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Chapter 1

Introduction: How We Encountered TCTP

and Our Purpose in Studying It

Adam Telerman and Robert Amson

Abstract In this brief introduction, we describe our encounter with TCTP. Back in

2000, we discovered TCTP in two quite different ways: first, we looked at protein

partners of TSAP6 and one of them was TCTP. Then, in collaboration with Sidney

Brenner, we performed a high-throughput differential screening comparing the

parental cancer cells with revertants. The results indicated that TCTP was of the

most differentially expressed genes. These two approaches were carried out only

months apart. They guided our research and led to the discoveries of drugs that

inhibit the function of TCTP. Much of the preclinical data on sertraline as an

inhibitor of TCTP in cancer were obtained with Judith Karp at Johns Hopkins.

This drug is now given in combination with Ara-C to patients in a phase I clinical

trial for Acute Myeloid Leukemia. We will here detail how all this happened in our

lab while working around one central project: tumor reversion.

It is both fascinating and challenging to edit the very first book on a protein. The

implication of Translationally Controlled Tumor Protein (TCTP) in disease was

discovered by Susan MacDonald at Johns Hopkins University: she identified it as

the histamine-releasing factor (HRF) (MacDonald et al. 1995). Only later its

function in cancer and more specifically in tumor reversion was discovered

(Tuynder et al. 2001a, b, 2002, 2004; Amson et al. 2013a, b; Telerman and

Amson 2009). Today, we know much more about TCTP and the mechanisms by

which it controls cell fate. The fact that it is present in all eukaryotes, in stem cells,

and that it interacts with the apoptotic machinery—including members of the Bcl2

family as well as p53-mdm2—makes of it a key-protein in regulatory processes

(Amson et al. 2012b; Cans et al. 2003; Susini et al. 2008; Thebault et al. 2016).

In this book, we gave voice to some of the scientists that provided the most

significant advances in the field. We have chosen not to devote chapters on

describing the genetic and biologic studies on TCTP done in our laboratory,

A. Telerman (*)

Bâtiment B2M, Institut Gustave Roussy, Unité Inserm U981, 114 rue Édouard-Vaillant, 94805
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which have already been reviewed extensively. Our single chapter concerns TCTP

as a target in the treatment of cancer and the clinical study that we initiated together

with Judith Karp, from Johns Hopkins.

Our introduction sheds light, for the first time, on how those discoveries were

made in our laboratory. Indeed, we have been asked numerous times to describe

those events in detail, since this could be relevant for young researchers in planning

their work.

1.1 The Initial Years: The Tumor Reversion Project

When we were doing our postdoctoral training at theWeitzman Institute of Science,

the vast majority of the investigators in the field of cancer sought to understand how

a normal cell becomes a tumor cell. At that time, oncogenes were the main focus of

research in almost every oncology laboratory worldwide. When we decided to set

up our laboratory, it seemed to us pointless to concentrate our efforts on a project in

which some of the strongest intellects in the field of biology had already made such

tremendous contributions to answer that question. We thought that there was a

different way to proceed in cancer research: not trying to understand how a normal

cell becomes malignant, but rather how a malignant cell can quit its malignant

phenotype (Telerman et al. 1993a, b, c). This laid the basis of the tumor reversion

project (Telerman and Amson 2009). Max Askanazy had already provided at the

beginning of the twentieth century the most striking example of tumor reversion

(Askanazy 1907; Telerman and Amson 2009). He observed that ovarian carcinoma

was composed of a homogeneous tumor cell population at an early stage, and that

ultimately these cells differentiate into teeth and hairs. This quite unbelievable

observation turned out to be of dramatic importance. If an ovarian carcinoma cell

could become hair or teeth, it meant that those cancer cells could be entirely

reprogrammed. It is precisely this reprogramming at the genetic and molecular

level that became our project for almost 30 years now. In the 1950–1960s, Armin

Braun (1951, 1959, 1965) confirmed tumor reversion in plants. Later, a series of

investigators found in cellular systems, consisting mostly of in vitro cultures, that in

very rare instances cancer cells transformed by oncogenes could lose their malig-

nant phenotype (Bissell and Labarge 2005; Brinster 1974; Ge et al. 2011; Hendrix

et al. 2007; Macpherson 1965; Mintz and Illmensee 1975; Pierce and Dixon 1959;

Telerman and Amson 2009; Weaver et al. 1997). In most of the cases, this was due

to the loss of the transforming oncogene, but not in all cases.

When we started our laboratory we found that that there was a desperate need for

the proper biological models to study the molecular pathways of tumor reversion.

This is why we sought to obtain parental malignant cells and derive from those the

revertant ones. Another laboratory in Brussels studied at that time a quite peculiar

virus: the H1 Parvovirus that kills preferentially cancer cells while sparing their

normal counterparts (Mousset and Rommelaere 1982; Toolan 1967). We thought

that we could use the H1 Parvovirus as a negative selective agent that would kill the
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malignant cells but spare those that would have reverted and lost some of their

malignant properties. With the help of Marcel Tuynder we started the experiments

with the human erythroleukemia cell line K562 and after three rounds of infection

with the Parvovirus we succeeded in rescuing the cells with a suppressed malignant

phenotype, which we called “KS” for “K562 Suppressed” (Telerman et al. 1993a, b,

c). In the following years, we expanded the experiment to different types of

cancer—leukemia, breast, colon, lung, and melanoma (Tuynder et al. 2004,

2002). The next step was to provide a differential analysis of gene expression

between the malignant and the revertant cells (Tuynder et al. 2002).

