Juan Rodríguez-Hernández

Polymers against Microorganisms

On the Race to Efficient Antimicrobial Materials

Polymers against Microorganisms

Juan Rodríguez-Hernández

Polymers against Microorganisms

On the Race to Efficient Antimicrobial Materials

Juan Rodríguez-Hernández Institute of Polymer Science & Technology (ICTP-CSIC) Madrid, Spain

ISBN 978-3-319-47960-6 DOI 10.1007/978-3-319-47961-3 ISBN 978-3-319-47961-3 (eBook)

Library of Congress Control Number: 2016954979

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Bacterial contamination is still an unresolved problem present in cases in which a biomaterial is required. This is an issue independent of the biomaterial considered and is particularly serious in those cases in which long-term implants are employed. In this context, polymers have been proposed as interesting candidates to improve the biomaterial performance in order to prevent microbial contamination. Different previous books have been published focusing their efforts on one of the aspects of antimicrobial polymers: the synthesis, in the biology of the microorganisms in contact with synthetic materials or related to their final use (e.g., food packaging). This book aims to present a complete overview of this rapidly evolving field providing a concise, clear, and precise image of the most important aspects involved in the use of polymers to combat microorganisms.

As will be depicted throughout this book, polymers' mode of action relies on physiochemical parameters such as hydrophobicity and cationic charge, rather than specific receptor-mediated interactions, so the activity of the polymers can be modulated by tuning key structural parameters. Taking into account the mechanism of action, polymers exhibit important advantages that have motivated their investigation as antibacterial materials. These include that polymers do not provide toxicity to the environment, do not develop resistance, and have an enhanced antimicrobial action. Other important advantages are their versatility; polymers are easy to process and cheap.

I hope that this text will be helpful for readers with very different backgrounds, ranging from chemists, biochemists, materials scientists, and engineers, who aim to have a general and complete overview of the use of polymers in the preparation of antimicrobial materials. This book is not presented as a manual and will not provide answers to all possible questions about polymers with antimicrobial properties. On the contrary, this book is intended to provide an introductory view highlighting important aspects including synthesis, surface functionalization and structuration, and the extension of these important aspects to the preparation of antimicrobial fibers, hydrogels, or membranes among others.

This text, devoted to the recent developments and ongoing works concerning the use of polymers as antifouling and antimicrobials for different applications, is organized as follows. The first part of this book (Chaps. 2 and 3) describes the basics of bacterial infections and the main functional groups incorporated into polymeric structures to avoid microorganism contamination. Chapter 4 depicts the use of nanostructured polymer assemblies in solution as antimicrobials.

The design and fabrication of polymer surfaces is analyzed in Chaps. 5 and 6. Chapter 5 discusses the alternatives to modify the surface chemical composition in order to introduce both antifouling and/or antimicrobial functional groups. Chapter 6 concerns those approaches that resort to both the modification of the surface topography and those that combine surface functionalization and patterning to remove bacterial contamination and biofilm formation.

Chapters 7, 8, and 9 are devoted to the use of antimicrobial polymers for the elaboration of three different materials. The approaches developed for the fabrication of nano- and microstructured fibers are depicted in Chap. 7. In Chapter 8, the synthesis and modification of hydrogels to improve the bacterial adhesion and to introduce antimicrobial moieties are described. Finally, Chap. 9 focuses on the elaboration of membranes with enhanced antifouling properties.

The last part of this book will analyze the eventual environmental concerns as well as safety issues related to the use of nanoparticles. The last chapter will summarize the future trends on the development of more sophisticated and effective antimicrobial polymer systems.

Madrid, Spain

Juan Rodríguez-Hernández

Acknowledgements

I am indebted to many people that allowed this book to enter existence: my coworkers at the Institute of Polymer Science and Technology (ICTP-CSIC), the Macromolecular Engineering group (MEG) and also the Functionalization of Polymers group (FUPOL). In addition, I would like to thank my wife Sonia, my daughter Eva, and my parents and siblings who really encouraged me to complete this project.

