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When the Series Editors for the Springer Verlag Pediatric Oncology Series 
first approached us to consider developing a comprehensive text focused on 
Imaging in Pediatric Oncology, we were enthusiastic. Not since 1992, when 
Cohen published his text Imaging of Children with Cancer, has there been a 
textbook dedicated to pediatric oncologic imaging. To be sure, there have 
been numerous clinical pediatric oncology texts with chapters devoted to 
imaging, as well as a variety of pediatric imaging textbooks with chapters or 
sections describing the imaging features of particular tumor types, in addition 
to textbooks focusing on radiology/pathology correlation in pediatric oncol-
ogy. But a comprehensive reference text that could serve both pediatric 
oncologists and pediatric radiologists, and that focused primarily on the 
imaging techniques used in caring for children with cancer, was lacking.

In approaching this project we had two major considerations: firstly, this 
text was not simply to be focused on providing detailed discussions of the 
role of imaging and the imaging characteristics for each individual cancer 
observed in the pediatric age group—while of interest, there are ample other 
reference materials devoted to these topics. Rather we chose to focus on the 
imaging techniques available and currently in use, including guidelines for 
response assessment, use of functional imaging techniques and molecular 
imaging, as well as newer developments within the field of radiology. 
Secondly, in an effort to appeal to a broad readership and to provide a bal-
anced perspective, we were encouraged to invite colleagues from both North 
America and Europe to serve as chapter coauthors, taking advantage of the 
insights and expertise of pediatric imaging experts active in multiple interna-
tional consortia, such as the Children’s Oncology Group (COG) and the 
International Society of Pediatric Oncology (SIOP).

The result has been better than we could have anticipated. We were thrilled 
by the willingness of so many of our colleagues from institutions around the 
world to contribute their knowledge and expertise in putting together the vari-
ous chapters contained in this text. In many cases chapters were written 
together by colleagues from both the USA and Europe, and that is a testament 
to the close working relationships that have developed among pediatric radi-
ologists with a major interest in oncology. The result is a series of contribu-
tions that span the breadth of pediatric radiology as it relates to the imaging 
of children with cancer. All of the authors are well-known leaders in their 
respective fields, and most also contribute their imaging expertise and knowl-
edge by being active in ongoing clinical trials. By inviting input from both 
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North American and European institutions, we feel we have been able to pro-
vide a varied perspective on the different approaches to imaging, particularly 
as it is used in the context of both North American and European clinical tri-
als. In another edition we will endeavor to make this effort an even more 
global phenomenon with contributions from Australasia and hopefully else-
where also.

The text initially focuses on technical aspects of pediatric oncologic imag-
ing, and then moves into how the multiple imaging techniques are applied to 
specific challenges inherent to the imaging of children being treated for can-
cer, such as assessing response to therapy and treatment-associated complica-
tions. Chapters focused on radiation safety considerations and on radiotherapy 
are necessary in any text such as this, as are the sections related to interven-
tional techniques. We conclude with chapters focusing on emerging tech-
niques (molecular imaging) as well as on the use of imaging to guide new 
clinical management paradigms, such as for screening patients with a cancer 
predisposition syndrome, and considerations related to survivorship and 
imaging surveillance.

Understandably, some topics could not be specifically addressed in this 
text. For example, the topics of quality of life, ethical considerations, global 
disparities, and communication with patients are all worthy topics, but beyond 
the scope of this text. There is no doubt that differences in healthcare eco-
nomics between countries can and do influence how imaging is utilized and 
which techniques are deployed in the management of children with cancer. 
For example, whole body MRI is not currently reimbursed in the USA as 
there is presently no CPT billing code. As such many institutions must either 
forgo these exams or develop creative strategies for reimbursement. In most 
Canadian and European centers, in contrast, whole body MRI is reimbursed 
as with other examinations and there are no barriers to performing the studies 
in the majority of patients.

We hope you will agree that a book such as this is long overdue and that 
you find it to be a valuable reference and resource for imaging and imaging- 
based therapy used in the care of children with cancer.

Boston, MA, USA Stephan D. Voss 
London, UK Kieran McHugh 
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Imaging in Pediatric Oncology: 
New Advances and Techniques

Daniel A. Morgenstern, Carlos Rodriguez-Galindo, 
and Mark N. Gaze

1.1  Introduction

The discovery of X-rays by Wilhelm Röntgen in 
1895 was translated with remarkable speed into 
routine clinical practice. Less than 1 year later, 
the world’s first radiology department was estab-
lished at the Glasgow Royal Infirmary. One of the 
earliest images was of a foreign body lodged in 
the esophagus of a 6-month-old boy, and thus 
pediatric radiology was born [1, 2]. Since that 
time there has been astonishing progress in imag-
ing technology, including the development of 
medical ultrasound in the 1950s and computer-
ized tomography (CT), magnetic resonance 
imaging (MRI), and positron emission tomogra-
phy (PET) from the 1970s to the 1990s. Over 
time, technological advances coupled with clini-
cal research have led to an expanding array of 

more sophisticated and sometimes more costly 
imaging investigations. These include the use of 
various types of contrast, additional functional 
MRI sequences such as diffusion weighting and 
arterial spin labeling, a wider choice of molecular 
imaging tracers, and image fusion with hybrid 
imaging platforms bringing together single pho-
ton emission computed tomography (SPECT) 
and PET with CT and MRI.  This bewildering 
range of imaging options brings with it a require-
ment to choose wisely, to get the most clinically 
important information from the smallest number 
of scans.

