Praised for its clarity of presentation and accessibility, *Introduction to Modern Virology* has been a successful student text for over 30 years. It provides a broad introduction to virology which includes the nature of viruses, the interaction of viruses with their hosts and the consequences of those interactions that lead to disease.

This new edition contains a number of important changes and innovations, including:

- Expanded coverage of immunology, including innate immunity and adaptive immunity, reflecting the explosion in knowledge of viral interactions with these systems.
- New chapters covering vaccines and antivirals, detailing the importance of these approaches to prevention and treatment.
- New chapters on viral hepatitis, influenza, vector-borne diseases, and exotic and emerging viral infections, complementing a comprehensively revised chapter on HIV.
- A revised concluding section covering the influence of viruses on our lives, such as the economic impact of virus infections, viruses in clinical and other spheres, and the pervasive impact that viruses have on the planet and our day-to-day existence.

A good understanding of viruses is important for students and researchers in all areas of biology, biotechnology, medicine, public health and related topics. The aim of this book is to make such understanding as accessible as possible, allowing students across the biosciences spectrum to improve their knowledge of these fascinating entities.

THE AUTHORS

Nigel Dimmock is an internationally acclaimed virologist who has spent the major part of his career at the University of Warwick where he is an Emeritus Professor. His main research interests are influenza virus and antiviral strategies.

Andrew Easton is a Professor of Virology at the University of Warwick. His research focuses on the molecular biology and pathogenesis of respiratory viruses, particularly respiratory syncytial virus and influenza virus and the control of translation of virus mRNA.

Keith Leppard is an Associate Professor (Reader) at the University of Warwick. His research focuses on the molecular cell biology of adenovirus replication and interaction with the host, particularly innate immunity, and on the development of the virus as a gene delivery vehicle.
Introduction to Modern Virology
Introduction to Modern Virology

N. J. Dimmock
A. J. Easton
K. N. Leppard

School of Life Sciences
University of Warwick
Coventry

SEVENTH EDITION

WILEY Blackwell
This edition first published 2016 © 2016 by John Wiley & Sons, Ltd

Registered office: John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial offices: 9600 Garsington Road, Oxford, OX4 2DQ, UK
The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK
111 River Street, Hoboken, NJ 07030-5774, USA

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell.

The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Dimmock, N. J.
Introduction to modern virology / N. J. Dimmock, A. J. Easton, K. N. Leppard, School of Life Sciences, University of Warwick, Coventry. – Seventh edition.
 pages cm
 Includes index.
 ISBN 978-1-119-97810-7 (pbk.)
QR360.D56 2016
579.2–dc23
2015031818

A catalogue record for this book is available from the British Library.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Cover design by Jeremy Tilston

Set in 10/12.5pt MeridienLTStd-Roman by Thomson Digital, Noida, India

1 2016
Contents in brief

Preface xvii
About the companion website xix

PART I THE NATURE OF VIRUSES 1
Chapter 1 Towards a definition of a virus 3
Chapter 2 The structure of virus particles 13
Chapter 3 Classification of viruses 30
Chapter 4 The evolution of viruses 39
Chapter 5 Techniques for studying viruses 52

PART II VIRUS GROWTH IN CELLS 67
Chapter 6 The process of infection: I. Virus attachment and entry into cells 69
Chapter 7 The process of infection: IIA. The replication of viral DNA 86
Chapter 8 The process of infection: IIB. Genome replication in RNA viruses 105
Chapter 9 The process of infection: IIC. The replication of RNA viruses with a DNA intermediate and vice versa 121
Chapter 10 The process of infection: IIIA. Gene expression in DNA viruses and reverse-transcribing viruses 136
Chapter 11 The process of infection: IIIB. Gene expression and its regulation in RNA viruses 156
Chapter 12 The process of infection: IV. The assembly of viruses 179

PART III VIRUS INTERACTIONS WITH THE WHOLE ORGANISM 199
Chapter 13 Innate and intrinsic immunity 201
Chapter 14 The adaptive immune response 218
Chapter 15 Interactions between animal viruses and cells 237
Chapter 16 Animal virus–host interactions 248
Chapter 17 Mechanisms in virus latency 261
Chapter 18 Transmission of viruses 279

