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This book is intended to provide the most up-to-date synthesis of imaging 
with glioma biology and to highlight areas of unmet clinical need. Its focus is 
gliomas in adult patients. Gliomas are the most frequently occurring primary 
brain tumor. They range in grade from I to IV, with grade IV (glioblastoma) 
being not just the most malignant but also the most common. MRI is central 
to the clinical management of gliomas. Clinicians use MRI to generate dif-
ferential diagnoses, improve neurosurgical planning, assess resection extent, 
and follow changes in tumor burden over the course of treatment. Though 
critically important, tracking tumor burden has historically presented signifi-
cant challenges for MRI, particularly in distinguishing treatment effect from 
recurrent or residual disease. Addressing some of these difficulties, brain 
tumor treatment response has been formalized using Response Assessment in 
Neuro-Oncology (RANO) criteria based on measurements of enhancing 
tumor. Complementary to MRI, PET scans can refine characterization of 
tumor burden, adding value to standard imaging, especially when coupled 
with newer amino acid tracers that serve as markers for protein synthesis. 
This book explores the ever-expanding role of MR and PET in managing 
glioma patients, as reflected both in contemporary medical practice and in 
new applications being developed and validated for clinical use.

In many ways, the future is here. The molecular characterization of brain 
tumors has substantially advanced over the past decade and is now fundamen-
tal to the identification of many gliomas, as reflected in the updated 2016 
World Health Organization (WHO) guidelines for brain tumor classification. 
Imaging techniques have advanced apace. Once used almost exclusively to 
characterize anatomic features of a tumor, newer approaches can now inter-
rogate a wide range of tumor physiologic and metabolic characteristics. 
Additionally, entirely new fields such as “radiomics” and “imaging genom-
ics” are emerging, and with them are enormous data sets that ultimately may 
be most effectively mined by artificial intelligence/machine learning-based 
paradigms. Yet a fundamental challenge remains: how can researchers and 
clinicians leverage these vast quantities of data into imaging-generated bio-
markers that improve patient outcomes? Although traditionally it is the pri-
mary marker of disease burden, measurement of contrast enhancement retains 
its manifold limitations. Even with T2-weighted and FLAIR sequences, stan-
dard imaging can lack sufficient specificity and sensitivity for tumor in com-
mon clinical scenarios like pseudo-progression and pseudoresponse. Looking 
forward, this book examines path-breaking efforts to move beyond contrast 
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enhancement in addressing imaging needs of glioma patients—whether for 
predictive markers tailored to emerging treatments like immunotherapy or 
early response markers to hasten assessment of therapy effectiveness—that 
remain unmet.

The contributors for this volume are renowned leaders from around the 
world in fields encompassing clinical neuroradiology, neuro-oncology, and 
basic science imaging research. This work should be highly useful for general 
as well as subspecialized radiologists who interpret brain tumor imaging, as 
well as for neuro-oncologists, clinicians developing brain tumor trials who 
rely on imaging endpoints, neurosurgeons who resect gliomas, and also those 
researchers looking for perspective in understanding imaging-based global 
assessment of tumor status.

The book begins by outlining the current standard of care for high-grade 
gliomas and the role of MR imaging in providing that standard of care. It then 
details the biological underpinnings of blood-brain barrier breakdown, as 
bidimensional measurements of contrast enhancement remain the accepted 
quantitative measure of tumor burden. In subsequent chapters, the theoretical 
basis for important and widely available physiologic imaging techniques, 
including perfusion- and diffusion-weighted protocols and analysis, is exam-
ined in detail. A separate chapter is dedicated to major changes in the recent 
WHO reclassification of brain tumors—changes that are crucial to the daily 
practice of clinical neuroradiologists. Additional chapters explore the trans-
formation of lower-grade tumors into more malignant ones, together with a 
raft of new technologies that advance our ability to image tumor physiology 
and metabolism, including CEST, amino acid PET, and spectroscopy. 
Informatics-based approaches that encompass “big data” and machine learn-
ing in the context of imaging genomics and radiomics are also addressed. 
Turning to treatment, the book reviews important recent advances in immu-
notherapy and its impact on brain tumor imaging interpretation. The book 
concludes with a review of multi-institutional efforts to standardize imaging 
protocol and interpretation—a matter of paramount importance for ongoing 
and future clinical trials.

