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Editorial and Introduction

This book features a special subsection of Nanomedicine, an application of
nanotechnology to achieve breakthroughs in healthcare. The Nanomedicine
exploits the improved and often novel physical, chemical, and biological
properties of materials only existent at the nanometer scale. As a consequence
of small scale, nanosystems in most cases are efficiently uptaken by cells and
appear to act at the intracellular level. Nanotechnology has the potential to
improve diagnosis, treatment and follow-up of diseases, and includes targeted drug
delivery and regenerative medicine; it creates new tools and methods that impact
significantly existing conservative practices. This book more specifically targets
using nanotechnology in the area of drug delivery and tissue engineering, i.e., the
application of various nanoparticulates based on natural or synthetic, organic or
inorgarnic materials as drug carriers and tissue regenerative support, first of all to
deliver substances and drugs inside cells.

During the last decade, intracellular drug delivery has become an emerging area
of research in the medical and pharmaceutical field. Many therapeutic agents can
be delivered to a particular compartment of a cell to achieve better activity. In
Volume 1 of this series, we investigated various means of delivering cargo, via
endocytosis. Various carriers have been investigated for efficient intracellular
delivery, either by direct entry to cytoplasm or by escaping the endosomal
compartment. These include cell-penetrating peptides, and carrier systems such as
liposomes, cationic lipids and polymers, polymeric nanoparticles, etc. Various
properties of these carriers, including size, surface charge, composition, and the
presence of cell-specific ligands, alter their efficacy and specificity toward
particular cells. Also included were various aspects of targeted intracellular
delivery of therapeutics including pathways, mechanisms, and approaches.

This Volume 2, a continuation of Volume 1 (not numbered this way), is a
collection of authoritative reviews.

The Part I of this volume deals with Novel Nanocarrier Design and Processing,
listing some new designs and chemistry. The very first chapter deals with a survey
of production methods of nanofibers, as exemplified by properietary and succesfull
NanospiderTM technology developed by Technical University Liberec, Czech
Republic, licensed to Elmarco (Liberec, Czech Republic) (www.elmarco.com).
This technology has also been licensed in several countries with applications in
different fields as well as in biomedicine. It should be stressed that nanofibers are

xv

http://www.elmarco.com


readily taken up by cells (e.g. Che et al. 2011). Other four chapters describe
several different new designs for nanoparticles, with emphasis on responsiveness
to different external stimuli.

Part II deals with Nanocarrier Characterization and Function The first chapter of
this section describes, in some details, how nanoparticles (NP) enter the cells and
how they are distributed within the cell interior, while the subsequent chapter
describes specific problems related to delivery to mucus. Following are two chapters
which cover rather physical methods of nanocarrier characterization, the rest of this
section introduces novel delivery vehicles for specific sites or specific cargo.

Part III is entirely a new section; it covers Simulation for Delivery and
Function. Future applications in nanotechnology are likely to require this level of
sophisticated control in order to form precisely ordered structures, with specific
chemical and physical properties. Theoretical understanding of the fundamental
principles of self-assembly and the design rules for creating new self-assembling
materials.

Based on a paper by Vauthier and Bouchemar (2009) two out of about ten
different methods of nanoparticle production are (a) formation of polyelectrolyte
complexes and (b) production of nanogels. Self-assembly processes typically, both
or colloidal building blocks above combine spontaneously to form ordered
structures and that without guidance or control from an outside source. Resulting
from a disordered system of pre-existing components is an organized structure or
pattern as a consequence of specific, local interactions among the components
themselves. Self-assembly can be classified as either static or dynamic process. In
static self-assembly, the ordered state forms as a system approaches equilibrium
(thermodynamic stability). In dynamic self-assembly, patterns of pre-existing
components organized by specific local interactions are not commonly described
as ‘‘self-assembled’’ (characterized by the presence of long-range repulsive and
short-range attractive forces), whereas they should, in fact, be denoted as ‘‘self-
organized’’ (Wikipedia).