Radiologists have emerged from an initial 
role, focused on the technical aspects of obtain-
ing images and their interpretation, to become a 
vital part of the multidisciplinary team caring for 
pediatric oncology patients. Imaging is now cen-
tral to the management of patients with a variety 
of CNS and non-CNS solid tumors, including for 
initial diagnosis, staging and risk stratification, 
treatment response assessment, surgical and 
radiotherapy planning, and surveillance both 
after completion of therapy and in patients with 
cancer predisposition syndromes. In addition, 
children with all types of cancer are at risk of 
infective and other treatment-related complica-
tions for which radiological investigations are 
required. The new subspecialty of pediatric inter-
ventional radiology is essential to modern pediat-
ric oncology, its practitioners undertaking a range 
of image-guided minimally invasive techniques 
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including core biopsies, central venous catheter 
placement, fluid drainage, stent placement, arte-
riography and tumor embolization, and lesion 
ablation.

Cancer in children is comparatively rare, rep-
resenting only 1% of all cancer diagnoses, yet the 
burden of disease is significant, and in North 
America and Western Europe, cancer remains the 
leading cause of childhood death by disease 
occurring after infancy. While breast, prostate, 
lung, and gastrointestinal carcinomas represent 
the most common diagnoses in adults, the pattern 
of disease in children is radically different. Acute 
lymphoblastic leukemia (26%), brain tumors 
(21%), neuroblastoma (7%), and non-Hodgkin 
lymphoma (6%) represent the most common 
diagnoses in patients aged 0–14  years, with 
Hodgkin lymphoma (15%), thyroid carcinoma 
(11%), brain tumors (10%), testicular germ cell 
tumors (8%), and bone cancers (including osteo-

sarcoma and Ewing sarcoma) most common in 
the 15–19-year-old adolescent population [3]. 
Most well-recognized pediatric embryonal 
tumors such as neuroblastoma, Wilms tumor 
(nephroblastoma), hepatoblastoma, and retino-
blastoma rarely occur in adults. Thus, the varying 
spectrum of disease across the pediatric age 
group and in adolescents and young adults is very 
different from that in older adults, and an under-
standing of these changing disease patterns 
within childhood and adolescence is crucial to 
interpretation of imaging (see Fig. 1.1).

There has been remarkable progress in 
improving the outcomes for patients with child-
hood cancer, resulting from various factors, not 
least of which has been the development of better 
imaging for diagnosis, risk stratification, treat-
ment planning, response assessment, and surveil-
lance. In addition, the implementation of 
multi-agent chemotherapy regimens, and more 
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Fig. 1.1 Distribution of cancer types by age group. 
Summary from multiple international pediatric and gen-
eral cancer datasets showing the dramatic changes in pro-

portions of different cancer diagnoses depending on age. 
From [5] with permission
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refined use of the local treatment modalities of 
surgery and radiotherapy, coupled with a strong 
ethos of clinical research built on national and 
international collaborations has been transforma-
tive. Overall childhood cancer mortality rates 
have more than halved in the period 1975–2006 
from 5.14 to 2.48 per 100,000 [4]. Currently the 
combined 5-year overall survival (OS) rate is 
around 80%, although this single figure masks a 
wide range of outcomes, depending on the under-
lying diagnosis (see Fig. 1.2). For acute lympho-
blastic leukemia (ALL), 5-year OS is nearly 
90%, while for non-infant neuroblastoma 
(>12 months of age), 5-year OS is 65% [4]; for 
diagnoses such as diffuse intrinsic pontine gli-
oma (DIPG), outcomes remain dire with 5-year 
OS less than 1%. Overall childhood cancer inci-

dences have been slowly increasing since 1975 
(for reasons that are not entirely clear), with a 
current incidence rate around 170 per 100,000 in 
North America and Western Europe. However, 
there is incomplete knowledge on the incidence 
and epidemiology of childhood cancer globally 
since large proportions of the world’s population 
are not covered by cancer registries; this is par-
ticularly true in the areas of the world where pre-
dictions indicate that the cancer burden is 
growing with the fastest rates, such as in Asia and 
Africa. Existing data suggest noticeable differ-
ences in incidence and patterns of disease by eth-
nicity, race, and geography [5]. In the United 
States, it is estimated that 1 in 408 children will 
be diagnosed with cancer before the age of 15 
and 1  in 285 before the age of 20  years [3]. 
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Fig. 1.2 Trends in 
pediatric cancer 
mortality rates by site. 
Data showing changes in 
pediatric cancer 
mortality in the United 
States obtained from 
National Center for 
Health Statistics, 
Centers for Disease 
Control and Prevention. 
ONS indicates other 
nervous system. Overall 
mortality rates have 
declined dramatically 
since 1975, particularly 
for ALL but also across 
the range of most solid 
tumors. From [3] with 
permission
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Improved survival rates have also led to a grow-
ing number of adult survivors of childhood can-
cer, many of whom will be at risk of significant 
late effects as a result of their original oncology 
treatment, prompting new considerations related 
to off-treatment surveillance, both for detecting 
late relapses and the late effects resulting from 
the original therapies.

