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Foreword

Science has always progressed by coupling insightful observations leading to test-
able hypotheses with innovative technologies that facilitate our ability to observe 
and test them. In the field of protein science, the technologies for protein display and 
in vitro selection have had an enormous impact on our ability to probe and manipu-
late protein functional properties.

The development of site-directed mutagenesis, which allowed one to systematically 
probe a gene sequence in the late 1970s, gave birth to the field of protein engineering in 
the early 1980s. Throughout the 1980s, most scientists in the protein engineering field 
would generate and purify one mutant protein at a time and characterize its functional 
properties. Some investigators had developed selections and screens that allowed one 
to test many variants simultaneously, but these tended to be highly specific for cer-
tain proteins (notably DNA binding proteins) and focused primarily on studying pro-
tein stability. Moreover, the selections were generally done in the context of a living 
cell, which limited the range of assays that could be performed. While replica plating 
screens were available to test variant proteins out of the cell, these tended to be quite 
labor intensive, thus limiting the number of variants that could be screened.

In 1985, George P. Smith published a paper showing that small peptides derived 
from EcoRI could be inserted into the gene III attachment protein in filamentous 
bacterial phage, which could then be captured using antibodies to the small peptide. 
This observation incubated several years, and then, in the late 1980s and early 1990s, 
other groups showed it was possible to display whole proteins on gene III that were 
folded and capable of binding their cognate ligands. Moreover, it was shown that by 
appropriate manipulation of the copy number on the phage, it was possible to select a 
range of binding affinities, from weak at a high copy number to strong at a low copy 
number. These selections could all be done in vitro and under a variety of selection 
conditions, limited only by binding to a support-bound ligand.

Throughout the 1990s up to today, huge improvements have been made to the 
display technology allowing massive increases in the library number (now routinely 
>1010 variants per selection); recursive mutagenesis cycles allowing one to mutate 
as one selects; new display formats including other phage species, bacteria, yeast, 
and ribosomes; and automation to further simplify the process. As with any technol-
ogy, there are limitations. For example, not all proteins can be readily displayed on 
phage, and expression effects can bias the outcome of the selection. Nonetheless, 
phage display has had a huge impact on probing, improving, and designing new 
functional properties into proteins and peptides including binding affinity, selectiv-
ity, catalysis, and chemical and thermal stability, among others. This book edited by 
Sachdev S. Sidhu provides an excellent review of the state-of-the-art in phage display 
technology now and in the near future.

James A. Wells
President and Chief Scientific Officer

Sunesis Pharmaceuticals
South San Francisco, California
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Preface

Recent years have witnessed the sequencing of numerous genomes, including the 
all-important human genome itself. While genomic information offers considerable 
promise for drug discovery efforts, it must be remembered that we live in a protein 
world. The vast majority of biological processes are driven by proteins, and the full 
benefits of DNA databases will only be realized by the translation of genomic infor-
mation into knowledge of protein function. Ultimately, drug discovery depends on 
the manipulation and modification of proteins, and thus, the genomic panacea comes 
with significant challenges for life scientists in the field of therapeutic biotechnol-
ogy. Indeed, it has become clear that success in the modern era of biology will go to 
those who apply to protein analysis the high-throughput principles that made whole-
genome sequencing a reality.

In this context, phage display is an established combinatorial technology that is 
likely to play an even greater role in the future of drug discovery. The power of the 
technology resides in its simplicity. Rapid molecular biology methods can be used 
to create vast libraries of proteins displayed on bacteriophage that also encapsulate 
the encoding DNA. Billions of different proteins can be screened en masse and indi-
vidual protein sequences can be decoded rapidly from the cognate gene. In essence, 
the technology enables the engineering of proteins with simple molecular biology 
techniques that would otherwise only be applicable to DNA. In addition, the technol-
ogy is very much suited to the methods currently used for high-throughput screening 
and thus can be readily adapted to the analysis of multiple targets and pathways.

