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  Pref ace   

 It is universally accepted that the tumor microenvironment is extremely relevant to 
both the study of cancer biology and the search for improved therapies. However, it 
is also accepted that the study of biological mechanism in conditions which accu-
rately mimic this environment is both technically challenging and highly special-
ized. At a recent tumor microenvironment meeting held in Mykonos, Greece, we 
decided that it would aid the fi eld in general to publish detailed protocols, far 
exceeding the level of detail usually reported in papers. We hope that these prove 
useful and that we as a community can continue to share our collective expertise.  

  Philadelphia, PA, USA     Constantinos     Koumenis    
 Portland, OR, USA     Lisa     M. Coussens    
 Stanford, CA, USA     Amato     Giaccia    
 Oxford, UK     Ester     Hammond     
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    Chapter 1   
 Staining Against Phospho-H2AX (γ-H2AX) 
as a Marker for DNA Damage and Genomic 
Instability in Cancer Tissues and Cells                     

     Anika     Nagelkerke      and     Paul     N.     Span    

    Abstract     Phospho-H2AX or γ-H2AX- is a marker of DNA double-stranded breaks 
and can therefore be used to monitor DNA repair after, for example, irradiation. In 
addition, positive staining for phospho-H2AX may indicate genomic instability and 
telomere dysfunction in tumour cells and tissues. Here, we provide a protocol to 
perform immunostaining for phospho-H2AX on cells, cryosections and formalin- 
fi xed, paraffi n-embedded tissues. Crucial steps in the protocol and troubleshooting 
suggestions are indicated. We also provide suggestions on how to combine staining 
against γ-H2AX with stainings against components of the tumour microenviron-
ment, such as hypoxia and blood vessels.  

  Keywords     Histone 2A   •   DNA damage repair   •   Genomic instability   •   Telomere 
dysfunction   •   Immunohistochemistry   •   Immunofl uorescence   •   Immunocytochemistry  

1.1       Introduction 

 This protocol provides a procedure to  stain cells   for phospho-H2AX. H2AX is a 
modifi ed version of the histone H2A. In the nucleus of cells, the DNA is wrapped 
around these and other histones, to ensure proper organisation of the DNA. 

 When DNA damage occurs, a complex cellular response is activated. This  DNA 
damage response (DDR)   involves the detection of the damaged site, the amplifi cation 
of the signal through a cascade of  protein kinases   and the activation of a series of  down-
stream effectors   that promote cell cycle arrest, DNA repair or activation of apoptotic 
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pathways [ 1 ]. An early event in the DDR is the phosphorylation of the histone H2AX 
at serine 139. This so-called γ-H2AX modifi cation is dependent on the action of mem-
bers from the phosphatidylinositol 3-kinase (PI3K)-like family of kinases, which 
includes ataxia telangiectasia-mutated (ATM), AT-related (ATR) and  DNA-dependent 
protein kinase (DNA-PK)   [ 2 ]. Depending on the type of lesions induced, different 
DNA repair mechanisms are activated. In eukaryotic cells, damaged bases and nucleo-
tides are repaired by  base excision repair (BER)   and  nucleotide excision repair (NER) 
pathways  , respectively, while DSBs are repaired by two major mechanisms: homolo-
gous recombination (HR) and non- homologous end joining (NHEJ) [ 1 ]. 

  Phospho-H2AX   is a very robust marker of DNA double-stranded breaks, which can 
be stained for. This will visualise phospho-H2AX foci—bright dots—in the nucleus. 
These foci can be quantifi ed by counting the number of positive cells or by counting the 
number of foci per nucleus. We have used this staining in the past to follow DNA dam-
age repair kinetics, using phospho-H2AX as a marker [ 3 ]. We cultured cancer cells on 
 coverslips  , irradiated them with 2 Gy and fi xed the cells after 0, 1, 3, 24 and 48 h. We 
stained for phospho-H2AX and analysed the number of positive cells. This allows quan-
tifi cation of the repair of DNA double-stranded breaks over time. As we were setting up 
this staining, we observed that cancer cells could exhibit unusual behaviour when it 
comes to the presence of phospho-H2AX in their nuclei. We noticed that even without 
being irradiated, cancer cells could display phospho-H2AX foci, a feature that is absent 
in normal, healthy cells [ 4 ,  5 ]. This positivity has been related to genomic instability and 
potentially to  telomere erosion and dysfunction   [ 6 ]. We therefore believe that this proto-
col is not only useful to monitor repair of DNA double-stranded  breaks   after DNA dam-
age in a number of cell types (not limited to cancer cells), but can also provide a tool to 
study genomic instability. Combining staining against H2AX with stainings against 
microenvironmental parameters can provide spatial information on where DNA damage 
or genomic instability is most prevalent within the  tumour microenvironment  , for exam-
ple relative to regions of hypoxia, blood vessels, necrotic tissue, etc. 

 This protocol contains details for fi xed cells, cryo- and  formalin-fi xed paraffi n- 
embedded (FFPE) sections  . We also give an example on how a staining for multiple 
markers in combination with H2AX can be performed on cryosections, enabling 
analysis of phospho-H2AX expression in connection with the tumour microenvi-
ronment (hypoxic regions and proximity to blood vessels). Examples of the end 
results of our stainings are provided in Figs.  1.1  and  1.2 .