Most children with cancer will initially pres-
ent to a primary care doctor or general  practitioner 
or to a local hospital emergency department and 
be referred to a general pediatrician for further 
investigation. Patients in secondary care settings 
with suspected or confirmed malignancies will 
then be referred on to an appropriate regional 
specialist tertiary center. Those with brain tumors 
will normally be managed initially by a pediatric 
neurosurgical service, while those with extracra-
nial solid tumors or leukemia/lymphoma will be 
referred directly to a pediatric oncology center. 
Different pathways may exist for adolescents and 
younger adults suspected to have cancer 
 compared with those for younger children, 
depending on the local structure of health ser-
vices. Once at a pediatric oncology center, the 
care of patients with proven or suspected cancer 
is usually coordinated by a site-specialized pedi-
atric or adolescent oncologist or hematologist 
working together with members of a diagnostic 
and therapeutic multidisciplinary team (MDT). 
As subsequent care, including imaging, may be 
shared between the tertiary principal treatment 
center and local secondary services at the pediat-
ric oncology shared care unit, it is good practice 
for there to be close communication between 
radiologists and clinicians regarding any radio-
logical investigations requested closer to home, 
established protocols for the secure transfer of 
imaging studies between institutions, and taking 
steps to ensure that the optimal imaging examina-
tions are performed in order to avoid the need for 
suboptimal investigations to be repeated.

Initial management is focused on stabilizing 
the patient, obtaining a diagnosis, and defining 
risk factors which will guide treatment options. 
The choice of imaging technique is dependent 
on the history and clinical examination indicat-
ing the body part affected. For suspected brain 

tumors, contrast-enhanced MRI of the whole 
central nervous system (CNS) with functional 
sequences including diffusion weighting will 
give the best information. For neck, abdominal, 
pelvic, chest wall, and extremity lesions, ultra-
sound may be a very useful first step, followed 
by either CT or MRI. Intrathoracic lesions may 
be better demonstrated by chest X-ray and 
CT.  These cross-sectional imaging techniques 
will contribute to determining disease burden 
and delineate the primary tumor prior to inter-
ventional radiology percutaneous (or surgical) 
biopsy to provide a histological diagnosis and 
tissue for relevant biological studies. These stud-
ies are also  essential for demonstrating the pres-
ence of lymph node or distant metastatic disease 
and establishing disease stage. In some cases, 
such as diffuse intrinsic pontine glioma, retino-
blastoma, or Wilms tumor, a presumptive diag-
nosis may be made on imaging appearances 
alone. In other cases, typical imaging appear-
ances coupled with elevated blood, cerebrospi-
nal fluid, or urinary tumor marker levels may be 
sufficient to diagnose, for example, hepatoblas-
toma, cortical or medullary adrenal tumors, and 
gonadal, extra- gonadal, and intracranial germ 
cell tumors. Biopsy may still be required to 
obtain tissues to complete diagnosis and facili-
tate risk stratification.

Part of the role of the MDT discussion is to 
decide on the most appropriate imaging investi-
gations and the order in which they should be 
performed in individual patients. Because of the 
carcinogenic risk of ionizing radiation exposure 
[6], investigations such as ultrasound and MRI 
are preferred, especially in undiagnosed children 
who may not, in fact, have cancer. Even in those 
with a confirmed diagnosis, a balance has to be 
struck between obtaining the most useful clinical 
information for disease management and mini-
mizing radiation exposure. The aim of keeping 
the radiation exposure as low as reasonably 
achievable (ALARA) can be helped by the selec-
tion of optimal technical parameters in imaging 
protocols, avoiding unnecessary over- 
investigation, and minimizing the frequency of 
reassessment and surveillance imaging by fol-
lowing evidence-based guidelines.

D. A. Morgenstern et al.
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Staging investigations depend on an under-
standing of the likely (or confirmed) diagnosis 
and anticipated potential sites of metastatic 
spread. Patients with CNS malignancies typically 
require imaging of the entire neuraxis. Many 
extracranial solid tumors (such as sarcomas and 
Wilms tumor) metastasize preferentially to the 
lungs requiring CT evaluation, with many sarco-
mas additionally requiring 99mTc bone scintigra-
phy or 18F-fluorodeoxyglucose (FDG) PET/CT 
evaluation for distant metastases. For neuroblas-
toma, 123I-mIBG (meta-iodobenzylguanidine) 
scintigraphy has now largely replaced 99mTc bone 
scans for the evaluation of skeletal metastases 
[7]. This is an important element in the diagnostic 
process as it can define future therapeutic options 
with the use of 131I-mIBG for relapsed or refrac-
tory disease [8]. FDG-PET/CT has now been 
routinely adopted for staging and response evalu-
ation in Hodgkin lymphoma and is increasingly 
used for metastatic evaluation in patients with 
rhabdomyosarcoma, Ewing sarcoma, and other 
pediatric sarcomas [9].

There are considerable complexities around 
the details of primary tumor evaluation and stag-
ing that require a detailed knowledge of the 
underlying diagnosis and relevant clinical trial 
protocols. Improvements to the resolution of tho-
racic CT have led to the identification of more 
sub-centimeter nodules, raising difficult ques-
tions about defining lung metastases on the basis 
of imaging appearances alone [10]. Improving 
imaging resolution leading to the identification of 
ever smaller lesions also risks leading to stage 
migration (i.e., upstaging of patients in whom 
metastases might not previously have been iden-
tified)—the so-called Will Rogers phenomenon 
[11]. For many pediatric cancers, staging strate-
gies have moved from those based on a surgical 
evaluation to those based on imaging alone. For 
neuroblastoma, for example, the International 
Neuroblastoma Staging System (INSS) defini-
tions are based on tumor surgical resectability 
and disease involvement of nearby lymph nodes 
[12]. In contrast, the more recent International 
Neuroblastoma Risk Group (INRG) staging sys-
tem focuses on imaging-defined risk factors [13]. 
Thus, radiological interpretation coupled with a 

detailed understanding of the relevant staging 
systems and newly developed imaging-based 
risk-stratification criteria is crucial to appropriate 
staging. Other diagnoses have disease-specific 
staging systems that are based on relevant anat-
omy and future decisions relating to surgical 
resectability, for example, the pretreatment extent 
of disease (PRETEXT) staging system for hepa-
toblastoma [14].

