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Preface

Viral diseases persist and develop with global increased risks for morbidity and 
mortality, in addition to social and financial disruption. Envelopment by viral dis-
ease spread due to global warming is a well-established contributor to these dire 
straits through increased vector range with multiple viral/microbial spread in addi-
tion to social disharmony and concomitant reduction of standards of living.

Answering the need for enhanced methods of study assists research establish-
ments to accelerate scientific progress. This book provides readers with snapshots 
of where various fields are, so that they may be assisted as need be, to join this 
progress into the twenty-first century. The book is hopefully of help for profession-
als, students, and faculty, as well as for the interested reader.

We acknowledge and thank Alison Ball and Deepak Ravi of Springer Publishers 
for their help and guidance through the steps leading to the production of this book.
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Los Angeles, CA, USA Francesco Chiappelli
Tampa, FL, USA Charurut Somboonwit
Tampa, FL, USA Lynette J. Menezes
Tampa, FL, USA John T. Sinnott



vii

Introduction

Since the publication of Global Virology Volumes I and II, the need for Global 
Virology III became apparent because of the increased use and need of novel and 
forward-looking methods and techniques to accelerate virology research achieve-
ments around the globe [1–3].

The use of advanced methods for virology are accomplished, ab initio, as well as 
by using techniques agglomerated from many different fields, and are thereby used 
to accelerate application of what is relevant and useful for virology and human 
health [4–6].

This book provides views of work that has been undertaken and is planned in 
several fields of virology and is meant to promote current and future work, research, 
and health. Various fields and methods include virology, immunology, space research, 
astrovirology/astrobiology, plasmids, swarm intelligence, bioinformatics, data min-
ing, machine learning, neural networks, critical equations, and advances in biohazard 
biocontainment. The use of novel and forward-looking methods, techniques, and 
approaches in research and development is promoted in this new book.
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Applications of Artificial Intelligence 
and Machine Learning in Viral Biology

Sonal Modak, Deepak Sehgal, and Jayaraman Valadi

Abstract Present research efforts coupled with improved experimental techniques 
have provided voluminous genomic data. To convert this data into useful knowl-
edge, novel tools for phenomenological and data driven modelling approaches are 
needed. This need has spurred initiation of a lot of rigorous efforts and has resulted 
in development of robust artificial intelligence (AI) and machine learning (ML) 
based models. While these paradigms individually and in synergistic combinations 
have been employed in various bioinformatics applications, the viral biology disci-
pline has particularly benefitted most. These methodologies can efficiently handle 
single dimensional sequence to higher dimensional protein structures, microarray 
data, image and text data, experimental data emanating from spectroscopy, etc. Our 
analysis deals with ML tools like support vector machines (SVM), neural networks, 
deep neural networks, random forest, and decision tree. Analysis and interpretations 
are provided along with ample illustrations of their relevance to real-life appli-
cations. AI and evolutionary computing based tools like Genetic Algorithms, Ant 
Colony optimization, Particle swarm optimization and their applicability to viral 
biology problems are also discussed. Hybrid combination of these tools with ML 
techniques have resulted in simultaneous selection of informative attributes and high 
performance classification. This hybrid methodology has been discussed in detail.

In this chapter we describe the applications artificial intelligence and machine 
learning in virology. While there are AI has a multitude of tools, the focus would be 
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on a specific aspect of Ai, known as evolutionary and heuristic computing. These 
are mainly employed as an alternative paradigm of optimization. They are mainly 
nature inspired algorithms. Although very simple and straightforward to use they 
have been deputed to solve several problems successfully in different domains of 
science and engineering. Machine learning on the other hand deals with a mountain 
of available data, recognize hidden patterns useful and interesting to upgrade it to 
structure and knowledge. We provide examples of the power of AI and Machine 
learning with the illustration of several examples from different subdomains of viral 
biology. We will also provide examples where the synergistic combination of AI and 
ML has a been found to be a very potent tool for solving several important problems 
in viral biology.

Keywords Decision trees · Random Forest algorithm · Neural networks  
Activation functions · Convolutional neural networks · Genetic algorithms   
Ant Colony optimization · Particle swarm optimization · Attribute selection viral 
biology

1  Introduction

Machine learning has a rich collection of ever-increasing algorithms. While we have 
explained the use of Support Vector Machine (SVM) in virology in another chapter 
in detail, in this chapter we elucidate the desirable properties of three high perfor-
mance algorithms, viz., Decision tree, Random forest (RF), Neural networks includ-
ing deep architecture. Decision tree repeatedly splits attributes starting from a head 
node to the decision nodes known as leaf nodes. The results can be interpreted in 
terms of easily explainable form with domain attributes. Random forest is a collec-
tion of large number of decision tree algorithms. Randomness is introduced in ran-
dom forests in two ways; (1) in each tree, bootstrap sampled examples form the 
input and (2) in every tree only a subset of randomly selected attributes are used . 
The final decision is based on majority decision of individual trees. Random forest 
reduce the variance of performance measures while maintaining the desirable low 
bias of decision trees. Neural Networks are connected by the information flow 
through a network of neurons. They mimic the combined action of neurons in the 
brain. Conventional architecture contains a layer of hidden neurons connecting the 
input. Recently deep neural networks with large number of hidden layers have been 
proposed to solve problems with huge amounts of text and image data. Several con-
figurations have been proposed and Convolution neural networks (CNN) are most 
widely used.