PART IV VIRUSES AND HUMAN DISEASE 293
Chapter 19 Human viral disease: an overview 295
Chapter 20 Influenza virus infection 309
Chapter 21 HIV and AIDS 327
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Viral hepatitis</td>
<td>347</td>
</tr>
<tr>
<td>23</td>
<td>Vector-borne infections</td>
<td>362</td>
</tr>
<tr>
<td>24</td>
<td>Exotic and emerging viral infections</td>
<td>376</td>
</tr>
<tr>
<td>25</td>
<td>Carcinogenesis and tumour viruses</td>
<td>388</td>
</tr>
<tr>
<td>26</td>
<td>Vaccines and immunotherapy: the prevention of virus diseases</td>
<td>409</td>
</tr>
<tr>
<td>27</td>
<td>Antiviral therapy</td>
<td>431</td>
</tr>
<tr>
<td>28</td>
<td>Prion diseases</td>
<td>443</td>
</tr>
</tbody>
</table>

PART V VIROLOGY – THE WIDER CONTEXT

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>The economic impact of viruses</td>
<td>461</td>
</tr>
<tr>
<td>30</td>
<td>Recombinant viruses: making viruses work for us</td>
<td>472</td>
</tr>
<tr>
<td>31</td>
<td>Viruses: shaping the planet</td>
<td>484</td>
</tr>
</tbody>
</table>

Index 491
Contents

Preface xvii
About the companion website xix

PART I THE NATURE OF VIRUSES 1

Chapter 1 Towards a definition of a virus 3
1.1 Discovery of viruses 4
1.2 Multiplication of viruses 5
1.3 The virus multiplication cycle 6
1.4 Viruses can be defined in chemical terms 7
1.5 Multiplication of bacterial and animal viruses is fundamentally similar 10
1.6 Viruses can be manipulated genetically 11
1.7 Properties of viruses 11
1.8 Origin of viruses 12
Key points 12
Further reading 12

Chapter 2 The structure of virus particles 13
2.1 Virus particles are constructed from subunits 13
2.2 The structure of filamentous viruses and nucleoproteins 14
2.3 The structure is of isometric virus particles 15
2.4 Enveloped (membrane-bound) virus particles 24
2.5 Virus particles with head-tail morphology 27
2.6 Frequency of occurrence of different virus particle morphologies 28
2.7 Principles of disassembly: virus particles are metastable 28
Key points 29
Further reading 29

Chapter 3 Classification of viruses 30
3.1 Classification on the basis of disease 30
3.2 Classification on the basis of host organism 31
3.3 Classification on the basis of virus particle morphology 31
3.4 Classification on the basis of viral nucleic acids 32
3.5 Classification on the basis of taxonomy 34
3.6 Satellites, viroids and prions 35
Key points 37
Further reading 38
Chapter 4: The evolution of viruses

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Mechanisms of virus evolution</td>
<td>40</td>
</tr>
<tr>
<td>4.2 The potential for rapid evolution: mutation and quasispecies</td>
<td>40</td>
</tr>
<tr>
<td>4.3 Rapid evolution: recombination</td>
<td>43</td>
</tr>
<tr>
<td>4.4 Rapid evolution: reassortment</td>
<td>43</td>
</tr>
<tr>
<td>4.5 Evolution to find a host, and subsequent co-evolution with the host</td>
<td>46</td>
</tr>
</tbody>
</table>

Key points
- 51

Questions
- 51

Further reading
- 51

Chapter 5: Techniques for studying viruses

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Culturing wild virus isolates</td>
<td>52</td>
</tr>
<tr>
<td>5.2 Enumeration of viruses</td>
<td>54</td>
</tr>
<tr>
<td>5.3 Measuring infectious virus titres</td>
<td>55</td>
</tr>
<tr>
<td>5.4 Measuring physical virus titres</td>
<td>57</td>
</tr>
<tr>
<td>5.5 Detecting virus in a sample</td>
<td>58</td>
</tr>
<tr>
<td>5.6 Understanding virus replication cycles</td>
<td>62</td>
</tr>
<tr>
<td>5.7 Viral genetics and reverse genetics</td>
<td>63</td>
</tr>
<tr>
<td>5.8 Systems-level virology</td>
<td>63</td>
</tr>
</tbody>
</table>