Contents

1	Poly	mers A	Against Microorganisms	1	
	1.1	.1 Infectious Diseases: Historical Context			
		1.1.1	Mechanisms of Resistance to Antibacterial Agents	6	
	1.2	Impla	nt-Associated Infections	7	
	1.3	The U	se of Macromolecules as Antimicrobials	8	
	1.4	About	This Book	9	
	Refe	rences.		10	
2	Bact	erial I	nfections: Few Concepts	13	
	2.1	Introd	uction	13	
	2.2	Bacterial Structure			
	2.3	Interac	ctions Mechanisms of Antimicrobials with Bacteria		
		in Sol	ution	15	
		2.3.1	Bacterial Targets of Antibiotics	15	
		2.3.2	Antibiotic Resistance Developed by Bacteria	16	
		2.3.3	Macromolecular Antimicrobials	18	
	2.4	Biomaterials Surface: Device-Associated Infections		22	
		2.4.1	Adhesion, Adherence, and Attachment	23	
		2.4.2	Bacterial Adhesion to Biomaterials Surfaces	23	
		2.4.3	Biofilm Formation	26	
		2.4.4	Antibiotic Resistance of Bacteria in Biofilms	28	
		2.4.5	Approaches Developed to Achieve Polymeric		
			Biomaterials with Antibacterial Properties	30	
	2.5	Conclusions		31	
	Refe	References			
3	Che	mical A	Approaches to Prepare Antimicrobial Polymers	39	
	3.1	Introduction			
	3.2	Types	of Antimicrobial Groups Incorporated in Polymers	40	
		3.2.1	Quaternary Ammonium/Phosphonium	41	
		3.2.2	N-Halamine and Other Halogen Containing Polymers	43	

		3.2.3	Antimicrobial Peptides and Other Polymers	1	
		321	Other Antimicrobial Functional Groups	4	
	2 2	Sunth	other Antimicrobial Functional Oroups	4	
	3.5	Intero	ctions Batwaan Bactaria and Balymeric Materials:	4	
	5.4	Role of the Macromolecular Parameters on the Antibacterial			
		A otivi		/	
		2 4 1	Hydrophilio/Hydrophobio Polonoo	4	
		5.4.1 2.4.2	Molecular Weight	4	
		5.4.2 2.4.2	Delawsen Tenesle se	-	
		5.4.5 2.4.4	Polymer Topology		
		3.4.4	Monomer Derivatization with Alkyl Chains:	,	
		2 4 5	Spacer Length and Alkyl Chain Effect		
		3.4.5	Other Macromolecular Parameters Involved		
			in the Antibacterial Activity	-	
	3.5	Evalu	ation of the Antimicrobial Activity: In Vitro Testing	-	
	3.6	Concl	usions	(
	Refer	ences		(
4	Nano-Micro Polymeric Structures with Antimicrobial				
-	Activ	ity in S	Solution	,	
	4.1	Introd	uction		
	4.2	Amph	hiphilic Antimicrobial Structures in Solution:		
		Kev V	Variables to Take into Account		
	4.3	Antim	nicrobial Random/Alternated Copolymers in Solution		
	4.4	Self-A	Assembled Block Copolymer-Based Antimicrobial		
		Nanos	structures		
	45	Hybri	d Organic/Inorganic Nano-Assemblies in Solution		
	4.6	Polym	neric Nanocansules		
	47	Polym	peric Nanoparticles		
	4.7	Core/	Shell Nanoparticles		
	4.0 / 0	Eabric	pation of Microspheres for Antibacterial Purposes		
	4.10	Respo	value Nanonarticles/Assemblies		
	4 11	Concl	usione		
	T.11 Refer	ences	usi0115		
	Kelei	chees			
5	Antir	nicrobi	al/Antifouling Surfaces Obtained		
	by St	irface I	Modification		
	5.1	Introd	uction		
	5.2	Polyn	her Surface Modification		
	5.3	Techn	iques to Functionalize Polymer Surfaces		
	5.4	Anti-A	Adhesive Polymer Surfaces: Antifouling		
	5.5	Antib	acterial Coatings	1	
		5.5.1	Biocide-Releasing Antibacterial Coatings	1	
		5.5.2	Intrinsically Bioactive Materials: Contact-Active		
			Biocidals	1	