The role of imaging in pediatric oncology of 
course extends well beyond the initial diagnostic 
work-up and staging. For both CNS and extracra-
nial solid tumor imaging, evaluation of tumor 
response to therapy is crucial for treatment deci-
sions, and again a detailed understanding of rel-
evant diagnoses and treatment protocols is 
important for appropriate interpretation. In the 
research context, response of solid tumors is 
often defined on the basis of the response evalua-
tion criteria in solid tumors (RECIST) guidance 
[15]. However, for many pediatric cancer diagno-
ses, disease-specific criteria have been estab-
lished, often using three-dimensional volume 
assessments. For example, the European 
Paediatric Soft Tissue Sarcoma Study Group 
(EpSSG) guidelines are not interchangeable with 
RECIST [16], whereas for neuroblastoma, a mul-
tinational analysis concluded that none of the 
methods of primary tumor response assessment 
was predictive of outcome, and therefore future 
tumor response assessment will be based on the 
RECIST guidance [17], together with semiquan-
titative assessment (such as Curie scoring) of 
MIBG-positive disease response. Similar issues 
arise in neuro-oncology, particularly in the evalu-
ation of malignant embryonal tumors such as 
medulloblastoma that have the propensity to dis-
seminate throughout the neuraxis, leading to the 
development of disease-specific response criteria 
[18]. The example of medulloblastoma also fur-
ther highlights the critical importance of compre-
hensive disease evaluation and the potential role 
for central radiology review. The Children’s 
Oncology Group (COG) ACNS9961 study 
reported significantly inferior EFS for patients 
with inadequate studies, compared with those 
with centrally reviewed adequate examinations 
[19]. Outcome was particularly poor for patients 
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in whom disseminated disease was only detected 
retrospectively upon central review. Nuclear 
medicine modalities also play an important role 
in response evaluation. In Hodgkin lymphoma, 
early response assessment based on FDG-PET 
predicts outcome [20], and resolution of FDG- 
avid lesions is now used to guide decisions about 
radiotherapy, while for patients with high-risk 
metastatic neuroblastoma, post-induction mIBG 
response predicts outcome [21] and is used to 
determine adequacy of response for the patient to 
progress to consolidation therapy.

Imaging also plays an important role in sur-
veillance after the end of therapy for early detec-
tion of disease recurrence and the late effects of 
therapy. Clinical trials that incorporate event-free 
survival as a primary endpoint have detailed 
schedules of disease evaluation post-therapy, typi-
cally requiring cross-sectional imaging with CT/
MRI every 3 months initially. These schedules 
have frequently been adopted for routine monitor-
ing of patients outside the context of therapeutic 
trials, although the benefit of intensive surveil-
lance in improving overall outcomes (through the 
early detection of relapse) has rarely been estab-
lished. Growing concerns about the risks of expo-
sure to CT-associated radiation [22], gadolinium 
contrast for MRI [23], and the impact on the 
developing brain of recurrent general anesthesia 
often required to facilitate imaging in young chil-
dren [24] mean that the appropriateness of such 
imaging needs to be carefully considered.

In summary, the excellent outcomes seen 
today for the majority of children and young peo-
ple with cancer, and hope for future improve-
ments for those tumor types where the prognosis 
is less good, are based in no small part on the 
wide range of imaging techniques now available 
and the knowledge and skills of diagnostic and 
interventional radiologists working as part of the 
wider pediatric oncology MDT. The selection of 
the most appropriate investigations for an indi-
vidual patient should be evidence-based and 
made in discussion with experienced pediatric 
radiologists. The radiologist will identify the site, 
extent, and nature of the primary tumor and dem-
onstrate the presence or absence of metastases. 
The radiologist may biopsy the tumor for histo-

logical diagnosis and molecular pathology sub-
typing and may well support care by insertion of 
a central venous catheter and other interventions. 
The radiologist is an essential supporter of sur-
geons and clinical oncologists as they plan com-
plex radical tumor surgery and sophisticated 
modern radiation treatments and provide con-
tinuing evaluation with the assessment of 
response to chemotherapy, surgery, and radiation 
therapy. Finally, the involvement of the radiolo-
gist in the follow-up of the patient after complet-
ing therapy is critical in the evaluation of local or 
metastatic recurrence or treatment-related com-
plications and second tumors.

For future improvements in the care of children 
and young people with cancer, it is essential that 
pediatric radiologists are not simply fully inte-
grated as core members of the pediatric oncology 
MDTs in principal treatment centers but are also 
involved in national and international clinical trial 
groups. Further research into imaging biomarkers 
and the best use of radiological investigations is as 
fundamental to the progress of pediatric oncology 
as randomized trials of treatment.
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Imaging in Paediatric Oncology: 
Pitfalls, Acceptable 
and Unacceptable Imaging
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2.1  Introduction

Cancer in the paediatric age group is rare and in 
most countries is usually managed in a small 
number of specialist centres in order to maximise 
expertise. The first presentation of a child with 
cancer is most frequently however at a smaller 
local hospital where the initial diagnostic tests 
are often undertaken. Some follow-up imaging 
may also be performed locally for patient conve-
nience. This arrangement results in imaging from 
a wide variety of district hospitals being sent to 
regional cancer centres for review. Our chapter 
sets out to illustrate potential errors made in the 
imaging of children with cancer, from selecting 
an incorrect modality or using suboptimal proto-
cols to incorrect identification and interpretation 
of abnormalities. Whilst this chapter illustrates 
some of the pitfalls in the imaging of childhood 
cancer we have encountered, it comes with a plea 
for a collaborative approach to imaging between 
specialist and general hospitals with an encour-
agement of an open dialogue and constructive 
feedback to referring centres.