Key points
- 65

Questions
- 65

Further reading
- 65

PART II: VIRUS GROWTH IN CELLS

Chapter 6: The process of infection: I. Virus attachment and entry into cells

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Infection of animal cells: the nature and importance of receptors</td>
<td>69</td>
</tr>
<tr>
<td>6.2 Infection of animal cells: enveloped viruses</td>
<td>73</td>
</tr>
<tr>
<td>6.3 Infection of animal cells: non-enveloped viruses</td>
<td>78</td>
</tr>
<tr>
<td>6.4 Infection of plant cells</td>
<td>80</td>
</tr>
<tr>
<td>6.5 Infection of bacteria</td>
<td>81</td>
</tr>
<tr>
<td>6.6 Infection of cells: post-entry events</td>
<td>82</td>
</tr>
<tr>
<td>6.7 Virus entry: cell culture and the whole organism</td>
<td>84</td>
</tr>
</tbody>
</table>

Key points
- 84

Questions
- 84

Further reading
- 85

Chapter 7: The process of infection: IIA. The replication of viral DNA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 The universal mechanism of DNA synthesis</td>
<td>87</td>
</tr>
<tr>
<td>7.2 Replication of circular double-stranded DNA genomes</td>
<td>90</td>
</tr>
<tr>
<td>7.3 Replication of linear double-stranded DNA genomes that can form circles</td>
<td>93</td>
</tr>
<tr>
<td>7.4 Replication of linear double-stranded DNA genomes that do not circularize</td>
<td>96</td>
</tr>
<tr>
<td>7.5 Replication of single-stranded circular DNA genomes</td>
<td>100</td>
</tr>
<tr>
<td>7.6 Replication of single-stranded linear DNA genomes</td>
<td>100</td>
</tr>
<tr>
<td>7.7 Dependency versus autonomy among DNA viruses</td>
<td>103</td>
</tr>
</tbody>
</table>
Chapter 8
The process of infection: IIB. Genome replication in RNA viruses

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Nature and diversity of RNA virus genomes</td>
<td>106</td>
</tr>
<tr>
<td>8.2</td>
<td>Regulatory elements for RNA virus genome synthesis</td>
<td>106</td>
</tr>
<tr>
<td>8.3</td>
<td>Synthesis of the RNA genome of Baltimore class 3 viruses</td>
<td>111</td>
</tr>
<tr>
<td>8.4</td>
<td>Synthesis of the RNA genome of Baltimore class 4 viruses</td>
<td>111</td>
</tr>
<tr>
<td>8.5</td>
<td>Synthesis of the RNA genome of Baltimore class 5 viruses</td>
<td>115</td>
</tr>
<tr>
<td>8.6</td>
<td>Synthesis of the RNA genome of viroids and hepatitis delta virus</td>
<td>118</td>
</tr>
</tbody>
</table>

Key points
119

Questions
119

Further reading
119

Chapter 9
The process of infection: IIC. The replication of RNA viruses with a DNA intermediate and vice versa

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>The retrovirus replication cycle</td>
<td>122</td>
</tr>
<tr>
<td>9.2</td>
<td>Discovery of reverse transcription</td>
<td>122</td>
</tr>
<tr>
<td>9.3</td>
<td>Retroviral reverse transcriptase</td>
<td>123</td>
</tr>
<tr>
<td>9.4</td>
<td>Mechanism of retroviral reverse transcription</td>
<td>125</td>
</tr>
<tr>
<td>9.5</td>
<td>Integration of retroviral DNA into cell DNA</td>
<td>128</td>
</tr>
<tr>
<td>9.6</td>
<td>Production of retrovirus progeny genomes</td>
<td>130</td>
</tr>
<tr>
<td>9.7</td>
<td>Spumaviruses: retrovirus with unusual features</td>
<td>131</td>
</tr>
<tr>
<td>9.8</td>
<td>The hepadnavirus replication cycle</td>
<td>131</td>
</tr>
<tr>
<td>9.9</td>
<td>Mechanism of hepadnavirus reverse transcription</td>
<td>131</td>
</tr>
<tr>
<td>9.10</td>
<td>Comparing reverse transcribing viruses</td>
<td>134</td>
</tr>
</tbody>
</table>

