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Vaccines are currently regaining attention from members of the medical and scientific com-
munities but even the broader public, including heads of state. This level of public aware-
ness of the fundamental relevance of vaccines for global human well-being has been 
rekindled by dramatic threats of rapidly emerging infectious diseases (predominantly caused 
by viruses) and increasingly widespread multidrug-resistant bacterial infections. Insect- 
borne Zika virus and Ebola fever are only the most recent examples demonstrating a persis-
tent vulnerability of human society to such primordial threats. In another area, cancer 
immunotherapy, vaccines are a promising, innovative treatment modality, too. In future, 
integrated treatment regimens that include cancer vaccines may enable patients to better 
regain immunological control over the tumor, superseding or complementing today’s 
immune checkpoint inhibitors.

RNA vaccines, the subject of this volume, span a spectrum from recombinant viruses to 
self-amplifying mRNA and nonreplicating mRNA vectors. Given this breadth, we firmly 
believe that RNA technology will eventually spawn vector platforms of enormous medical 
and commercial potential. All RNA vaccines share distinct features, which will likely con-
tribute to their continuing relevance:

●● Like viruses, they provide integrated stimuli to adaptive and innate immunity, i.e., anti-
gen expression in situ and danger signaling, e.g., via toll-like receptor pathways.

●● Like live vectors, they induce “balanced” immune responses that comprise humoral and 
cellular effectors as well as immunological memory.

●● Synthetic RNA vaccines allow for a combination of different antigens without increasing 
the complexity of vaccine formulation, thus facilitating speedy and flexible production.

●● Due to “vector neutrality” they generally allow for highly repetitive vaccination sched-
ules with consistent boost potential and no or little immune response directed against 
the vector.

●● Thermostable RNA vaccines could simplify transport and stockpiling even in the absence 
of a cold chain, a frequently underestimated hurdle for global disease control.

In any case, unlocking this potential will require continued optimization as well as 
informed choice of applications.

Thus, the aim of this volume is to facilitate both efforts by assembling an overview of the 
field and practical hints for vaccinologists in academia and industry. Different RNA vaccines 
exhibit diverse sets of trade-offs with respect to efficacy, reactogenicity, and handling that 
reflect the great versatility of this class of vaccines. To choose the best way ahead, a basic 
understanding of the regulatory framework, including aspects of nonclinical safety testing 
and good manufacturing practice, is essential. The scope of protocols included in this book 
is laid out and discussed in more detail (together with some scientific context and additional 
references) in the introductory, first chapter. The protocols include relevant pointers to cur-
rent “best practice” with concrete tips and tricks in the notes section of each chapter.

Preface
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Finally, we are well aware that the relevant body of knowledge is rapidly developing and 
cannot realistically be captured in a single volume. We, therefore, sincerely hope that this 
compendium may engender increased collaboration on RNA vaccines between basic and 
applied scientists in academia, government, and industry to develop future solutions for 
today’s challenges. In any technological field, we need reliable maps that are drawn from 
facts and open discourse to safely navigate both hyperbole and pessimism. We hope that this 
book will offer helpful orientation.

Ingelheim am Rhein, Germany Thomas Kramps 
  Knut Elbers 

Preface
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Chapter 1

Introduction to RNA Vaccines

Thomas Kramps and Knut Elbers

Abstract

RNA vaccines are attractive, because they exhibit characteristics of subunit vaccines and live-attenuated 
vectors, including flexible production and induction of both humoral and cellular immunity. While human 
proof-of-concept for RNA vaccines is still pending, the nascent field of RNA therapeutics has already 
attracted substantial industry and government funding as well as record investments of private venture 
capital. Most recently, the WHO acknowledged messenger RNA (mRNA) as a new therapeutic class. In 
this chapter, we briefly review key developments in RNA vaccines and outline the contents of this volume 
of Methods in Molecular Biology.