2.2  How to Scan

2.2.1  Choosing Imaging Modalities

Survival rates for childhood cancer are very 
good, with a 5-year survival of 82% for children 
diagnosed between 2006 and 2010 [1]. For this 
reason, it is particularly important to minimise 
potential morbidity due to the side-effects of 
radiation exposure incurred during diagnosis, 
treatment and later surveillance. The risks of 
treatment-dose radiation in children are well 
established [2]. More controversial currently are 
the risks attributable to diagnostic level radiation, 
with arguments both for [3, 4] and against [5] it 
posing significant hazard. At worst, a lifetime 
risk of cancer in the order of 1 in 550 has been 
quoted for a 1 year old child following a CT of 
the abdomen [6]. Given the uncertainty regarding 
the risk of diagnostic radiation doses, the ALARA 
principle is recommended for safety. On the other 
hand, MRI is not an entirely risk- free alternative, 
with sedation or anaesthesia required for long 
scans in young children carrying an associated 
morbidity [7]. There is growing concern in the 
literature regarding the effects of gadolinium 
deposition in tissues albeit without any evidence 
of harm to children as yet [8]. Certainly, if CT or 
other techniques involving ionising radiation are 
to be used, the protocol must be optimised to 
ensure the maximum useful information will be 
gained.
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2.2.2  Plain Radiographs

2.2.2.1  Chest Radiographs
Chest radiographs will, quite reasonably, be per-
formed in most patients with a suspected new 
tumour for staging purposes. With the exception of 
children with obvious pulmonary metastases, most 
abnormalities identified on chest radiographs will be 
inflammatory/infective abnormalities such as round 
pneumonia or occasionally congenital lesions such 
as bronchopulmonary foregut malformations. This 
is largely due to the low incidence of primary tho-
racic malignancy in children although bronchogenic 
tumours, carcinoids, pleuropulmonary blastomas 
and mesenchymal tumours are occasionally seen.

Misidentification of normal structures on plain 
film is easily done on a rotated radiograph. The 
thymus can look particularly large in infants and 
toddlers, however should always maintain its 
normal gently lobulated contour and not exert 
any mass effect (Fig. 2.1). Malignant mediastinal 
masses however do also occur in children. 
Locating the mass within the anterior or posterior 
mediastinum can help to narrow the differential, 
lymphoma being the most common malignant 
anterior mediastinal mass and neuroblastoma 
(Fig. 2.2) being a posteriorly located mass often 
erodes or splays the posterior ribs. Chest radio-
graphs are used as part of follow- up of patients 
following treatment for cancers with a risk of 

lung metastatic disease, for instance, Wilms 
tumour, rhabdomyosarcoma, osteosarcoma and 
Ewing sarcoma. In addition to the usual sites 
where pathology is commonly missed on chest 
radiographs—for instance, behind the clavicles 
(Fig.  2.3), behind the heart and in the costo-
phrenic recesses projected below the dia-
phragm—another potential pitfall which is 
peculiar to paediatrics is misidentification of ster-
nal ossification centres. Although more com-
monly mistaken for rib fracture on oblique chest 

Fig. 2.1 Normal gently lobulated thymic contour on 
chest radiograph, conforming to the overlying ribs. Note 
also the added left lower lobe density in this example—a 
sequestration

Fig. 2.2 A posterior mediastinal mass (neuroblastoma) 
on chest radiograph—note the distortion of the posterior 
ribs, helping to confirm the posterior location

Fig. 2.3 This Ewing tumour is located behind the right 
clavicle but is also detectable by the deviation it causes to 
the adjacent trachea—demonstrating the importance of 
systematic review areas

J. Barber and K. McHugh
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radiographs, sternal ossification centres may on 
occasion be mistaken for calcified metastases. 
Thankfully with patient age and progressive ossi-
fication, this becomes a less common pitfall.

The bones imaged on chest radiographs are a 
minefield for potential missed diagnoses. In addi-
tion to the posterior rib distortion and erosion that 
may help to identify a mediastinal mass as a pos-
terior thoracic neuroblastoma (Fig.  2.2), meta-
static bone disease and non-malignant but 
nonetheless aggressive processes may also be 
demonstrated. Lucency within the proximal 
humeral metaphyses may be the first manifesta-
tion of metastatic bone disease, for instance, in 
neuroblastoma, or diffuse marrow space involve-
ment in the setting of haematological malignancy 
(Fig. 2.4). Whilst metabolic bone disease should 
also be considered in cases where the abnormality 
is symmetrical and the margins ill-defined, the 
imaging features of cupping and fraying of the 
metaphyses in rickets are well described and quite 
characteristic and distinct from the bony changes 
seen in malignancy. It is well recognised that ifos-
famide treatment for tumours can also be compli-
cated by rickets. The presence of abnormality 
elsewhere in the skeleton and the overall clinical 
picture usually allow differentiation.

The ribs, whilst also a site of potential meta-
static disease, may also be affected by primary 
bone lesions including PNET/Ewings (Fig. 2.5). 