Key points
134

Questions
134

Further reading
135

Chapter 10
The process of infection: IIIA. Gene expression in DNA viruses and reverse-transcribing viruses

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>The DNA viruses and retroviruses: Baltimore classes 1, 2, 6 and 7</td>
<td>137</td>
</tr>
<tr>
<td>10.2</td>
<td>Polyomaviruses</td>
<td>138</td>
</tr>
<tr>
<td>10.3</td>
<td>Papillomaviruses</td>
<td>142</td>
</tr>
<tr>
<td>10.4</td>
<td>Adenoviruses</td>
<td>144</td>
</tr>
<tr>
<td>10.5</td>
<td>Herpesviruses</td>
<td>147</td>
</tr>
<tr>
<td>10.6</td>
<td>Poxviruses</td>
<td>149</td>
</tr>
<tr>
<td>10.7</td>
<td>Paroviruses</td>
<td>149</td>
</tr>
<tr>
<td>10.8</td>
<td>Retroviruses</td>
<td>150</td>
</tr>
<tr>
<td>10.9</td>
<td>Hepadnaviruses</td>
<td>153</td>
</tr>
<tr>
<td>10.10</td>
<td>DNA bacteriophages</td>
<td>154</td>
</tr>
</tbody>
</table>

Key points
154

Questions
155

Further reading
155
Chapter 11 The process of infection: IIIB. Gene expression and its regulation in RNA viruses

11.1 The RNA viruses: Baltimore classes 3, 4 and 5
11.2 Reoviruses
11.3 Picornaviruses
11.4 Alphaviruses
11.5 Coronaviruses
11.6 Negative sense RNA viruses with segmented genomes
11.7 Orthomyxoviruses
11.8 Arenaviruses
11.9 Negative sense RNA viruses with non-segmented, single stranded genomes: rhabdoviruses and paramyxoviruses

Key points

Questions

Further reading

Chapter 12 The process of infection: IV. The assembly of viruses

12.1 Self-assembly from mature virion components
12.2 Assembly of viruses with a helical structure
12.3 Assembly of viruses with an isometric structure
12.4 Assembly of complex viruses
12.5 Sequence-dependent and -independent packaging of virus DNA in virus particles
12.6 The assembly of enveloped viruses
12.7 Segmented virus genomes: the acquisition of multiple nucleic acid molecules
12.8 Maturation of virus particles

Key points

Questions

Further reading

PART III VIRUS INTERACTIONS WITH THE WHOLE ORGANISM

Chapter 13 Innate and intrinsic immunity

13.1 Innate immune responses in vertebrates – discovery of interferon
13.2 Induction of type 1 interferon responses
13.3 Virus countermeasures to innate immunity
13.4 TRIM proteins and immunity
13.5 Intrinsic resistance to viruses in vertebrates
13.6 Innate and intrinsic immunity and the outcome of infection
13.7 RNAi is an important antiviral mechanism in invertebrates and plants
13.8 Detecting and signalling infection in invertebrates and plants
13.9 Virus resistance mechanisms in bacteria and archaea

Key points

Questions

References
Chapter 14 **The adaptive immune response**
14.1 General features of the adaptive immune system
14.2 Cell-mediated immunity
14.3 Antibody-mediated humoral immunity
14.4 Virus evasion of adaptive immunity
14.5 Age and adaptive immunity
14.6 Interaction between the innate and adaptive immune systems
Key points
Questions
Further reading

Chapter 15 **Interactions between animal viruses and cells**
15.1 Acutely cytopathogenic infections
15.2 Persistent infections
15.3 Latent infections
15.4 Transforming infections
15.5 Abortive infections
15.6 Null infections
15.7 How do animal viruses kill cells?
Key points
Questions
Further reading

Chapter 16 **Animal virus–host interactions**
16.1 Cause and effect: Koch’s postulates
16.2 A classification of virus–host interactions
16.3 Acute infections
16.4 Subclinical infections
16.5 Persistent and chronic infections
16.6 Latent infections
16.7 Slowly progressive diseases
16.8 Virus-induced tumours
Key points
Questions
Further reading