New computational simulation tools are required to describe the self-assembly,
and to apply them to understand the structures and their thermodynamics and
dynamics of both biological and synthetic self-assembling systems (Frenkel and
Smit 2002). We envisage that in the future it would be possible to tailor
nanoparticles to deliver cargoes at the right subcellular compartment through the
use of signaling signatures and pathways. This will improve the magnitude and
duration of the drug effects. It is a challenging task due to the complexity of
multiple compartments such as endosomes and nuclei, which themselves are
dynamic and can undergo fusion and fission and exchange their content (Csukas
et al. 2011). The result is to guide further experimental efforts in determining most
sensitive parameters. Moreover, there is still much room for building knowledge
about the interactions of NPs with proteins and membrane structures on the cell
surface. Taking advantage of computer simulations and current developments in
interactomics, it would certainly be of great use to know the molecules that
interact with the NPs, as well as the nature of this interaction. We emphasize this
effort as the literature is relatively scarce in this direction.
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The last chapter of this section seeks to emphasize an importance of theoretical
background, as provided by Systems Biology, to guide the researcher in the
process of discovery. That is, guide the drugs/reagents to an appropriate site.
Targeting, localized and intracellular delivery present still a key challenge to
effective delivery. To establish an effective fight against diseases, we have to have
the ability to selectively attack specific cells, while saving the normal tissue from
excessive burdens of drug toxicity. However, because many drugs are designed to
simply kill specified cells, in a semi-specific fashion, the distribution of drugs in
healthy organs or tissues is especially undesirable due to the potential for severe
side effects. Consequently, systemic application of these drugs often causes severe
side effects in other tissues (e.g., bone marrow suppression, cardiomyopathy,
neurotoxicity), which greatly limits the maximal allowable dose of the drug. In
addition, rapid elimination and widespread distribution into nontargeted organs
and tissues requires the administration of a drug (in a suitable carrier) in large
quantities, which is often not economical and sometimes complicated due to
nonspecific toxicity. This vicious cycle of large doses and the concurrent toxicity
is a major limitation of many current therapies. Thus, the benefit of nanocarrier
design.

Part IV covers Nanocarriers for Drug Discovery and Treatment, listing specific
applications in biology and medicine. Of a special interest should be a proprietary
technology of Contipro s.r.o. (Dolni Dobrouc, Czech Republic; www.contipro.com)
employing low-molecular weight hyaluronate to assemble highly biocompatible
nanofibers using a technology based on needle-less electrostatic filament principle.
The company’s main emphasis is in wound healing and other applications.
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The Editors would like to profoundly thank all contributors to this volume for
their cooperation and enthusiasm, and also, for their reviewing of colleagues’
chapters, which served as a basis of internal review process. Finally, we invite
contributions from different researchers to this series.
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In future volumes, the emphasis will be more on pharmacokinetic aspects as
they control the ultimate application and utility. As pointed by Karel Petrak
(personal communication on 10/28/2013), ‘‘Although I understand the importance
of having ‘enabling technology’ available, the issue of ‘promises, promises and
more promises’ being made about ‘new delivery systems’ that are never delivered
only to be replaced by new promises. To me the central issue is to recognize that
the systems must focus on modifying the drug’s pharmacokinetics and pharma-
codynamics to be optimal for the given disease target.’’ This volume, unfortu-
nately, does not spell out this emphasis clearly. Thus, this eminent topic is sought
for future volumes.

Aleš Prokop
Yasuhiko Iwasaki

Atsushi Harada
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Part I
Novel Nanocarrier Design

and Processing



Proprietary Nanofiber Technologies
and Scale-Up

Stanislav Petrík

Abstract An overview of scalable methods for industrial production of nanofibers
is given. The theoretical principles of both nozzle- and nozzle-less electrospinning
processes are discussed. Productivity limits of electrospinning and competing/
complementary technologies (nano-meltblown, force-spinning, islets-in-the sea),
together with their predominant potential application areas, are described. Newest
developments in production methods for nanofibers are introduced, e.g. nozzle-less
co-axial electrospinning and single-nanofiber preparation.
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1 Introduction

Nanofibers attract consistently growing attention for many applications, including
bio-medical, since recent decade. Unique morphology of nanofibers, their extre-
mely high surface area, material variability and relatively simple methods for their
preparation opened huge field for both technology processes and material appli-
cations research. Number of publications related to the use of nanofibers as delivery
systems exhibit probably the highest growth during last few years (Yu et al. 2009).

Electrospinning as a method for production of very fine (submicron) fibers has
developed into a dominant technology of industrial production scale. Some limi-
tations connected with the use of (often dangerous) solvents and relatively low
productivity for some applications motivate developments of alternate methods
which are being commercialized during recent years.