This book comprises 19 chapters that provide a comprehensive view of the 
impact and promise of phage display in drug discovery and biotechnology. The chap-
ters detail the theories, principles, and methods current in the field and demonstrate 
applications for peptide phage display, protein phage display, and the development 
of novel antibodies. The book as a whole is intended to give the reader an overview 
of the amazing breadth of the impact that phage display technology has had on the 
study of proteins in general and the development of protein therapeutics in particu-
lar. I hope that this work will serve as a comprehensive reference for researchers in 
the phage field and, perhaps more importantly, will serve to inspire newcomers to 
adapt the technology to their own needs in the ever-expanding world of therapeutic 
biology.

Sachdev S. Sidhu
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1.1 INtrODUCtION

Phage display technology provides a remarkably versatile tool for exploring the 
interactions between proteins, peptides, and small-molecule ligands. As such, it has 
become widely adapted for use in epitope mapping, identification of protein–peptide 
and protein–protein interactions, protein–small molecule interactions, humanization 
of antibodies, identification of tissue-targeting peptides, and many other applications 
as outlined throughout this book. However, it must be kept in mind that phage display 
is a combinatorial biology approach, not a combinatorial chemistry approach. The 
great strength of phage display over combinatorial methods that are strictly chemical 
is that the isolation of a single interacting protein or peptide attached to a phage par-
ticle is sufficient to allow the complete characterization of the isolate: the interacting 
virus can be grown up in bulk and the sequence of the displayed protein or peptide 
inferred from the DNA sequence carried within the viral particle. The other side of 
this coin is that phage display technology utilizes living systems, and is therefore 
constrained in its potential diversity by the molecular requirements of those systems.

The biological limitations that impact phage display technology are defined not 
simply by viral structure, but by the well-balanced phage–host system as a whole. 
The display of a protein or peptide on the surface of a bacteriophage particle involves 
insertion of the corresponding DNA into the gene of a structural protein and the 
expression of the foreign sequence as a fusion with the structural protein in such 
a way that it is exposed, at least in part, on the surface of the phage particle. This 
process perturbs the phage–host system and may result in anything from a negli-
gibly small alteration in phage growth rate to a complete halt of phage production. 
Disruption of any step along the way between DNA cloning and production of virus, 
including protein synthesis, protein translocation, viral morphogenesis, viral stabil-
ity, host cell binding, or subsequent steps in the infection process, can remove a par-
ticular display construct from the final phage population. Additionally, in the context 
of library screening methodology, it is also important to note that different inserts 
placed at the same site may have very different effects on the rate of viral produc-
tion, resulting in biases that can seriously impact the diversity of a phage-displayed 

1.6.1  Efficiency as a Biological Strategy for Survival .................................24
1.6.2  Phage Population Diversity .................................................................25

1.7 Biological Bottlenecks: Sources of Library Censorship .................................25
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1.9 Improved Library Construction ...................................................................... 32
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library and, consequently, the results of affinity selection experiments. Some mem-
bers of the libraries are present at much lower levels than others whereas others 
are absent. These biases must be well characterized in order to make optimal use 
of libraries in affinity selections or other experiments designed to take advantage 
of the unique properties of display libraries. Therefore, in order to understand the 
effect of biology on phage display, the way the phage interacts with its host must be 
considered in detail.

In this chapter, we outline the steps of phage–host interaction and discuss 
how those interactions may impact the diversity of phage-displayed libraries. 
Understanding these limitations in more detail should provide a starting point for 
engineering methods to minimize their effect on the use of phage display tech-
nology within the broad range of applications reviewed in this volume. Except for 
DNA replication, each step appears to have a detectable effect on the expression of 
some members of some libraries. Some effects appear significant whereas others are 
barely detectable. At the end, we briefly review identified bottlenecks in the viral 
life cycle and suggest simple strategies that can be implemented for minimizing the 
perturbations.