Chapter 17 **Mechanisms in virus latency**
17.1 The latent interaction of virus and host
17.2 Gene expression and the lytic and lysogenic life of bacteriophage λ
17.3 Herpes simplex virus latency
17.4 Epstein-Barr virus latency
17.5 Latency in other herpesviruses
17.6 HIV-1 latency
Key points
Questions
Further reading
Chapter 18
Transmission of viruses
18.1 Virus transmission cycles
18.2 Barriers to transmission
18.3 Routes of horizontal transmission in animals
18.4 Vertical transmission
18.5 Vector-borne viruses and zoonotic transmission
18.6 Epidemiology of virus infections
18.7 Sustaining infection in populations
Key points
Questions
Further reading

PART IV VIRUSES AND HUMAN DISEASE

Chapter 19
Human viral disease: an overview
19.1 A survey of human viral pathogens
19.2 Factors affecting the relative incidence of viral disease
19.3 Factors determining the nature and severity of viral disease
19.4 Common signs and symptoms of viral infection
19.5 Acute viral infection 1: gastrointestinal infections
19.6 Acute viral infection 2: respiratory infections
19.7 Acute viral infection 3: systemic spread
19.8 Acute viral disease: conclusions
Key points
Questions
Further reading

Chapter 20
Influenza virus infection
20.1 The origins of human influenza viruses
20.2 Influenza virus replication
20.3 Influenza virus infection and disease
20.4 Virus determinants of disease
20.5 Host factors in influenza virus disease
20.6 The immune response and influenza virus
20.7 Anti-influenza treatment
Key points
Questions
Further reading

Chapter 21
HIV and AIDS
21.1 Origins and spread of the HIV pandemic
21.2 Molecular biology of HIV
21.3 HIV transmission and tropism
21.4 Course of HIV infection: pathogenesis and disease

Contents

21.5 Immunological abnormalities during HIV infection 342
21.6 Prevention and control of HIV infection 343
Key points 345
Questions 346
Further reading 346

Chapter 22
Viral hepatitis 347
22.1 The signs and symptoms of hepatitis 347
22.2 Hepatitis A virus infections 349
22.3 Hepatitis E virus infections 350
22.4 Hepatitis B virus infections 352
22.5 Hepatitis D virus infections 355
22.6 Hepatitis C virus infections 356
Key points 359
Questions 361
Further reading 361

Chapter 23
Vector-borne infections 362
23.1 Arboviruses and their hosts 362
23.2 Yellow fever virus 363
23.3 Dengue virus 367
23.4 Chikungunya virus 369
23.5 West Nile virus in the USA 372
Key points 375
Questions 375
Further reading 375

Chapter 24
Exotic and emerging viral infections 376
24.1 Ebola and Marburg viruses: emerging filoviruses 377
24.2 Hendra and Nipah viruses: emerging paramyxoviruses 381
24.3 SARS and MERS: emerging coronaviruses 383
24.4 Predicting the future: clues from analysis of the genomes of previously unknown viruses 386
Key points 386
Questions 386
Further reading 387

Chapter 25
Carcinogenesis and tumour viruses 388
25.1 Immortalization, transformation and tumourigenesis 389
25.2 Oncogenic viruses 390
25.3 Polyomaviruses, papillomaviruses and adenoviruses: the small DNA tumour viruses as experimental models 394
25.4 Papillomaviruses and human cancer 398
25.5 Polyomaviruses and human cancer 399
25.6 Herpesvirus involvement in human cancers 400
25.7 Retroviruses as experimental model tumour viruses 402
25.8 Retroviruses and naturally-occurring tumours 404
25.9 Hepatitis viruses and liver cancer 405
25.10 Prospects for the control of virus-associated cancers 406
Key points 407
Questions 408
Further reading 408