Electrospinning methods for creating nanofibers from polymer solutions have
been known for decades (Kirichenko et al. 2007; Ramakrishna et al. 2005). The
nozzle-less (free liquid surface) technology opened new economically viable
possibilities to produce nanofiber layers in a mass industrial scale, and was
developed in the past decade (Jirsak et al. 2005; Petrik and Maly 2009). Hundreds
of laboratories are currently active in the research of electrospinning process,
nanofiber materials, and their applications. Nanofiber nonwoven-structured layers
are ideal for creating novel composite materials by combining them with usual
nonwovens. The most developed application of this kind of materials is air fil-
tration (Jaroszczyk et al. 2009). Liquid filters and separators are being developed
intensively with very encouraging results. Inorganic/ceramic nanofibers attract
growing interest as materials for energy generation and storage (solar and fuel
cells, batteries), and catalytic materials (Kavan and Grätzel 2002; Rubacek and
Duchoslav 2008; Bognitzki et al. 2001).

To fully explore the extraordinary number of application opportunities of
nanofibers, the availability of reliable industrial-level production technology is
essential. This chapter intends to demonstrate that some of the technologies have
matured to this stage.

2 Nanofibers as Delivery Systems

Well known are several bio-medical applications utilizing nanofiber materials,
often from biocompatible/degradable polymers like PLA, gelatine, collagen,
chitosan. These developing applications include wound care, skin-, vessel-, bone-
scaffolds, drug delivery systems and many others (Proceedings 2009).

One of the first reports about electrospinning nanofibers as delivery systems
was published by Kenawy et al. (2002) Electrospun fiber mats were explored as
drug delivery vehicles using tetracy-cline hydrochloride as a model drug. The mats
were made either from poly (lactic acid) (PLA), poly (ethyl-ene-co-vinyl acetate)
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(PEVA), or from a 50:50 blend of the two from chloroform solutions. A detailed
overview of delivery bio-medical applications of nanofibers was published by Yu
et al. (2009). Their schematic diagram (Fig. 1) illustrates most of the opportunities
the nanofiber systems offer for drug delivery, scaffold/tissue engineering, health
care textiles, surgical textiles, and other systems.

The active agents (i.e. drugs) can be incorporated into nanofibers in several ways.
The most common one used to be to mix functional particles into the polymer
solution the nanofiber material is being prepared from. This approach often limits
technological processability of the material. As many authors have proven (Buzgo
et al. 2013; Mickova et al. 2012; Williams et al. 2012), co-axial (core-shell)
nanofibers offer much larger potential as delivery systems, because of their capability
to incorporate and protect also the agents which are not spinnable or non-dispersable
in homogeneous nanofibers. Besides ,,trivial‘‘technological approach based on
co-axial needle electrospinning (i.e. Azarbayjani et al. (2010)), Lukas’group at
the Technical University of Liberec (Vyslouzilova et al. 2010) has patented and
published a nozzle-less productive electrospinning device described below.

3 Electrospinning

The electrospinning process is an interesting and well-characterized physical phe-
nomenon and has been an attractive subject for theoretical investigations of several
groups (Bognitzki et al. 2001; Doshi and Reneker 1995; Thompson et al. 2007;

Fig. 1 Applications and preparations of electrospun drug-loaded nanofibers (Yu et al. 2009)
(Courtesy of Scientific Research Publishing)
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Shin et al. 2001; Yu et al. 2006; Hohman et al. 2001). Most work concentrates on the
essentials of the process—the nanofiber formation from a liquid polymer jet in a
(longitudinal) electric field. It has been theoretically described and experimentally
proven that the dominant mechanism is whipping elongation occurring due to
bending instability (Thompson et al. 2007; Yu et al. 2006; Hohman et al. 2001).
Secondary splitting of the liquid polymer streams can occur also (Kirichenko et al.
2007), but the final thinning process is elongation.

In Fig. 2, the schematic of bending mechanism derived from physical model (a)
is compared with a stroboscopic snapshot (b) (Reneker 2009).

A comprehensive analysis (electrohydrodynamic model) of the fiber formation
mechanisms published by (Hohman et al. 2001) describes the regions of individual
kinds of instability observed during the process. It has predicted and experimentally
proven that there is a domain of the process variables where bending instability
dominates, as illustrated in Fig. 3.

The efforts to scale up the electrospinning technology to an industrial pro-
duction level used to be based on multiplication of the jets using multi-nozzle
constructions (Kirichenko et al. 2007).