1.2 taXONOMY aND GeNetICS

The filamentous bacteriophages are a family of ssDNA-containing viruses 
(genus Inovirus) that infect a wide variety of gram-negative bacteria, including 
Escherichia coli, Xanthomonas, Thermus, Pseudomonas, Salmonella, and Vibrio. 
The best characterized of the filamentous phage are the Ff class of viruses, so named 
because of their method of host cell entry via the tip of the F conjugative pilus on 
the surface of male E. coli cells. The Ff viruses include M13, fd, and f1, all of which 
possess a 98% identity at the DNA sequence level. Ff virus particles are long, slen-
der, and flexible rods with a diameter of about 65 Å. The wild-type Ff phages are 
between 0.8 and 0.9 µm long, giving the virus the proportions of a 4-foot-long pencil. 
Various engineered strains have somewhat longer genomes with the length of the 
particle increased proportionate to the length of the encapsulated DNA. Although 
there is considerable heterogeneity within the family, some similarities of sequence 
and genome organization are discernable among all group members. An electron 
micrograph shown in Figure 1.1 gives a rough idea of the proportions of the phage 
particles. The single-stranded, circular genome occupies the axis of the particle, 
stretched out for almost the entire length of the virion. Virus lengths are dependent 
upon both the size of the enclosed genome as stated above and on the physical distri-
bution of the DNA within the capsid (axial distance per base), the latter of which has 
been demonstrated to be major coat protein charge dependent [1]. Little substructure 
is visible except at the end involved in host cell attachment. Each cross-section of the 
virion has an “up” strand and a “down” strand present, but these are not base paired 
because there is no complementary relationship between the sequences of the two 
strands except within the hairpin, which acts as the packaging signal that nucleates 
the initiation of viral assembly.
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Ff viruses are not lytic but rather are parasitic. Productive infections result in 
viral release via extrusion or secretion across the inner and outer bacterial mem-
branes in the absence of host cell death with the infected cells continuing to grow 
and divide (albeit at a significantly reduced rate). M13 produces anywhere from 200 
to 2000 progeny phage per cell per doubling time [2,3]. This phage production rep-
resents a serious metabolic load for the infected E. coli with phage proteins making 
up 1%–5% of total protein synthesis and resulting in a reduction in cell growth of 
30%–50% from uninfected cells. The nonlytic nature of Ff infection, along with the 
simultaneous presence of both single- and double-stranded forms of viral DNA, little 
size constraint on inserted DNA, and an exceptionally high viral titer capacity (typi-
cally 1011–1012 particles per ml), has made the filamentous phage, primarily M13, a 
workhorse for molecular biology for the last 20 years.

1.3 VIraL GeNe PrODUCtS

The Ff phage genome encodes a total of 11 proteins (see Figure 1.2 for genome 
organization). There are five structural proteins, all of which are inserted into the 
inner host cell membrane prior to assembly (see Figure 1.3 for overall structural 

Figure 1.1  electron micrograph of bacteriophage M13. this micrograph of M13 phage par-
ticles visually demonstrates the rationale for their designation as “filamentous” 
bacteriophage. the amino terminus of at least four copies of the gene III pro-
tein are visible at the end of the phage particle; the two subtilisin-cleavable n1 
and n2 domains are seen as knobby structures at the proximal end of the virus. 
(Micrograph courtesy of irene Davidovich.)
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organization of Ff phage). pVIII and pIII are synthesized with signal sequences that 
are removed subsequent to membrane insertion whereas pVI, pVII, and pIX are 
absent signal sequences. Three nonstructural phage proteins, pI, pXI, and pIV are 
required for phage morphogenesis but are not incorporated into the phage structure. 
pX and pXI are the result of in-frame internal translation initiation events in genes 
II and I, respectively, and are identical with the C-terminal portions of pII and pI in 
amino acid sequence, membrane localization, and topology [4]. In addition to the 
coding regions, there is an intergenic region, which contains the signals for the initia-
tion of synthesis of both the plus (+) or viral-contained DNA strand, and the minus 
(−) strand; the initiation of capsid assembly signal (or packaging signal, PS), which 
lies between the (−) origin and the end of the pIV gene and the signal for termination 
of RNA synthesis. Parts of the intergenic region have been shown to be dispensable 
(reviewed in Ref. [3]), but all of the coding region products are necessary for the 
synthesis of the infectious progeny phage.