Chapter 26 Vaccines and immunotherapy: the prevention of virus diseases 409
26.1 The principles of vaccination 411
26.2 Whole virus vaccines 412
26.3 Advantages, disadvantages and difficulties associated with whole virus vaccines 415
26.4 Subunit vaccines 420
26.5 Advantages, disadvantages and difficulties associated with subunit vaccines 421
26.6 Considerations for the generation and use of vaccines 422
26.7 Adverse reactions and clinical complications with vaccines 423
26.8 Eradication of virus diseases by vaccination 425
26.9 Immunotherapy for virus infections 428
26.10 Adverse reactions and clinical complications with immunotherapy 429
Key points 429
Questions 430
Further reading 430

Chapter 27 Antiviral therapy 431
27.1 Scope and limitations of antiviral therapy 431
27.2 Antiviral therapy for herpesvirus infections 432
27.3 Antiviral therapy for influenza virus infections 434
27.4 Antiviral therapy for HIV infections 435
27.5 Antiviral therapy for hepatitis virus infections 439
27.6 Therapy for other virus infections 440
Key Points 441
Questions 441
Further Reading 442

Chapter 28 Prion diseases 443
28.1 The spectrum of prion diseases 443
28.2 The prion hypothesis 444
28.3 The aetiology of prion diseases 447
28.4 Prion disease pathogenesis 448
28.5 Bovine spongiform encephalopathy (BSE) 451
28.6 BSE and the emergence of variant CJD 453
28.7 Concerns about variant CJD in the future 454
28.8 Unresolved issues 455
Key points 456
Questions 456
Further reading 456
Part V: Virology – The Wider Context

Chapter 29: The Economic Impact of Viruses

- **29.1** The Economics of Virus Infections of Humans
- **29.2** The Economics of Virus Infections of Animals
- **29.3** The Economics of Virus Infections of Plants
- **29.4** The Netherlands Tulip Market Crash

Key points

Further reading

Chapter 30: Recombinant Viruses: Making Viruses Work for Us

- **30.1** Recombinant Viruses as Vaccines
- **30.2** Recombinant Viruses for Gene Therapy
- **30.3** Retroviral Vectors for Gene Therapy
- **30.4** Adenovirus Vectors for Gene Therapy
- **30.5** Parvovirus Vectors for Gene Therapy
- **30.6** Oncolytic Viruses for Cancer Therapy
- **30.7** Recombinant Viruses in the Laboratory

Key points

Questions

Further reading

Chapter 31: Viruses: Shaping the Planet

- **31.1** Virus Infections Can Give a Host an Evolutionary Advantage
- **31.2** Endogenous Retroviruses and Host Biology
- **31.3** Bacteriophage Can Be Pathogenicity Determinants for Their Hosts
- **31.4** Cyanophage Impacts on Carbon Fixation and Oceanic Ecosystems
- **31.5** Virology and Society: For Good or Ill

Key points

Questions

Further reading

Index
Preface

As before, our aim in this 7th edition of Introduction to Modern Virology is to provide a broad introduction to virology, which includes the nature of viruses, the interaction of viruses with their hosts, and the consequences of those interactions that lead to the diseases we see. In doing so, we have focused predominantly on viruses that infect humans, with some examples of viruses of other animals where they illustrate a specific point. However, in the sections covering general principles and processes of virology, we have also included bacterial and plant viruses. The revised text is aimed at undergraduate students at all levels and postgraduates who are learning virology as a new subject.

We have retained the four thematic sections that were introduced in the previous edition. These cover the fundamental nature of viruses, their growth in cells, their interactions with the host organism, and their role as agents of human disease. To complement these, we have added a fifth section that incorporates material relating to virology in a wider context. Each section contains a series of chapters that are typically focused on a topic rather than concentrating on a single virus. Inevitably, some of these topics relate to information in different parts of the book and we have included extensive cross-referencing to allow the reader to explore a broader picture than is possible within a single chapter.

The pace of discovery in the field of virology has continued unabated since the last edition. Our knowledge of the molecular detail of viruses, including their interaction with the host, has increased considerably and continues to grow. We have tried to explore the breadth of this new information while retaining a concise style. Inevitably, this has meant that we have had to choose specific examples while leaving out many others of interest, but we have tried to use examples which demonstrate broad principles as well as specific detail. There is suggested reading for those who want to follow up a subject in more depth.