Non-malignant lesions such as enchondromas, 
fibrous dysplasia and mesenchymal hamartoma 
may also be seen (Fig. 2.6). Of note, osteochon-
dromas are the commonest rib tumour induced by 

Fig. 2.4 Infiltrative lucency in both proximal humeri was 
the presenting abnormality in this child with metastatic 
neuroblastoma

a

b

Fig. 2.5 (a, b) Note the sclerotic, expanded left third rib, 
with associated soft tissue mass—an Ewing sarcoma

Fig. 2.6 Unusual but characteristic chest radiograph 
appearance of a mesenchymal hamartoma

2 Imaging in Paediatric Oncology: Pitfalls, Acceptable and Unacceptable Imaging
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radiation, and these were frequently seen in the 
era when children had total body irradiation prior 
to bone marrow transplant and are still encoun-
tered following mediastinal radiation for Hodgkin 
lymphoma. The likelihood of each differential is 
influenced by patient age at presentation and the 
often distinctive imaging appearances.

Vertebral lesions may also be detectable on 
chest radiograph although easily missed if not 
looked for—in particular vertebral collapse 
which may be secondary to infiltration in 
 haematological malignancy and metastatic dis-
ease or secondary to Langerhans cell histiocyto-
sis (LCH) (Fig. 2.7).

2.2.2.2  Abdominal Radiographs
A calcified neuroblastoma mass can often be 
seen on a plain abdominal radiograph in the 
upper abdomen or pelvis. Calcification in a 
germ cell tumour or teratoma of the ovary may 
also be evident occasionally. These findings 
may help in the diagnosis of those tumours but 
seldom provide any other useful information. In 

addition, these findings are generally evident at 
initial ultrasound examination also. In rare 
cases of high-risk metastatic neuroblastoma, 
lytic skeletal metastases may be visible, but 
that is an exception rather than the rule. 
Abdominal radiographs for abdominal masses 
in children usually show a nonspecific mass in 
the abdomen, with pelvic masses appearing 
often identical to a distended bladder. Their 
role is virtually always superseded by cross-
sectional imaging, notably ultrasound. In gen-
eral an abdominal radiograph at initial 
presentation of an abdominal mass may be 
avoided unless there is a concern over bowel 
obstruction or perforation.

2.2.2.3  Appendicular Radiographs
Whilst they are performed for LCH, extended 
skeletal surveys are not recommended for routine 
identification of metastatic disease in children 
with malignancy, and where clinically required, 
radiographs should be targeted to a specific indi-
cation. Whilst not as sensitive as scintigraphy or 

a b

Fig. 2.7 (a, b) There is collapse of the T7 vertebral body, secondary to infiltration by Langerhans cell histiocytosis

J. Barber and K. McHugh
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MRI for detecting bone lesions, plain radiographs 
are particularly valuable in identifying patterns 
of calcification or typical osseous changes which 
may assist in identifying ‘don’t touch’ lesions—
such as the ground-glass appearance in fibrous 
dysplasia (Fig. 2.8).

2.2.3  Ultrasound

There are many merits of ultrasound in paediatric 
oncology. Ultrasound requires neither ionising 
radiation nor sedation and is low risk and poten-
tially high yield. The dynamic nature of the study 

and direct patient interaction allow for assess-
ment of mobility of structures relative to each 
other and on respiration. For instance, ultrasound 
can allow relatively easy assessment of whether a 
right upper quadrant tumour is tethered to adja-
cent liver—allowing the oncologic surgeon to 
more accurately assess operative risk and take 
mitigating steps as appropriate. In the authors’ 
experience, this useful information is often over-
looked on preoperative ultrasound scanning.

With a distressed or uncooperative child, it 
can take time and patience to acquire an optimal 
ultrasound study, sometimes requiring ‘time-out’ 
for both child and operator. A systematic 
approach can help avoid critical components of 
the study being missed. Colour Doppler should 
always be applied to lesions—to assist in differ-
entiation between solid and cystic lesions and to 
help establish the relationship to adjacent vessels 
(Fig. 2.9). Regional lymph nodes should always 
be systematically assessed when soft tissue 
lesions are examined and followed up (Fig. 2.10).

High-frequency linear probes (at least 
10–12  MHz) should be used to interrogate the 
solid organs when metastases are suspected or 
when fungal infection is suspected in a 
 neutropenic child following treatment. Use of 
lower- frequency curvilinear probes may mask 
pathology or at the very least may make it much 
more  difficult to identify lesions which are pres-
ent (Fig. 2.11).

Ultrasound microbubble contrast (Sonovue/
Lumason, Bracco, Milan, Italy) has recently been 
approved by the FDA in the United States for intra-
vascular use in adults and children for assessment 
of focal liver lesions. It continues to be used ‘off 
label’ in Europe for a multitude of indications in 
children. There is a paucity of literature currently 
regarding the accuracy of intravascular ultrasound 
contrast in assessing paediatric solid organ lesions, 
although the limited data available is encouraging 
with one study reporting a specificity of 98% for 
identifying benign lesions and a negative predictive 
value of 100% [9]. It is anticipated with the recent 
FDA approval that the body of evidence surround-
ing paediatric ultrasound contrast will be signifi-
cantly expanded in the coming years.

Fig. 2.8 The plain radiograph appearance is sometimes 
sufficiently distinctive to allow identification of specific 
patterns of calcification or ground glass changes—such as 
in fibrous dysplasia shown here

2 Imaging in Paediatric Oncology: Pitfalls, Acceptable and Unacceptable Imaging
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An easy error on ultrasound is to mistake a 
calcified left upper quadrant mass for gas in the 
stomach and vice versa (Fig.  2.12). Similarly a 
cystic mass in the low midline can be dismissed 
as bladder. In both of these cases, careful 
 delineation of the surrounding anatomy can avoid 
these pitfalls. For instance, correct identification 

of the stomach can be confirmed with recognition 
of the pylorus, and correct identification of the 
bladder can be confirmed with recognition of the 
urethral opening.

