter:page
Perivascular or intravascular infiltrate	CNS lymphoma Meningoencephalitis/infection Neurosarcoidosis Active demyelinating disease Vasculitis Amyloid angiopathy with vasculitis	Ch. 14:315 Ch. 21:468 Ch. 21:481 Ch. 22:485 Ch. 24:537 Ch. 24:535
Intraluminal atypical cells	Intravascular lymphoma	Ch. 14:319
Perivascular glial or spindled cells	Ependymoma Angiocentric glioma Meningioangiomatosis	Ch. 6:103 Ch. 17:361 Ch. 20:433
Angionecrosis	Infections (aspergillosis) Vasculitis Thromboembolic disease	Ch. 21:464 Ch. 24:537 Ch. 24:528
Vascular hyalinization	Meningioangiomatosis Amyloid angiopathy CADASIL Arteriolosclerosis Vasculitis Vascular malformations	Ch. 20:433 Ch. 24:535 Ch. 24:546 Ch. 24:533 Ch. 24:537 Ch. 24:542
Granular vascular deposits	CADASIL	Ch. 24:546
Granulomas or giant cells	Infections Neurosarcoidosis Vasculitis Amyloid angiopathy with vasculitis	Ch. 21:455 Ch. 21:481 Ch. 24:537 Ch. 24:535
Cerebral hemorrhage	Infections (aspergillosis) Amyloid angiopathy Vascular malformations	Ch. 21:464 Ch. 24:535 Ch. 24:542
Cerebral infarcts or microinfarcts	Intravascular lymphoma Infections Neurosarcoidosis Vasculitis Amyloid angiopahty CADASIL Arteriolosclerosis Thromboembolic disease	Ch. 14:319 Ch. 21:455 Ch. 21:481 Ch. 24:537 Ch. 24:535 Ch. 24:546 Ch. 24:533 Ch. 24:528
Disorganized, irregular blood vessels	Meningioangiomatosis Vascular malformations	Ch. 20:433 Ch. 24:542

Pattern 5 Extra-axial mass

Elements of the pattern: The biopsy specimen shows a solid mass attached to a strip of dura in the upper portion of the image. Additional findings in this case were whorls of epithelioid cells and scattered psammoma bodies, consistent with meningioma.

Additional Findings	Diagnostic Considerations	Chapter:page
Whorls or nests	Meningioma Chordoma Schwannoma (occasionally) Metastatic carcinoma Paraganglioma Melanocytoma	Ch. 10:185 Ch. 11:231 Ch. 12:240 Ch. 13:287 Ch. 13:296 Ch. 16:353
Psammoma bodies	Meningioma Psammomatous melanotic schwannoma Metastatic carcinoma (rare)	Ch. 10:185 Ch. 12:251 Ch. 13:287
Peripheral or cranial nerve involvement	Pilocytic astrocytoma (optic pathway) Orbital meningioma Orbital sarcoma (rhabdomyosarcoma) Schwannoma Neurofibroma Perineurioma MPNST Neurolymphomatosis	Ch. 5:82 Ch. 10:185 Ch. 11:226 Ch. 12:240 Ch. 12:251 Ch. 12:260 Ch. 12:272 Ch. 14:315