1.3.1  replication Proteins (pII and pX)

pII is a 410 amino acid protein (MW = 46,137), which is required for all phage-
specific DNA synthesis other than the formation of the complementary strand of the 
infecting ssDNA by host enzymes. pII has both endonuclease and topoisomerase 
activities required during the DNA replication phase of infection. pX is a 111 resi-
due protein (MW = 12,672), which is encoded entirely within gene II, initiating at 
codon 300, an AUG that is in phase with the initiating AUG of gene II. Although pX 
has the same amino acid sequence as the carboxyl-terminal end of pII, it has been 

Transcription

Promoters
Terminators
Ori

+

–

II

X
V
VII
VIIIIX

III

VII

IV
M13

6.4 Kb

Figure 1.2  Ff phage genome. the location of each viral gene is indicated by number with the 
direction of transcription shown by arrow. the origin of replication lies within the 
intergenic region between the genes for piV and pii. the packaging signal (ps) 
lies between the (−) strand origin of replication and gene IV.
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shown to possess unique functions within the viral life cycle, such as inhibition of 
pII function [5].

1.3.2  Single-Stranded DNa Binding Protein (pV)

Gene V codes for an 87 amino acid protein (MW = 9682) that exists as a stable 
dimer even at a concentration as low as 1 nM [6]. The crystal structure of the protein 
has been solved to 1.8 Å resolution using multiwavelength anomalous dispersion on 
a selenomethionine-containing protein and is shown in Figure 1.4 [7]. Each mono-
mer is largely β-structure, with 58 out of 87 residues arranged in a five-stranded 
antiparallel β-sheet; two antiparallel β-ladder loops protrude from this sheet. The 
remainder of the molecule is arranged into 310 helices (residues 7–11 and 65–67), 

5 copies each:
pVII and pIX

pVIII
(2300+ copies)

pVI
(5 copies)

pIII
(5 copies)

Figure 1.3  schematic diagram of the Ff bacteriophage. this diagram depicts the structural 
organization of M13 as a representative of the Ff viral family. At the top of the 
diagram lies the distal end of the particle at which viral assembly initiates. At the 
bottom of the figure is the proximal or infectious end of the virus with five copies 
of the piii anchored to the particle by five copies of the pVi.
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β-bends (residues 21–24, 50–53, and 71–74), and one five-residue loop (residues 
38–42). Nuclear magnetic resonance (NMR) analysis of the gene V protein [8] sug-
gests that the DNA binding loop (residues 16–28; see Figure 1.4) is flexible in solu-
tion. This protein serves the dual functions of sequestering the intracellular ssDNA 
viral genomes [3] and modulating the translation of gene II mRNA [9].

1.3.3  Major Structural Protein (pVIII)

Gene VIII codes for the major coat protein of the virus. The major coat proteins of 
all filamentous phages are short, ranging from 44 to 55 amino acids, with most being 
encoded with a signal sequence (Pseudomonas aeruginosa-infecting phage Pf3 is 
an example of a pVIII absent a signal sequence). In the Ff group of phage, the major 
coat protein is 50 amino acids long (MW = 5235) with a 23 amino acid–long signal 
sequence. Approximately 2800 copies of pVIII are required to coat one full-length 
wild-type Ff virion. The concentration of pVIII in the inner cell membrane is very 
high—at least 5 × 105 molecules of pVIII are exported as virions per infected cell per 
doubling, making it one of the most abundant proteins in the infected cell [10].

Figure 1.4  Crystal structure of the gene V ssDnA binding protein. the crystal structure of pV 
has been solved to 1.8 Å resolution using multiwavelength anomalous dispersion on 
a selenomethionine derivative and is shown here in a backbone format [7] (pDb 
accession code 2gn5). the protein normally exists as a dimer and wraps around 
the single-stranded form of the viral DnA within the host cell cytoplasm. residues 
tyr26, Leu28, and phe73 have been shown to be critical for DnA  binding [7] (resi-
dues shown in spacefill format).
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