	5.6	Dual-	Function Antibacterial Surfaces for Biomedical	
		Appli	cations	107
		5.6.1	Repelling and Releasing Surfaces	107
		5.6.2	Contact-Killing and Repelling	107
		5.6.3	Releasing and Contact-Killing	108
	5.7	Respo	onsive Antibacterial Surfaces	109
		5.7.1	Thermoresponsive Surfaces	111
		5.7.2	pH-Responsive Surfaces	112
		5.7.3	Bioresponsive Surfaces	112
		5.7.4	Other Responsive Interfaces	113
	5.8	Concl	usions	115
	Refe	rences.		115
6	Nan	o/Micr	ostructured Antibacterial Surfaces	125
	6.1	Introd	uction	125
	6.2	Fabricating Micro- and Nanometer Size Patterns		
		on Po	lvmer Surfaces	127
		6.2.1	Innovative Lithographic Techniques	127
		6.2.2	Laser-Based Micro-Nanopatterning	128
		6.2.3	Writing Using Electron and Ion Beams	128
		6.2.4	Molding	129
		6.2.5	Pattern Formation by Surface Instabilities	129
	6.3	Micro	/Nanostructured Antimicrobial Surfaces in Nature	131
		6.3.1	Nanostructured Surfaces that Repel/Kill Bacteria	
			in Nature	132
		6.3.2	Hierarchically Structured Surfaces with Antifouling	
			Properties	134
	6.4	Engin	eering Bioinspired Surfaces with Either Micro-	
		or Na	nostructured Topographic Structures	134
		6.4.1	Synthetic Structured Polymer Surfaces with Micrometer	
			Size Patterns	135
		6.4.2	Nanoscale Surface Patterns in Polymeric Materials	
			as Antimicrobial Materials	135
	6.5	Engin	eered Surfaces with Micro/Nanostructured	
		Topog	graphic Features and Chemically Controlled Surface	138
	6.6	Nanostructured Composite Films		
	6.7	Nanostructured Responsive Surfaces		
	6.8	Concl	usions	148
	Refe	erences.		148
7	Anti	imicrol	bial Fibers and Fabrics Obtained	
	by E	lectro/	Melt Spinning	155
	7.1	Introd	uction	155
	7.2	Appro	baches for Fiber Fabrication	156
		7.2.1	Melt, Solution, and Emulsion Spinning	156
		7.2.2	Electrospinning	157
		7.2.3	Melt Blowing	158

	7.3	Fibers Bearing Antimicrobial Molecules	158		
	7.4	Hybrid Organic–Inorganic Nanofibers with Antimicrobial			
		Properties	161		
	7.5	Antibacterial Fibers with Covalently Bonded Biocides	166		
	7.6	Fibers with Responsive Antimicrobial Activity			
	7.7	Biodegradable Fibers with Antimicrobial Properties	172		
	7.8	Conclusions	174		
	Refer	ences	174		
8	Antii	nicrohial Hydrogels	179		
U	8 1	Introduction	179		
	8.2	Types of Hydrogels	180		
	8.2 Types of Trydrogels as Supports of Antimicrobial Agents		181		
	0.5	8.3.1 Hydrogels Containing Antimicrobial	101		
		Motel Nepoperticles	191		
		8.2.2. Hudrogels Loaded with Antibiotics	101		
		8.3.2 Hydrogels Loaded with Antimiorphiel A conta	100		
	0.4	8.5.5 Hydrogers Loaded with Antimicrobial Agents	109		
	8.4	Hydrogels with Innerent Antimicrobial Properties	190		
		8.4.1 Antimicrobial Peptide-Based Hydrogels	191		
		8.4.2 Antimicrobial Hydrogels Prepared	100		
	o -	from Natural Polymers	192		
	8.5	Dual Antimicrobial/Antifouling Hydrogels	195		
	8.6	Responsive Hydrogels with Antimicrobial Properties	196		
	8.7	Conclusions	199		
	Refer	ences	200		
9	Antil	pacterial Polymeric Membranes	205		
	9.1	Introduction to Polymer Membranes	205		
	9.2	Contamination of Polymeric Membranes	207		
		9.2.1 Membrane Biofouling	208		
	9.3	Strategies for the Modification of Polymeric Membranes	209		
	9.4	Types of Antifouling/Antimicrobial Polymers Employed			
		in the Fabrication of Membranes			
		9.4.1 Membrane Surface Modification			
		with Anti-Adhesive Polymers	213		
		9.4.2 Antimicrobial Biocides and Polymers Incorporated	215		
		in Polymeric Membranes	218		
	95	Responsive Membranes	225		
	9.5	Conclusions	225		
	9.0 Dofor		220		
10	Envi	ronmental and Safety Issues	231		
	10.1	Introduction	231		
	10.2	Using Small Biocides Released from the Polymer 2.			
	10.3 Alternatives to Small Biocides: Nonleaching				
		Polymer Materials	234		