In Fig. 4, the multi-nozzle spinning head developed by NanoStatics Company is
shown. The principle is based on an idea to feed multiple nozzles from a single
source of the polymer solution.

Figure 5 shows the multi-nozzle spinning part of the machine being commer-
cialized by TOPTEC Company. The device uses upwards direction of electrospin-
ning in order to eliminate polymer droplets eventually falling from conventional
down-oriented electrospinning elements.

Fig. 2 The path of an electrospinning jet a schematic, b stroboscopic photograph (Courtesy of
Darrell Reneker, University of Akron)
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However, the number of jets needed to reach economically acceptable produc-
tivity is very high, typically thousands. This brings into play many challenging task,
generally related to reliability, quality consistency, and machine maintenance
(especially cleaning). The nozzle-less electrospinning solves most of these prob-
lems due to its mechanical simplicity, however, the process itself is more complex
because of its spontaneous multi-jet nature. The study by (Lukas et al. 2008)
focused on the process of multi-jet generation from a free liquid surface in an
electric field. They derived an expression for the critical spatial period (‘‘wave-
length’’)—the average distance between individual jets emerging from the liquid
surface (Fig. 5). In this system, self-organization of the jets occurs, thus the number
and spacing of the jets is optimal even if the technology variables (voltage, vis-
cosity and surface tension of the solution) change. This feature leads to significant
improvement of the process stability and consistent quality of the produced
nanofiber layer.

Fig. 3 Operating diagram for a PEO jet. The upper shaded region shows the onset of the
whipping instability, the lower one shows the onset of the varicose instability (Hohman et al.
2001b)

Fig. 4 Schematic (a), and photograph (b) of a multi-nozzle spinning head by NanoStatics
(NanoStatics 2007)
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The study showed that the process can be analyzed using Euler’s equations for
liquid surface waves

r q
oU
ot
þ p

� �
¼ 0 ð1Þ

where U is the scalar velocity potential, p is the hydrostatic pressure, and q is the
liquid density. They derived the dispersion law for the waves in the form

x2 ¼ qgþ ck2 � eE2
0k

� � k

q
ð2Þ

where E0 is electric field strength, c—surface tension.
The relationship between angular frequency x and wave number k is in Fig. 6,

electric field is the parameter. When a critical electric field intensity is reached
(Ec, curve 1), x2 is turned to be negative, x is then a purely imaginary value, and
hence, the amplitude of the liquid surface wave

Fig. 5 Schematic (a), and photograph (b) of a multi-nozzle spinning head by TOPTEC
(TOPTEC 2011)

Fig. 6 Relationship between
the square of the angular
frequency and the wave
number for distilled water,
electric field is the parameter
1 E = Ec = 2.461
945 094 9 106 V/m, 2
E = 2.4 9 106 V/m, and 3
E = 2.5 9 106 V/m (Lukas
et al. 2008) (Courtesy of D.
Lukas, TU Liberec)
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n ¼ Aeqt exp ikxð Þ ð3Þ

exponentially grows, which leads to an instability.
Critical field strength can then be expressed

Ec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4cqg=e24

p
ð4Þ

From this equation, they derived the expression for the critical spatial period
(‘‘wavelength’’)—the average distance between individual jets emerging from the
liquid surface (Fig. 7).

kc ¼ 2p=kc ¼ 2pa ð5Þ

and

k ¼ 12pc= 2eE2
0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eE2

0

� �2�12cqg
q� �

ð6Þ

a is the capillary length

a ¼
ffiffiffiffiffiffiffiffiffiffi
c=qg

p
ð7Þ

The simplest realization of the nozzle-less electrospinning head is in Fig. 8a. A
rotating drum is dipped into a bath of liquid polymer. The thin layer of polymer is
carried on the drum surface and exposed to a high voltage electric field. If the
voltage exceeds the critical value, a number of electrospinning jets are generated.
One of the main advantages of nozzle-less electrospinning is that the number and
location of the jets is set up naturally in their optimal positions. In the case of
multi-needle spinning heads, the jet distribution is made artificially. The mismatch
between ‘‘natural’’ jet distribution and the real mechanical structure leads to
instabilities in the process, and to the production of nanofiber layers which are not
homogenous.

Fig. 7 a Free liquid surface electrospinning of Polyvinyalcohol at 32 kV, and b 43 kV (Courtesy
of David Lukas, Technical University of Liberec)
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