1.2 Learning to Work with High-Throughput Technology

and the First Molecular Data

In 1994 after publishing our first work on tumor reversion we moved to Paris, France,

to join Daniel Cohen and Jean Dausset at the Fondation Jean Dausset—Centre d’Etude
du Polymorphysme Humain. Daniel Cohen had made a tremendous contribution

in creating a human genome center with the highest scientific standards and the most

up-to-date technology and we could learn from the way they envisaged the progress in

biology. Things had to be fast, precise, efficient, and large scale.We used the method of

Liang and Pardee (1992) to make a first differential gene analysis using Moshe Oren’s
system of M1/LTR6 cells (Yonish-Rouach et al. 1991). This yielded with the first ten

differentially expressed genes that have later been proven to be so useful for our studies

of tumor reversion (Telerman et al. 1996; Amson et al. 2000, 1996; Linares-Cruz et al.

1998; Nemani et al. 1996; Roperch et al. 1998, 1999). Another inspiring mentor,

Georges Charpak, helped us in quantifying these data in such an elegant way with

his new developed technology (Amson et al. 1996).

1.3 The Year 2000: Giving a Decisive Turn into

the Understanding of the Tumor Reversion Program

We divided our laboratory in several groups. Marcel Tuynder was focused on the

biological models of tumor reversion and their characterization. Laurent Susini was

working on the differential gene expression analysis, Giusy Fiucci on the murine

knockout models, and the crystallography and Brent Passer on the yeast two hybrid

analysis.

We teamed up with Sydney Brenner that had just developed the Megasort and

MPSS screening strategies (Brenner et al. 2000a, b). Laurie Goodman from

Brenner’s lab came to Paris with a short list of the ten mostly differentially

expressed genes between the U937 cancer cells and their revertants, the US cells

(Tuynder et al. 2000, 2001a, b). At the top of the list was Translationally Controlled
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Tumor Protein (TCTP) with 248 signals in the parental U937 cancer cells versus

2 in the revertant US cells using Megasort, and this was proportional to the amount

of mRNA. Decreasing TCTP by siRNA induced cell death in the parental U937

cells and a reprogramming of breast cancer cells into structures with a similar

architecture of normal cells. These results were presented at the Annual Meeting on

Oncogenes, Frederick, Maryland, USA, June 2001 and also at the Conference on

Programmed Cell Death. Cold Spring Harbor, September 2001. The work on the

anti-apoptotic of TCTP has been confirmed by another group a couple of months

later; unfortunately, they changed the name of TCTP and invented a new one

(Li et al. 2001).

Meanwhile, on the other side of our laboratory, Brent Passer was investigating

one of the genes we had previously identified, TSAP6 (Amson et al. 1996;

Amzallag et al. 2004; Passer et al. 2003). Among the potential partner proteins of

TSAP6 Brent found the Histamine Releasing Factor (HRF) (MacDonald et al.

1995) that was just another name for TCTP. Brent had come to these results before

we received the short list from Sydney Brenner. Later, we found that TSAP6 was

promoting the secretion of TCTP via the exosomal pathway (Amzallag et al. 2004;

Lespagnol et al. 2008). As explained later in the book, it was this HRF function of

TCTP that led us to the discovery of the first drugs inhibiting the function of TCTP.

1.4 The P53-TCTP Reciprocal Negative Feedback Loop

and the Clinical Significance

It took us a long time to understand how TCTP functions and what are the

molecular mechanisms that it regulates (Amson et al. 2013b). We first observed

that in different biological models, increasing P53 was decreasing TCTP (Amson

et al. 2012a). In contrast, overexpression of TCTP strongly decreased P53. So we

tried to understand what was really going on; Alexandra Lespagnol found that the

promoter of TCTP has a consensus-binding site for P53 and that this results in a

negative regulation of TCTP. On the other side, TCTP promotes the degradation of

P53 by stabilizing MDM2. Together with Pier Paolo Di Fiore, Salvatore Pece, and

Jean-Christophe Marine, we investigated the details of these mechanisms and most

importantly how it applied to stem cell biology and breast cancer, this time in

patients. TCTP was highly expressed in normal breast stem cells and in breast

cancer like stem cells. Decreasing TCTP inhibited the colony forming efficiency in

mammosphere assays. Di Fiore’s group also made the observation that in a cohort

of 508 breast cancer patients, tumors with high levels of TCTP induced a more

aggressive disease and a poor prognosis. Accordingly, low levels of TCTP led to a

significantly better survival. TCTP stands as a prognostic marker on its own.

The search for a drug targeting TCTP in cancer treatment is addressed further in

this book and deserves a chapter on its own. Briefly, as soon as we saw that

decreasing TCTP could be of potential clinical relevance, we searched for
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