The study of viruses is as topical and important as ever. The global impact of HIV and chronic hepatitis virus infections continues to be severe and, as we completed this edition, we are seeing hopeful indications of the ending of the most devastating Ebola virus outbreak ever recorded. Beyond these direct impacts on our health, viruses also continue to threaten us through effects on food supplies and our economies. Thus, a good basic understanding of viruses is important for generalists and specialists alike. Our aim in writing this book has been to try to make such understanding as accessible as possible, allowing students across the biosciences spectrum to improve their knowledge of these fascinating entities.

New to this edition

This edition contains a number of important changes and innovations. A major change has been the expansion of the consideration of immunology which now covers two chapters, one on innate immunity and the other on adaptive immunity. This reflects the growing understanding of the importance of the immune system in determining the outcome of virus infection and the contribution of the immune system to viral diseases. These chapters also consider some of the ways that viruses evade the immune response. The consideration
of vaccines and antivirals has been expanded and separated into two new chapters to reflect the importance of these approaches to prevention and treatment. Virus evolution is considered in more detail than previously, and we have added new chapters on viral hepatitis, influenza, vector-borne diseases, and exotic and emerging viral infections. Finally, in the last section we have introduced three new chapters on the broader aspects of the influence of viruses on our lives, focusing on the economic impact of virus infections, the ways we can use viruses in clinical and other spheres, and the impact that viruses have on the planet and almost every aspect of our lives.

The text is supplemented throughout by information boxes of two types. These are now distinguished by different colours. One type of box provides supporting information or additional detail about the subject matter of the chapter while the other provides the experimental evidence by which selected key points were established. The aim is to assist the reader in understanding the facts but to also allow them to appreciate the nature of the evidence that underpins them.

We very much hope that the 7th edition of *Introduction to Modern Virology* will enrich the virology experience of students and teachers alike.

Finally, we would like express our thanks the staff at Wiley for their generous support throughout the production of this book.

Nigel Dimmock, Andrew Easton and Keith Leppard
University of Warwick, October 2015
About the companion website

This book is accompanied by a companion website:

www.wiley.com/go/dimmock/virology

The website includes powerpoints of all figures from the book for downloading
Part I

The nature of viruses

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Towards a definition of a virus</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>The structure of virus particles</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Classification of viruses</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>The evolution of viruses</td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>Techniques for studying viruses</td>
<td>52</td>
</tr>
</tbody>
</table>
Chapter 1
Towards a definition of a virus

Viruses occur universally, but they can only be detected indirectly. Viruses are obligate intracellular parasites that require a host within which they replicate. Although they are well known for causing disease, most viruses coexist peacefully with their hosts.

Chapter 1 Outline
1.1 Discovery of viruses
1.2 Multiplication of viruses
1.3 The virus multiplication cycle
1.4 Viruses can be defined in chemical terms
1.5 Multiplication of bacterial and animal viruses is fundamentally similar
1.6 Viruses can be manipulated genetically
1.7 Properties of viruses
1.8 Origin of viruses

Viruses are arguably the most ubiquitous and widespread group of organisms on the planet, with every animal, plant and protist species susceptible to infection. The efficiency of replication demonstrated by viruses is such that the infection of a single host can generate more new viruses than there are individuals in the host population. For example, a single human infected with influenza virus can shed sufficient virus particles to be theoretically capable of infecting the entire human population. While not every species has been examined for the presence of viruses, those that have been tested have all yielded up new virus isolates. Further, not only do viruses occur universally but each species has its own specific range of viruses that, by and large, infects only that species. In recent years, the application of new nucleic acid sequencing techniques has demonstrated that a vast array of previously unknown viruses remains to be studied.

Current estimates of the number of individual viruses on earth suggest that they considerably exceed the total number of stars in the known universe, i.e. more than 10^{23} (100 sextillion). This vast number raises questions as to what the viruses are doing there, and what selective advantage, if any, they afford to the species that host them. The answer to the first of these is the same as if the question was posed about any organism – it is simply occupying a particular environmental niche which, in the case of a virus, is another species. The answer to whether or not any benefit accrues for hosting a virus is usually not known, though the adverse effects of virus infections are all too well known. However, it is clear that, despite their adverse effects and the dramatic depictions of viruses in popular media and cinema, viruses have not made their hosts extinct.

© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.