In marrying “state of the practice” and “state of the science” assessments, 
this work is intended to help integrate emerging imaging technologies with 
clinical practice while also providing a more precise understanding of under-
lying tumor biology. This understanding, in turn, should facilitate individual-
ized patient treatment, improve the application of imaging in clinical trials, 
and illustrate areas where new approaches can yield needed improvements in 
glioma characterization, all with the ultimate goal of lengthening and better-
ing the lives of brain tumor patients.

Los Angeles, CA, USA Whitney B. Pope 
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Indications and Limitations 
of Conventional Imaging – Current 
Clinical Practice in the Context 
of Standard Therapy

Raymond Y. Huang and Patrick Y. Wen

 Introduction

Gliomas, the most common malignant primary 
tumors of the central nervous system, have an 
annual incidence of about 6 in 100,000 [1]. They 
are subdivided into four World Health 
Organization (WHO) grades (I–IV). 
Glioblastoma, a World Health Organization 
(WHO) grade IV tumor, is the most aggressive 
subtype and accounts for about 47% of malignant 
central nervous system tumors [1]. The prognosis 
of glioblastoma is among the worst of all cancers, 
with a 5-year survival rate of merely 5.5% [1]. 
While distant metastasis is rare, glioblastomas 
are locally aggressive with a high rate of tumor 
recurrence following initial standard treatment 
[2]. The prognosis for lower-grade gliomas 
(WHO grades II and III) is less dismal; the five- 
year survival rates are 30% for anaplastic astro-
cytoma and 57% for anaplastic oligodendroglioma 
[1], and more than half of patients with WHO 
grade II gliomas survive over 5 years. Recent dis-
covery of isocitrate dehydrogenase (IDH) 1/2 
mutations and 1p19q co-deletion as key molecu-
lar markers of glioma with distinct clinical 

behavior and prognosis has led to integration of 
these markers into the newly revised WHO grad-
ing of gliomas [3]. This new grading system 
results in classification of gliomas better match-
ing their prognostic features and therapeutic 
modalities. IDH-mutant gliomas with 1p/19q 
codeletion had the most favorable outcome clini-
cally with median survival more than 10–15 years, 
whereas IDH-mutant gliomas without 1p/19q 
codeletion have median survival of 5–10 years; 
patients with IDH wild-type grade II and III 
tumors resemble glioblastomas in their molecular 
profile and therefore have had the least favorable 
outcome [4]. Even for patients who live longer, 
the infiltrative nature of these tumors often leads 
to recurrence and require repeated surgical resec-
tions, radiation, as well as chemotherapy.

Imaging is instrumental in aiding diagnose 
and guiding management for both high- and low- 
grade gliomas. With modern clinical magnetic 
resonance imaging (MRI) scanners, gliomas are 
frequently detected and diagnosed with high 
accuracy prior to surgical resection, and high- 
resolution preoperative imaging can facilitate 
surgical planning for maximal resection to 
increase chance of longer-term survival. For 
high-grade gliomas, chemoradiation is currently 
the standard-of-care treatment, and imaging can 
outline regions of residual tumor for radiation 
planning and allow noninvasive evaluation of 
posttreatment response. Serial imaging is also 
routinely performed to monitor tumor activities 
for both high- and low-grade gliomas.
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Despite these important roles of imaging, the 
genetic complexity of gliomas and the rapidly 
evolving therapeutic strategies that are increas-
ingly more targeted to specific tumor subtypes 
require constant improvement of diagnostic 
capability of imaging methodology. Furthermore, 
treatment-induced changes to tumor or brain tis-
sues can frequently mimic tumor, thereby bring 
challenges to the use of imaging for assessing 
treatment response. In this chapter, conventional 
MRI approaches to evaluation of both high- and 
low-grade gliomas will be presented in the con-
text of standard therapy, and limitations to the 
standard techniques will be discussed.