Additional Findings	Diagnostic Considerations	Chapter:page
Biphasic (compact and loose) pattern with Verocay bodies	Meningioma (rare) Schwannoma	Ch. 10:185 Ch. 12:240
Hypervascular	Angiomatous meningioma Hemangiopericytoma Hemangioblastoma	Ch. 10:194 Ch. 11:220 Ch. 20:440
Gaping "staghorn" blood vessels	Meningioma (rare) Hemangiopericytoma Solitary fibrous tumor	Ch. 10:185 Ch. 11:220 Ch. 11:220
Alternating "dark and light" regions	Hemangiopericytoma Solitary fibrous tumor	Ch. 11:220 Ch. 11:220
Dense bundles of eosinophilic collagen	Clear cell meningioma Solitary fibrous tumor	Ch. 10:200 Ch. 11:220
Inflammatory infiltrate	Lymphoplasmacyte-rich meningioma Inflammatory myofibroblastic tumor Secondary lymphoma/leukemia Infections Neurosarcoidosis Collagen vascular disorders	Ch. 10:198 Ch. 11:221 Ch. 14:321 Ch. 21:455 Ch. 21:481 Ch. 21:481
Fibrillar to amorphous basophilic material	Calcifying pseudoneoplasm of the neuraxis	Ch. 10:211
Small primitive cells	Hemangiopericytoma Other sarcomas (EWS/pPNET) Metastatic carcinoma (small cell) Secondary lymphomas/leukemias	Ch. 11:220 Ch. 11:233 Ch. 13:287 Ch. 14:321
Large anaplastic cells	Anaplastic meningioma Metastatic carcinoma Anaplastic large cell lymphoma Myeloid sarcoma Melanoma	Ch. 10:192, 203 Ch. 13:287 Ch. 14:320 Ch. 14:322 Ch. 16:353
Epithelioid cells	Meningioma Metastatic carcinoma Paraganglioma Melanoma Pituitary adenoma	Ch. 10:185 Ch. 13:287 Ch. 13:296 Ch. 16:353 Ch. 18:372
Clear cells	Clear cell meningioma Hemangiopericytoma Other sarcomas (leiomyosarcoma) Metastatic carcinoma Paraganglioma Histiocytic disorders Hemangioblastoma	Ch. 10:200 Ch. 11:220 Ch. 11:225 Ch. 13:287 Ch. 13:296 Ch. 14:326 Ch. 20:440
Foamy cells	Angiomatous meningioma Schwannoma (histiocytes) Histiocytic disorders Hemangioblastoma	Ch. 10:194 Ch. 12:240 Ch. 14:326 Ch. 20:440
Granulomas or giant cells	Infections (TB, fungal meningitis) Neurosarcoidosis Collagen vascular disorders	Ch. 21:455 Ch. 21:481 Ch. 21:481

Pattern 6 Meningeal infiltrate

Elements of the pattern: The whole-mount brain section shows a markedly expanded subarachnoid space filled with blue cells. At higher magnification, the infiltrate consisted predominantly of neutrophils, consistent with acute meningitis.

Pattern 6 Meningeal infiltrate

Additional Findings	Diagnostic Considerations	Chapter:page
Neoplastic cells	Metastatic medulloblastoma/CNS PNET Meningeal sarcomatosis Meningeal carcinomatosis Secondary lymphoma/leukemia Meningeal melanosis/melanomatosis Meningeal gliomatosis	Ch. 9:165, 175 Ch. 11:220 Ch. 13:287 Ch. 14:321 Ch. 16:353, 357 Ch. 21: 465
Venous malformation	Sturge-Weber syndrome	Ch. 20:451
Neutrophil-rich infiltrate	Acute bacterial meningitis	Ch. 21:456
Lymphoplasmacytic infiltrate	Infectious meningitis Chemical meningitis Neurosarcoidosis Collagen vascular disorder	Ch. 21:456 Ch. 21:465 Ch. 21:481 Ch. 21:481
Granulomas/giant cells	Infectious meningitis (TB, fungal) Neurosarcoidosis Collagen vascular disorder	Ch. 21:456 Ch. 21:481 Ch. 21:481
Clear to foamy cells	Meningeal carcinomatosis Histiocytic disorders	Ch. 13:287 Ch. 14:326

Pattern 7 Destructive or necrotic process

Elements of the pattern: The brain biopsy specimen from a patient with known glioma shows extensive fibrinoid parenchymal and vascular necrosis, consistent with radiation necrosis.