1.2         Protocol 

1.2.1      Materials Needed   

1.2.1.1     General 

•     Staining dish and rack, and staining tray (see Fig.  1.3a, b )
•      Tris-buffered saline (TBS, 10 mM Tris base, 150 mM NaCl, pH 7.4)  

A. Nagelkerke and P.N. Span
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•   Bovine serum albumin (BSA, A7906, Sigma Aldrich, St. Louis, MO, USA)  
•   Triton X-100 (T8787, Sigma Aldrich, St. Louis, MO, USA)  
•   Rabbit-anti-phospho-H2AX (#2577, Cell Signaling Technology, Danvers, MA, 

USA)  
•   Super PAP-pen (00-8899, Life Technologies, Carlsbad, CA, USA)     

1.2.1.2     For  Fixed Cells   and  Cryosections   

•     Cy3-conjugated Affi niPure Fab fragment donkey-anti-rabbit (711-167-003, 
Jackson ImmunoResearch, West Grove, PA, USA) or equivalent  

•   Hoechst 33345 (B2261, Sigma Aldrich, St. Louis, MO, USA)  
•   Fluoromount W (21634.01, Serva, Heidelberg, Germany)    

 Optional:

•    9 F1 (undiluted supernatant from 9 F1 cells, which produce a monoclonal antibody 
to mouse endothelium)  

  Fig. 1.1    Examples of phospho-H2AX stainings on  fi xed cells   ( a ), frozen sections ( b ) and FFPE 
sections ( c ). The MDA-MB-231 breast cancer cells in ( a ) were irradiated with 2 Gy and fi xed after 
1 h. The SSCNij3 head and neck squamous cell carcinoma xenografts of ( b ) and ( c ) were irradiated 
with 10 Gy and harvested after 24 h. Scale bars equal 100 μm       

 

1 Staining Against Phospho-H2AX (γ-H2AX) as a Marker for DNA Damage...



4

  Fig. 1.2    Example of a phospho-H2AX staining ( a ) on a cryosection of a  C38 colon carcinoma 
xenograft   with endogenous expression of phospho-H2AX. Phospho-H2AX was combined with a 
staining against hypoxia with pimonidazole ( b ), blood vessels ( c ) and nuclei ( d ). ( e ) and ( f ) repre-
sent how phospho-H2AX is localised with respect to hypoxia and vasculature. A composite image 
is shown in ( g ). Scale bars equal 100 μm       
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•   Rabbit-anti-pimonidazole (a kind gift from J.A. Raleigh, also commercially 
available from Hypoxyprobe, Inc., Burlington, MA, USA)  

•   Alexa 647-conjugated chicken-anti-rat (A21472, Life Technologies)  
•   Alexa 488-conjugated donkey-anti-rabbit (A21206, Life Technologies)     

1.2.1.3    For FFPE Sections 

•     Histosafe (Adamas Instruments BV, Leersum, The Netherlands)  
•   70 %, 90 %, 96 %, 100 % EtOH  
•   Target retrieval solution pH 6.0 (S2369, DAKO, Copenhagen, Denmark)  
•   H 2 O 2  (30 %, 76051800, Boom, Meppel, The Netherlands)  
•   Methanol  
•   Normal donkey serum (017-000-001, Jackson ImmunoResearch)  

  Fig. 1.3    Example of a staining dish and rack ( a ). All rinse steps are performed in these dishes. 
Example of a staining tray ( b ). All incubation steps are performed in this tray. Wet tissues are 
added to bottom of the tray to prevent evaporation       
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•   Biotin SP-conjugated Affi nipure Fab fragment donkey-anti-rabbit (711-067-003, 
Jackson ImmunoResearch)  

•   Vectastain ABC kit elite (PK-6100, Vector, Burlingame, CA, USA)  
•   DAB, peroxidase substrate kit (SK-4100, Vector)  
•   Hematoxylin (S3301, DAKO)  
•   Mounting medium (KP7275, Klinipath, Duiven, The Netherlands)      

1.2.2     Procedure 

1.2.2.1    Fixed Cells and  Cryosections   

 To stain for phospho-H2AX in cells, we fi x them in ice-cold (−20 °C) MetOH for 
10 min at 4 °C.    Cryosections can be fi xed in cold (4 °C) acetone for 10 min at 4 °C. Do 
not fi x cells cultured on polystyrene dishes with acetone, as acetone will destroy plas-
tic. Allow the fi xing agents to evaporate from your slides before continuing.

•    Encircle your sections with a PAP-pen (see Fig.  1.4a ).
•      Rehydrate your slides for 30 min in TBS.  
•   Block for 30 min with 5 % normal donkey serum in TBS with 1 % BSA and 

0.2 % Triton X-100 (see Fig.  1.4b ).    

 DO NOT RINSE; PROCEED TO PRIMARY ANTIBODY

•    Incubate overnight at 4 °C with rabbit-anti-phospho-H2AX 1:500 in TBS with 
1 % BSA.  

•   The following day, rinse your slides three times in TBS, and leave the last rinse 
for 30 min.  

•   Incubate for 1 h at room temperature with secondary antibody: Cy3-conjugated 
donkey-anti-rabbit 1:600 in TBS.  

•   Rinse your slides three times in TBS, and leave the last rinse for 30 min.  
•   Stain nuclei with Hoechst (1 mg/ml stock) 1:3000 in TBS for 5 min at room 

temperature.  
•   Mount slides with Fluoromount W.  
•   Let your slides dry at room temperature in the dark.  
•   You can check your slides under the microscope the next day.     

1.2.2.2     Alternative Procedure to Analyse Multiple Markers 
on Cryosections 

 In this section we provide a protocol to stain against phospho-H2AX, whilst at the 
same time analysing hypoxia, through a staining against pimonidazole [ 7 ], vessels 
and all nuclei.

A. Nagelkerke and P.N. Span
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