Contents

	10.4	Safety Concerns Related to the Use of Different Antimicrobial			
		Polymers: Cytotoxicity Against Mammalian Cells			
		10.4.1	General Mechanisms of Antimicrobial Toxicity	238	
		10.4.2	Cytotoxicity of Antimicrobial Polymers	240	
		10.4.3	Cytotoxicity of Hybrid Antibacterial Nanostructures	240	
	10.5	Environmental Friendly Non-Fouling Polymeric Materials			
		10.5.1	Strategies Approaches Based on the Modification		
			of the Surface Chemistry	242	
		10.5.2	Fabrication of Nontoxic Antifouling Interfaces Based		
			on the Surface Physical Properties	243	
	10.6	Particular Environmental and/or Safety Concerns Related			
		to the Final Use and Conclusions.			
		10.6.1	Particular Considerations in Polymeric Antimicrobial		
			Packaging Systems	245	
		10.6.2	Modern Approaches to Environmentally Effective		
			Marine Antifouling Coatings	246	
	10.7	Conclus	sions	248	
	References			248	
11	Applications and Current Status of Antimicrobial Polymers				
	11.1	Introdu	ction	255	
	11.2	Main A	reas of Application of Antimicrobial Polymers	256	
		11.2.1	Applications in the Fabrication of Medical		
			and Healthcare Products	256	
		11.2.2	Antimicrobial Polymers in Food Packaging		
			Applications	258	
		11.2.3	Textile Products	259	
		11.2.4	Water Treatment	261	
		11.2.5	Antimicrobial Paints	269	
	11.3	Gap Between Lab-Scale and Reality			
	11.4	Clinical Status of Antimicrobial Polymers			
	11.5	5 Conclusions			
	References				

Chapter 1 Polymers Against Microorganisms

Abstract The significant advances on the control and prevention of infectious diseases carried out during the first decades of the twentieth century produced an optimist sensation about the possibility to completely eradicate any illness. But this optimistic vision rapidly changed as a result of the reemerging of new and in some cases antimicrobial-resistant infections. Examples of the novel/old/appearing/reappearing infectious diseases include the Ebola virus, HIV, or Legionnaire's disease that are still a public health problem in the twenty-first century.

Within this context, two main aspects have deserved particular attention during the last decades. On the one hand, food-borne diseases are directly related to the emergence of microbial diseases. On the other hand, the emergence of antimicrobial resistance, recognized soon after the discovery of penicillin, has followed the introduction of most every new drug. As will be depicted in this chapter, synthetic macromolecular antimicrobials have emerged as a highly promising class of therapeutics with immense potential for combating multidrug-resistant microbes. In effect, the polymers mode of action relies on physiochemical parameters such as hydrophobicity and cationic charge, rather than specific receptor-mediated interactions, the activity of the polymers can be modulated by tuning key structural parameters. Taking into account the action mechanism, polymers exhibit in comparison with other materials, important advantages that have motivated their investigation as antibacterial materials. These include that polymers do not provide toxicity to the environment, do not develop resistance, and have an enhanced antimicrobial action.

Keywords Bacterial resistance • Infectious disease • Antibiotics • Implants • Antimicrobial polymers

1.1 Infectious Diseases: Historical Context

The significant advances on the control and prevention of infectious diseases carried out during the first decades of the twentieth century produced an optimist sensation about the possibility to completely eradicate any illness [1]. Prominent scientists of that time such as Henry Sigerist [2] and later others including William H. Stewart [3] anticipated that those advances will be the key to definitely prevent infection.