2.2.4  CT

Whilst the risks of diagnostic level ionisation are 
debated [3–6], the ALARA principle has driven 
the development of technology centred around 

Fig. 2.10 Regional lymph node recurrence of rhabdo-
myosarcoma, identified at follow-up ultrasound

Fig. 2.11 Focal parenchymal lesions in the liver, spleen 
and kidneys are more apparent on high-frequency ultra-
sound scanning with a linear probe—such as these hepatic 
fungal deposits

Fig. 2.12 The echogenic foci casting posterior acoustic 
shadows are not gas within the stomach but calcification 
within a left upper quadrant solid mass

a

b

Fig. 2.9 (a, b) Colour Doppler interrogation allows char-
acterisation of this para-testicular mass as a solid lesion 
(rhabdomyosarcoma) rather than, for instance, a heterog-
enous haematoma

J. Barber and K. McHugh
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reducing dose. Choice of scanner plays a role in 
the dose reduction techniques available, and it 
would be remiss for a paediatric radiologist to not 
be involved in specifying the requirements for 
new acquisitions of CT scanners and establishing 
paediatric-specific CT protocols. From optimis-
ing pitch and collimation to tube current modula-
tion and iterative reconstruction, there are a 
wealth of techniques that can be implemented to 
ensure radiation can be minimised without 
impairing image quality [10]. At our institutions, 
paediatric chest CT is currently delivered with an 
effective dose in the range 0.5–1 mSv. Dose ref-
erence levels have been developed by Image 
Gently and the European Society of Radiology 
through the Eurosafe project [11] and should be 
used as a guide to optimise departmental proto-
cols. However even a perfectly optimised, 
paediatric- friendly CT scanner can be used in 
error if the wrong scan or protocol is performed.

2.2.4.1  Only Perform Necessary 
Studies

For children with radiation sensitivity syndromes 
such as Li-Fraumeni, ataxia telangiectasia, 
Nijmegen breakage syndrome, or Fanconi anae-
mia, extra effort should be made to avoid CT and 
substitute with US or MRI whenever possible.

CT imaging of the chest is not required in all 
tumour types; in particular it has been shown to 
be unnecessary in neuroblastoma [12], where 
pulmonary metastatic disease is uncommon, 
although including the thorax may be helpful in 
characterising potential supraclavicular lymph 
node involvement (Virchow’s node) identified by 
MIBG.  Chest CT is nonetheless more sensitive 
for detecting metastatic lung disease than plain 
radiographs and is invaluable in pathologies with 
a tendency to spread to the lungs including osteo-
sarcoma, Ewing sarcoma, rhabdomyosarcoma, 
hepatoblastoma and Wilms tumours.

The frequency of follow-up imaging in children 
can also be moderated. For instance, most tumour 
relapses can be detected clinically, and repeated 
surveillance CT does little to improve outcome in 
tumour types including lymphoma [13, 14].

CT of the abdomen/pelvis provides poorer 
soft tissue resolution than MRI, particularly 

important in young children who have high body 
water contents and little internal fat to separate 
organs. New MRI sequences allow excellent spa-
tial resolution, and well-performed MRI is now 
generally preferable for investigation of a new 
abdominal mass. The main drawback is regard-
ing the risk of sedation or anaesthesia, which 
may be required for longer MRI studies and can 
often be avoided for CT.

2.2.4.2  Do Not Use Thick or 
Noncontiguous Slices

This should rarely occur; however, where a 
scanner has acquired thin section data, this 
needs to be available for review and reformat 
by the reporting radiologist. Some lesions are 
much easier to identify and characterize on 
coronal or sagittal reformats than the standard 
provided axial images. Indeed, review of prop-
erly reformatted images in axial, sagittal and 
 coronal planes using soft tissue, lung and bone 
 windows is considered standard of care and 
should take place with every examination. 
Noncontiguous slices are unacceptable in can-
cer staging.

2.2.4.3  Eliminating Movement
Whilst the increased speed of scanners reduces 
the severity to which images are degraded due to 
patient movement, it is not acceptable to repeat-
edly image a child with CT due to poor immobili-
sation. Whilst sedation or anaesthesia was 
previously widely employed to ensure children 
were sufficiently still for CT, this is less neces-
sary in the era of sub-second scan times. 
Immobilisation techniques such as trauma 
evacuation- style ‘vacuum’ bags are well toler-
ated by most children, easy to use and compatible 
with CT and MRI. A small number of children 
will nonetheless require anaesthetic support for 
CT, in particular those with neck or mediastinal 
masses at risk of compromising the airway. In 
these patients, if the risk of lying supine is felt to 
be too great, such as in a child with T-cell non- 
Hodgkin lymphoma and a large anterior medias-
tinal mass compressing the trachea, lateral 
decubitus or prone imaging may still be 
possible.

2 Imaging in Paediatric Oncology: Pitfalls, Acceptable and Unacceptable Imaging
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2.2.4.4  Intravascular Contrast
Iodinated contrast is not inherently safe, with 
potential risks of extravasation, anaphylactoid 
reactions and contrast-induced nephropathy. 
Thankfully these are uncommon in children. 
Extravasation can be reduced by careful IV line 
placement, line flushing and auto cut-offs on 
injector pumps in the case of a rapid rise in resis-
tance. Mild or moderate anaphylactoid reactions 
occur in up to 0.5% of patients and severe ana-
phylactoid reactions only in approximately 
0.02% [15, 16]. The risk of unexpected contrast- 
induced nephropathy can be mitigated by check-
ing of renal function in at-risk patients.