Key words RNA vaccine, Messenger RNA, Self-amplifying RNA, Replicon, RNA virus vector

1 Introduction

Vaccination remains a key medical innovation. In essence, vaccines 
stimulate the immune system to form a prophylactic or curative 
response against a given disease and could offer a powerful treat-
ment modality for a wide range of conditions with unmet medical 
needs [1]. However, realizing this conceptual potential faces con-
siderable challenges [2]. In many instances, insufficient under-
standing of immune correlates and mechanisms of protection are 
major impediments [3]. Also, induction of potent effectors and 
long-lasting memory can be difficult, e.g., against pathogens local-
ized at mucosal or immune privileged sites. The induction of effec-
tive T cell responses or of broadly neutralizing antibodies in 
particular remains a key challenge in addressing mutable microbial 
pathogens [4, 5]. Finally, an additional layer of complexity exists in 
individualized approaches, for example in the tailored immuno-
therapy of cancer [6].

However, the recent integration of vaccinology and “omics” 
technology offers exciting prospects of addressing such challenges 
[3]. For example, they may allow researchers to systematically 
unravel correlates of protection [7] or better understand dynamic 
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host–pathogen interactions [8, 9]. On the other hand, we still lack 
validated vaccine platforms that complement such analytic capa-
bilities and facilitate effective vaccine development [10]. Suitable 
vaccine technologies would enable high-throughput screening for 
protective antigens as well as rapid synthesis and testing of selected 
lead compounds [11]. Due to their simplicity and versatility, syn-
thetic RNA vectors offer particular promise as tools for rapid 
screening and development of vaccine products than traditional 
approaches (including lower cost) [12–17].

2 Messenger RNA and Self-Amplifying RNA (Replicon) Vaccines

The concept of synthetic RNA vaccines is not new, but ingenious: 
In a seminal paper published a quarter century ago, Wolff et al. first 
showed that injection of uncomplexed messenger RNA (mRNA) 
led to protein expression in mice [18]. Instead of applying the 
protein antigen, RNA vaccines carry genetic information for 
endogenous protein expression in the vaccinee, similar to infection 
with a virus. In short order of this initial discovery, the immunoge-
nicity of the format was shown in different test systems (reviewed 
in ref. 12), but overall the impression prevailed that producing and 
handling synthetic RNA vectors were prohibitive in terms of cost 
and complexity. By and large, attention focused on plasmid DNA 
technology or recombinant viral vectors instead [19].

Initial efforts by groups that pioneered mRNA vaccines mostly 
addressed cancer immunotherapy with no validated benchmarks 
to compare and optimize the format [20–23]. While some 
researchers favored direct injection of naked mRNA [20, 24], 
others used in vitro transfection of dendritic cells (DC) with 
mRNA to boost immunogenicity [25, 26]. For both approaches, 
academic and start-up initiatives established clinical grade (GMP)-
conform production and provided important basic data on the 
safety and immunogenicity in humans [13]. The first successful 
preclinical proof-of-concept studies of prophylactic RNA vaccines 
in small and large animals, which also included head-to-head com-
parison with licensed comparators, have been reported only rela-
tively recently [27–29]. These studies indicated principal feasibility 
and encouraged extended testing of an mRNA-based prophylactic 
vaccine in a first human clinical trial (NCT02241135). These 
activities involved increasing industry and government funding 
and led to record investments of venture capital [30]. Most 
recently, the WHO acknowledged mRNA as a new therapeutic 
class with its own international nonproprietary nomenclature (the 
suffix “-meran” as first used for “nadorameran,” a rabies-specific 
vaccine) [31, 32].

2.1 Historical 
Background

Thomas Kramps and Knut Elbers
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RNAs are composed of strings of alternating nucleotides (generally 
uridylate, adenylate, guanylate, and cytidylate) which can also be 
subject to chemical modification [33]. Synthetic RNA vaccine vec-
tors contain an open reading frame that encodes the antigen of 
interest and optimized, cis-acting flanking structures: the 5′ and 3′ 
untranslated regions (UTRs) flanking the open reading-frame 
(ORF), terminal 5′ 7-methyl guanosine cap structure (cap), and 3′ 
polyadenylated tail (polyA). Ultimately, all these elements serve to 
increase antigen yield by maximizing the rate of translation and/or 
vector persistence within transformed cells through interactions 
with regulatory proteins, other RNAs, and metabolites. As such, 
the 5′ cap, 5′ UTR, ORF, 3′ UTR, and polyA offer relevant targets 
for optimization of mRNA vectors [22, 34]. In the sequence of 
events leading to protein synthesis, translational initiation is rate- 
limiting and tightly regulated by the orchestrated recruitment of 
trans-acting factors to specific RNA sequences. Thus, improving 
translational initiation by sequence optimization is also important 
for the design of better mRNA vectors. We believe that continuing 
optimization will result in greater carrying capacity, further increas-
ing potency, reducing cost, and facilitating the formulation of mul-
tivalent products.