 Preoperative Diagnosis of Gliomas

When a brain mass is suspected following evalu-
ation of neurological symptoms, imaging is the 
key diagnostic step both to confirm presence of a 
mass or mass and to characterize the mass(s) if 
there is one. Although computed tomography 
(CT) can often detect mass lesions in symptom-
atic patients and provides rapid triage of patients 
due to its wide availability, its role in lesion char-
acterization and preoperative planning is limited 
for a majority of CNS neoplasm. In particular, 
low-grade gliomas are frequently similar in den-
sity compared to normal brain and lack perile-
sional edema and significant mass effect, making 
them difficult to detect by CT. MRI is currently 
the imaging modality of choice for evaluation of 
brain mass due to its imaging resolution and 
exquisite tissue contrast that are both essential for 
diagnosis and treatment planning.

Gliomas exhibit a wild spectrum of findings 
on conventional imaging that are influenced by 
tumor grade, location, and molecular subtypes. 
Glioblastomas are most frequently characterized 
by their irregular margins, complex patterns of 
enhancement, and presence of necrosis, edema, 
and varying degrees of intratumoral hemorrhage 
(Fig. 1.1). These features are readily captured by 
a combination of T2-weighted and gadolinium 
contrast-enhanced T1-weighted MRI sequences. 
Other features such as subependymal or lepto-

meningeal spread of tumor as well as diffuse 
infiltration that involve multiple brain locations 
can also be detected on conventional imaging and 
alter disease prognosis and influence manage-
ment approach [5, 6]. In contrast, low-grade glio-
mas such as astrocytomas and oligodendrogliomas 
are often non-enhancing and well circumscribed 
(Fig. 1.2), while anaplastic astrocytomas and oli-
godendrogliomas can have overlapping imaging 
findings of low-grade gliomas and glioblastoma 
(Fig. 1.3). It is important to recognize the limita-
tion of conventional MR imaging in defining 
tumor margins of infiltrative glioma since there is 
ample evidence that tumor cells are often present 
beyond the border of abnormality delineated by 
conventional sequences such as T2/FLAIR [7, 8].

The main diagnostic challenges for high-grade 
glioma in adult patients include other CNS tumors 
including primary CNS lymphoma and metastasis 
from systemic cancers, as well as non- neoplastic 
diseases such as infarct, demyelination, and 
abscess. Compared to glioblastomas, lymphomas 
exhibit more homogeneous enhancement and, 
when untreated, rarely found to have intratumoral 
hemorrhage. This distinction can be helpful to rec-
ognize preoperatively since standard management 
of CNS lymphoma is biopsy rather than resection, 
whereas maximal surgical resection improves 
prognosis for high-grade glioma [9]. Brain metas-
tases, when solitary, can show overlapping fea-
tures with glioblastoma including necrosis, 
hemorrhage, and edema, but they do not show 
infiltration and expansion of cerebral cortices with 
blurring of gray-white matter margins that are 
more characteristics of gliomas. Brain abscesses 
typically manifest as peripherally enhancing 
lesion(s) with surrounding edema that can resem-
ble a necrotic neoplasm including high-grade gli-
oma. The walls of tumors, however, are typically 
thicker and more irregular. Despite these imaging 
characteristics, differentiation among these tumor 
types and tumor mimickers can be challenging 
based on qualitative interpretation of conventional 
imaging features alone. Imaging findings are often 
combined with clinical data such as age, gender, 
and presenting symptoms and signs to increase the 
accuracy of diagnosis. Greater diagnostic accuracy 
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