With their higher body water content and 
lower body fat content compared with adults, 
giving contrast for paediatric CT is rarely an 
error. With the exception of spotting lung nod-
ules, non-contrast scans in children often result 
in relatively homogenous shades of grey with 
poor differentiation between tissues (Fig. 2.13) 
and should be avoided in the assessment of a 
new mass [17]. The only useful information 
gleaned from a non-contrast CT in a child is 
whether a lesion is calcified or not, but this is 
also readily apparent after contrast administra-
tion (see Table 2.1). Even for CT studies primar-
ily assessing for metastatic lung disease, contrast 
can be useful to delineate the mediastinal and 
vascular structures.

There has been some debate in the literature 
regarding the timing of contrast boluses in onco-
logic CT [18, 19] with some advocates of a dual- 
bolus approach—achieving both arterial and 
portal venous phase contrast in a single pass. This 
can be helpful in certain scenarios but is not nor-
mally required. Arterial phase imaging is gener-
ally preferred for the chest.

Ideally, the abdomen and pelvis should be 
imaged with MRI.  Where CT imaging of the 
abdomen is necessary, the phase of imaging must 
be tailored to the question. Single-phase imaging 
at CT is all that is necessary for the majority of 
abdominal mass lesions in young patients. Triple- 
phase scanning (arterial, portal, delayed venous) 
seldom adds useful additional information and 
triples the effective dose. It should be borne in 

mind that prior ultrasound with Doppler vascular 
assessment of any abdominal mass should have 
been performed before CT.  If both arterial and 
portal venous phase imaging are required simul-
taneously, the dual-bolus technique can be 
considered.

2.2.5  MRI

2.2.5.1  MRI Sequences
MRI sequences can generally be grouped into 
those which aid detection of disease (fat- 
suppressed T2 imaging/STIR, DWI), those 
which allow assessment of lesion contents 

a

c

b

Fig. 2.13 This right upper limb soft tissue lesion is 
poorly delineated on non-contrast CT (a) but much better 
seen and assessed on both MRI (b) and ultrasound (c)

J. Barber and K. McHugh
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(T1, in- and out-of-phase, T2, and contrast-
enhanced imaging) and those which are par-
ticularly good at anatomic localisation and 
resection planning (isotropic, small voxel T2 
imaging). An oncology protocol needs to sat-
isfy all these demands but will be tailored to 
an individual institution’s machine and coil 
capabilities and adapted based on the patient 
and pathology.

The plane of imaging is important. Midline 
lesions, for instance thymus or prostatic/vaginal 
lesions, are difficult to delineate on coronal imag-
ing, and sagittal imaging is often a better choice 
for the second acquired plane.

MRI sequence selection involves trade-offs. 
High-resolution MR imaging has the ability to 
replace CT of the abdomen and pelvis in terms of 
spatial resolution (Fig. 2.14) but takes a long time 
to acquire in order to maintain an adequate 
signal- to-noise ratio (10–15 min for a T2-SPACE/
CUBE of the abdomen and pelvis) and therefore 
often requires sedation/anaesthesia.

2.2.5.2  Gadolinium
Although the risk of NSF is low with modern 
macrocyclic gadolinium agents, it should not be 
given to children with known renal impairment 
without a careful risk-benefit assessment [20]. 
Gadolinium carries lower but non-zero risk of 
anaphylaxis compared with CT-iodinated con-
trast. More recently, concerns have increased 
regarding deposition of gadolinium within brain 
and bone tissue. Although the long-term effects 
of this are unknown, it has been found to occur 
both in patients with normal renal function and 
with macrocyclic agents previously thought to be 
more stable [21, 22]. The need to give gadolin-
ium to assess enhancement needs to be weighed 
carefully against potential risks in each child.

2.2.6  Nuclear Medicine

SPECT and PET/CT are increasingly used in the 
investigation of childhood malignancies. [18F]fluo-

Table 2.1 Important ‘Do’s’ and ‘Don’ts’ in paediatric 
oncology imaging

Don’t do non-contrast CT. Post-contrast scanning 
should generally suffice
Don’t do multiphase CT scanning; single-phase scans 
should be sufficient. Remember that ultrasound to 
assess vascularity should have been performed before 
CT
Do perform ultrasound evaluation initially of 
superficial lesions
Don’t forget to assess the regional lymph nodes with 
ultrasound and MRI. For limb tumours this means 
assessing the popliteal and inguinal nodes of a leg or 
the epitrochlear and axillary nodes for an upper limb 
primary
For MRI do try to perform diffusion weighted imaging 
(DWI) and ADC maps for all new tumours. This helps 
assess lesion cellularity and may guide biopsy
At MRI a volumetric sequence is useful for 
reconstruction in the other orthogonal planes for 
surgical planning
Don’t routinely perform an abdominal radiograph for 
an abdominal mass; it is seldom useful
Do consider performing MRI instead of CT for all 
limb, abdominal (particularly pelvic and liver), 
paravertebral and neck tumours

Fig. 2.14 High-resolution T2 SPACE/CUBE imaging pro-
vides excellent delineation of a left renal tumour and sur-
rounding vascular anatomy but at the cost of a long study 
time often requiring general anaesthetic in younger children
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