RNA replicon vaccines present a complementary approach and 
very interesting alternative to non-replicating mRNA vectors [35]. 
This alternative setup makes use of accessory viral elements that 
lead to self-amplification of the messenger RNA [36]. A major 
strength of this approach is that, due to self-amplification of the 
vector in vivo, high-level and long-lasting protein expression is 
readily feasible with available technology. A persistent challenge, 
however, remains in the lower yield and specificity of production of 
these much larger molecules and—arguably—interference by anti- 
vector immunity [35, 37].

The typical product profile of synthetic RNA vaccines differs sub-
stantially from that of traditional protein- or pathogen-based 
vaccines:

●● For synthesis of the RNA vector, only information about the 
nucleic acid sequence is required. Thereby, handling of infec-
tious agents, environmental risks, or restrictions of global vac-
cine distribution can be eliminated [15].

●● While it can take years and hundreds of millions of dollars for 
a new manufacturing facility for traditional vaccine products to 
become productive, RNA vaccines are produced by a highly 
standardized process with relatively minor adaptations to 
account for variations in sequence length or composition. This 
generally reduces lead- time and cost [15].

2.2 Vector Design

2.3 Production

Introduction to RNA Vaccines
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●● RNA represents a relatively stable drug-substance, as long as 
exposure to RNase is prevented [38]. RNA can be lyophilized 
for prolonged storage at ambient temperature, greatly facilitat-
ing distribution and storage [27].

The manufacture of bulk RNA by enzymatic in vitro transcrip-
tion is well established [38]. Alternative protocols to generate tem-
plate DNA, e.g., by polymerase chain reaction, currently limit 
design, fidelity, and yield. They have been employed for antigen 
screening [11], but remain much less common and are not dis-
cussed in this book. In the context of cancer vaccines flexible anti-
gen selection is key to match the most relevant antigens with a 
given cancer type or for the design of patient-specific vaccines [9]. 
Such personalized therapeutics recently received much stronger 
attention and several academic groups and biotech companies initi-
ated efforts to validate RNA vaccines encoding patient specific 
neoantigens in the clinic [39].

RNA exerts direct immune-stimulating effects [33, 40]. This 
RNA-mediated adjuvanticity may be modulated by composition 
and formulation: In the case of synthetic RNA vaccines, factors 
such as stabilization against RNase-mediated degradation, particle 
size, and charge influence the localization of RNA in cells or lym-
phatic organs and their resulting adjuvant activity [41–43].

The signaling pathways involved in RNA-mediated stimulation 
of the immune system are understood in some detail [44–46]. 
Innate responses to RNA are induced by dedicated pattern recog-
nition receptors (PRR) upon detection of aberrant localization or 
unusual structural features of the RNA adjuvant [47]. RNA-specific 
PRR include endosomal toll-like receptors (TLR) 3, 7, and 8, the 
cytoplasmic receptors retinoic acid inducible gene I (RIG-I), mela-
noma differentiation antigen 5 (MDA5), protein kinase R (PKR), 
and others. They are differentially expressed in various cells and 
tissues, ranging from narrow expression in specific immune cells 
like plasmacytoid dendritic cells (pDC) and B cells for TLR7, to 
virtually ubiquitous expression, e.g., for RIG-I and PKR [48]. The 
differential stimulation of these molecules and cell types will thus 
shape the immune response to a given RNA vaccine. In designing 
preclinical test strategies, it is important to keep in mind that 
expression patterns and specificities of RNA-specific PRR may vary 
between humans and an animal test species of choice [48].

Apart from deriving adjuvant effects from their chemical com-
position, protein-coding RNA vectors can serve as “genetic adju-
vant”. Here, co-expression of antigen with immune modulatory 
factors, such as cytokines, would enhance interactions of antigen 
presenting cells with immune effectors [49]. Genetic adjuvants 
extend design space vastly, but also raise additional complexities 
regarding delivery and—possibly—safety.

2.4 Adjuvantation

Thomas Kramps and Knut Elbers
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