[©] Springer International Publishing AG 2017 J. Rodríguez-Hernández, *Polymers against Microorganisms*, DOI 10.1007/978-3-319-47961-3_1

Fig. 1.1 Leading causes of deaths in the USA in 1900 and 1997. Reproduced with permission from [1]

Pioneer and priori successful studies carried out by Sigerist and coworkers during the first three decades concluded in an extermination of many illnesses and control of many others. Later developments we carried out on the fabrication of novel antibiotics. These antibiotics were successfully employed between 1940 and 1960 and further developed by pharmaceutical companies during the following decades. However, in the 1980s the tendency varied and pharmaceutical companies started to reduce the development of new drugs or redirecting it away from antibiotics [1, 4, 5].

But this optimistic vision rapidly changed as a result of the reemerging of new and in some cases antimicrobial-resistant infections. Examples of the novel/old/ appearing/reappearing infectious diseases include the Ebola virus, HIV, or Legionnaire's disease that are still a public health problem in the twenty-first century. The evolution of the infectious disease patterns has been thoroughly described by Cohen [1]. As mentioned in its review, at the beginning of the twentieth century, infectious diseases were the leading cause of death worldwide. In particular, in the USA, only three diseases (tuberculosis, diarrhoeal disease, and pneumonia) were the cause of 30 % of deaths (Fig. 1.1).

However, by the end of the twentieth century, in most of the developed world, mortality from infectious diseases had been replaced by mortality from chronic illnesses such as heart disease, cancer, and stroke. This situation enhanced the average life span that had increased by about 60 % to more than 76 years [6].

While this is, a priori, true for the already developed countries, those under development do still have a serious problem with infectious diseases which are still the major cause of morbidity and mortality. According to the World Health Organization, the infectious diseases caused over 13 million deaths that correspond to a quarter of the deaths worldwide [7]. In particular, three diseases are the most common: pneumonia (3.5 million), diarrhoeal disease (2.2 million) and tuberculosis (1.5 million) [1]. Interestingly, these diseases were common on the developed world at the beginning of the twentieth century.

However, as depicted by Cohen [1] in both developed and developing worlds exhibit new microorganisms and infectious diseases have been recognized. These include toxic shock syndrome, Lyme disease, HIV, Helicobacter pylori, Nipah virus, flesh-eating bacteria, or Legionnaire's disease just to mention a few of them. Moreover, some of these infectious diseases are nowadays the origin of other chronic illnesses. For instance, Helicobacter pylori has been evidenced to be at the origin of peptic ulcers.

It is also important to note that new infectious agents had the potential for rapid international spread. This is for instance the case of Ebola or Marburg virus. Other, on the contrary, dengue fever and in spite of their apparently easier control they were reemerging. This is the case of yellow fever or malaria.

In effect, in addition to the appearance of new microorganisms, the reemerging of old infections as a result of resistance to antimicrobial agents is currently a serious global problem. This involves both developing and developed countries. For instance, in the USA from 1981 to 1995, this increase was at a rate of 4.8% per year from 36 to 63 deaths per 100,000 [8].

Within this context, two main aspects have deserved particular attention during the last decades. On the one hand, food-borne diseases are directly related to the emergence of microbial diseases. According to the IOM [9]: "The potential for foods to be involved in the emergence or reemergence of microbial threats to health is high, in large part because there are many points at which food safety can be compromised." On the other hand, the emergence of antimicrobial resistance, recognized soon after the discovery of penicillin, has followed the introduction of every new drug. As a result, the IOM [9] reported that: "Microbes that once were easily controlled by antimicrobial drugs are, more and more often, causing infections that no longer respond to treatment with these drugs." The seriousness of this situation has increased during the twenty-first century and today antimicrobial resistance is a serious problem. Some examples of antimicrobial-resistant microbes are depicted in Table 1.1.

As mentioned above, the effect of bacterial infections significantly decreased with penicillin that became available for use in the early 1940s. In that and the following decades, small molecular weight antibiotics were used as efficient antimicrobial agents. As has been clearly explained by Ganewatta et al. [10], the targets of these antimicrobial molecules typically involved cell membranes, biosynthetic pathways, 60S ribosomes, cell wall, or genetic materials (Fig. 1.2).