Pattern 7 Destructive or necrotic process

Additional Findings	Diagnostic Considerations	Chapter:page	
Fibrinoid brain necrosis, vascular hyalinization, telangiectasias	Radiation necrosis or treatment effects	Ch. 19:417	
Angionecrosis	Radiation necrosis or treatment effects Infection (toxoplasmosis) Vasculitis	Ch. 19:417 Ch. 21:476 Ch. 24:537	
Vascular or perivascular inflammation	Lymphoma (immunosuppressed host) Severe demyelinating disease (rare) Vasculitis	Ch. 14:316 Ch. 22:485 Ch. 24:537	
Intraluminal infiltrate	Intravascular lymphoma	Ch. 14:319	
Granular vascular deposits	CADASIL	Ch. 24:546	
Eosinophilic necrotic neurons	Acute cerebral infarct	Ch. 24:528	
Neutrophil-rich infiltrate	Infection (abscess) Acute cerebral infract (rare)	Ch. 21:478 Ch. 24:528	
Macrophage-rich infiltrate	Severe demyelinating disease (rare) Metabolic or toxic disorders Cerebral infarct	Ch. 22:485 Ch. 22:506, 510 Ch. 24:528	
Granulomas or giant cells	Infections (TB, fungal) Vasculitis	Ch. 21:456 Ch. 24:537	
Viral inclusions	Encephalitis (HSV)	Ch. 21:468	

Elements of the pattern: The brain biopsy specimen from a patient with chronic seizure disorder shows a nearly normal cortex. However, there is a subtle disarray of the laminar architecture and clustering of large superficial neurons in the center. Leptomeningeal gray matter heterotopia was also seen in other regions of the biopsy. This constellation of findings is consistent with a malformation of cortical development (i.e., cortical dysplasia).

Additional Findings	Diagnostic Considerations	Chapter:page
Reactive gliosis or cerebral edema	Nonrepresentative biopsy Subtle diffuse glioma Hypothalamic hamartoma Pineal cyst Arachnoid cyst Other developmental cyst Metabolic or toxic disorders Nonanatomic cause of epilepsy Subtle form of cortical dysplasia	Chs. 3–5 Ch. 5:63 Ch. 7:146 Ch. 8:157 Ch. 13:309 Ch. 13:303 Ch. 22:506, 510 Ch. 23:515 Ch. 23:515
Glial atypia, clustering, or secondary structuring	Diffuse glioma	Ch. 5:63
Intraluminal atypical cells	Intravascular lymphoma	Ch. 14:319
Neuronal clustering and mild dysmorphism	Hypothalamic hamartoma Subtle form of cortical dysplasia	Ch. 7:146 Ch. 23:515
Balloon cells	Focal cortical dysplasia, type Ilb Tuber	Ch. 23:518 Ch. 23:516, 518
Neuronal loss in hippocampus (CAI, CA4)	Mesial temporal sclerosis/hippocampal sclerosis	Ch. 23:520
Microglial nodules/scant perivascular inflammation	Encephalitis (infectious, paraneoplastic) Rasmussen encephalitis	Ch. 21:469 Ch. 23:523
Intravascular pigment	Cerebral malaria	Ch. 21:474
Red necrotic neurons	Acute cerebral infarct	Ch. 24:528
Vascular hyalinization	Radiation effects Meningioangiomatosis Amyloid angiopathy CADASIL Arteriolosclerosis	Ch. 19:417 Ch. 20:433 Ch. 24:535 Ch. 24:546 Ch. 24:533
Granular vascular deposits	CADASIL	Ch. 24:546
Hemorrhage/hemosiderin	Epileptogenic "glial scar" Amyloid angiopathy Small cavernous angioma	Ch. 23:515 Ch. 24:535 Ch. 24:545
Neurofibrillary tangles or neuritic plaques	Alzheimer disease	Ch. 25:553
Spongiform changes in gray matter	Cerebral infarct Creutzfeldt-Jakob disease (CJD) Other neurodegenerative disorders (usually superficial spongiosis)	Ch. 24:528 Ch. 25:566 Ch. 25:559

Pattern 8 Subtle pathology or near-normal biopsy specimen

For additional histopathology algorithms, see "Minor Histopathologic Patterns of Nervous System Tumors" in the next chapter.

Neuropathology Patterns and Introduction

Arie Perry and Daniel J. Brat

Central Nervous System Tumor Classification Schemes and Additional "Neuropathology Patterns" 1

Electron Microscopy 1 Immunohistochemistry 11 Glial Markers 11 Neuronal Markers 11 Epithelial Markers 13 Proliferation Markers 13 Molecular Diagnostics 13

Central Nervous System Tumor Classification Schemes and Additional "Neuropathology Patterns"

The first comprehensive classification of nervous system tumors, formulated by Percival Bailey and Harvey Cushing in 1926, was founded on presumed parallels between embryologic and neoplastic cells.¹ In large part, this histogenetic "cell of origin" model still forms the basis for today's nomenclature, although much of the terminology has changed considerably. Renewed interest in the role of developmental pathways in tumorigenesis has led to more recent studies focusing on cancer stem cells and progenitor cells.^{2,3} In 1949, however, as a means of enhancing the clinical utility of tumor classification, Kernohan contributed a tumor-grading system focusing on correlations with patient prognosis.⁴ As progress was made over time, Russell and Rubinstein continued to modify and update the Bailey and Cushing system from the 1960s through the 1980s. Nonetheless, considerable variability in diagnostic practice existed on both sides of the Atlantic. In order to enhance consistency, an experts' consensus scheme known as the World Health Organization (WHO) classification scheme was first completed in 1979 and then revised in 1993, 2000, and 2007.5 This scheme is currently the most widely utilized by neuropathologists for typing and grading tumors.

The 2007 WHO "blue book" currently lists over 100 types of nervous system tumors and their variants.⁵ This level of complexity can be daunting; therefore, an organized approach or algorithm is required. As a first step, consideration of clinical and radiologic characteristics is a critical way to narrow the differential diagnosis, often to a few fairly common entities. In fact, the combination of *patient age* and *neuroimaging features* (including tumor location) provides some of the most powerful diagnostic clues before any tissue is even sampled or examined under the microscope. For example, the differential varies considerably for supratentorial versus infratentorial, pediatric versus adult, and enhancing versus non-enhancing tumors. The most common diagnostic considerations are summarized by age, location, and imaging features in Table 1-1, with each specific entity discussed in greater detail in subsequent chapters. Also, for a much more detailed background on the use of neuroimaging, the reader is referred to Chapter 4. This is a particularly critical topic in surgical neuropathology, since brain and spinal cord biopsy specimens are often small and the neuroimaging essentially provides the "gross pathology."

The next set of clues is naturally provided by histopathology. The eight major patterns provided at the beginning of this textbook narrow the differential diagnosis considerably based purely on the overall lowmagnification appearance, and the subheadings of additional findings provides a useful diagnostic algorithm. When presented with a challenging biopsy specimen, the pathologist can start with either the clinical or morphology-based approaches but is encouraged to incorporate all available data before making a final diagnosis. In the vast majority of cases, the clinical, radiologic, and pathologic features are all consistent with one another; if not, the pathologist should carefully reexamine the specimen to be sure that all appropriate possibilities have been considered and if necessary, excluded with ancillary studies. The use of common ancillary diagnostic techniques is briefly summarized in this chapter, with many more examples provided in the subsequent topic-specific chapters. As useful secondary algorithms, the major differential diagnosis based on an additional 20 minor histologic patterns is presented in Table 1-2, with helpful clinicopathologic features summarized for 21 common differential diagnoses in Table 1-3.

Electron Microscopy

Although electron microscopy (EM) has historically been vital in defining a number of diagnostic entities, its everyday use in surgical neuropathology is generally labor-intensive, time-consuming, (*Text continues on page 7*)