Evolutionary and heuristic methods form a subset of AI methods. These methods 
have been successfully employed in biological domain with great success. These 
methods are employed as optimization tools which differ from conventional math-
ematical programming methods. While conventional methods are mainly gradient 

S. Modak et al.
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based methods, evolutionary and heuristic computational methods do not require 
the evaluation of derivatives. They are simple to use but have rigorous basis and 
produce reasonably good solutions without having to formulate difficult model 
equations. In this work we have described mainly three methods, viz., genetic algo-
rithms, Ant Colony Optimization and particle swarm optimization. All these meth-
ods are population based and provide several equally good solutions and allow the 
user to choose the solutions most useful. GA is inspired by natural evolution and 
uses the selection, crossover and mutation mechanisms to iteratively update and 
arrive at the best possible solution(s). Ant colony optimization is inspired by the 
cooperative search behaviour of real life ants. Almost blind ants are able to coopera-
tively carry out several tasks including optimizing their route to food source and 
back is due to their capabilities to deposit a chemical known as pheromone . They 
also get attracted to the pheromone rich trail and enhance the shortest trail in an auto 
catalytic feedback manner. The swarm behaviour is differently portrayed in Particle 
swarm optimization where the artificial swarm particles mimic the way in which the 
real life birds cooperatively synergise their movement adjusting their speed with the 
swarm. We have elaborated the algorithms of each method, both machine learning 
and Artificial Intelligence. We have also provided examples to illustrate the use of 
these algorithms in biology.

2  Decision Tree Algorithm

Decision trees are a class of learning algorithms employed for classification and 
regression [1, 2]. Starting with a given data set it breaks the set into smaller and 
smaller subsets simultaneously growing the decision tree. The final tree consists of 
a head node, intermediate decision nodes and leaf nodes. The leaf nodes provide 
final outputs and for a classification problem it is the predicted class of any given 
example. Each example is sent through a tree starting from the head node until the 
final leaf node following the appropriate branch as per the condition satisfied. For 
regression problem it is the predicted real value for any given example A two way 
split of a node results in two children nodes while a three-way split result in three 
children nodes. Multiway splits are also possible. Leaf node represents a classifica-
tion or decision. The topmost decision node in a tree which corresponds to the best 
predictor attribute is called the root node. Decision trees can handle both categorical 
and numerical data.

Decision Trees repeatedly split attributes starting from the head node until a leaf 
node is obtained. For the head node the most informative attribute and the split posi-
tion is obtained by using different performance measures like Gini index, mutual 
information and misclassification error. For example, if attribute values lie between 
0–10 the attribute is split at different split points 2, 4, 6 and 8 one by one. Using 
appropriate logical conditions the goodness of splits are evaluated using different 
performance measures and the split point with best performance measure and best 
informative attribute is used to split the head node. At every intermediate node posi-

AI Viral Biology
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tion the split point and most informative attribute are found in a similar fashion. The 
leaf node and stopping of splitting are ascertained by different stopping conditions. 
For example, if all the attributes have similar values or number of examples coming 
to particular node is less than predetermined value, then splitting is stopped. In this 
way a decision tree is built.

Using a function annotation problem in viral biology We can illustrate the work-
ing of a decision tree. We are given a data set of defensin peptides (denoted by zero 
class) and non-defensin peptides (denoted by one class). We are provided the ala-
nine, cysteine and aspartic acid concentrations as attributes for each peptide. The 
final grown tree model is shown in Fig. 1. While, Fig. 2 shows how a test example 
can be sent through the tree down until the leaf node to determine the functional 
class of a test peptide.

Tid Alanine Cysteine Acpartic Acid Defensin

1

2

3

4

5

6

7

8

9

10

19

20

19

20

9

15

1.5

1.6

2.1

7

6

6

6

6

6

6

9

1

1

2

3

3

4

4

6

5

5

2

4

2

1

1

1

1

1

1

0

0

0

0

Splitting Attributes

Alanine
< 5

Aspartic Acid
> = 3

0

0 1

1
N

N

Y

Y

Training Data Model : Decision Tree

Cystine
< 5

Fig. 1 Decision Tree example for functional annotation

Splitting Attributes

Model : Decision Tree Test Data

Alanine
< 5

Aspartic Acid
> = 3

Cystine
< 5

Y

Y N

N

1

1

0

0

Tid

1 19 6 4 1

Alanine Cysteine Acpartic Acid Defensin
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2.1  Applications of Decision Trees in Virology

A decision tree is used as a classifier for determining an appropriate action (among 
a predetermined set of actions), which makes it preferred method since it’s a com-
mon scenario in various problem statements in computational biology [1]. A case 
related to virology which can be considered as an example is to predict diagnosis 
and outcome of an illness caused by viral infection. Dengue viruses are respon-
sible for causing dengue fever/dengue haemorrhagic fever (DF/DHF), transmitted 
by a Aedes aegypti mosquitos as vectors [3]. In the early phase of Dengue illness 
is often confused with febrile illnesses due to its nonspecific clinical symptoms, 
but the symptoms in later stage of illness are more definitive. Correct diagnosis of 
dengue in early phase requires laboratory tests which are costly [4, 5]. There are 
studies attempting diagnosis of dengue disease univariate or multivariate analysis 
of clinical symptoms and signs, haematological or biochemical parameters [6, 7]. 
Lukas Tanner et  al. worked on developing an algorithm with decision tree 
approach which can efficiently diagnose dengue in early hours of illness [8]. 
Clinical data from different age groups and various time points of infection was 
collected. C4.5 decision tree classifier [9] was used by the authors and pruning 
confidence of 25% was used to remove branches. To overcome data over-fitting, 
the algorithms were validated using the k-fold cross validation approach [10] 
where fold value was set to 10 (k = 10). Receiver-operating characteristic (ROC) 
curve was constructed to quantify the sensitivity and specificity of the decision 
algorithm. The overall error rate estimated after k-fold cross validation was 
15.7%, with a sensitivity and specificity of 71.2% and 90.1%, respectively. In 
summary, diagnostic algorithm was able to differentiates dengue from non-dengue 
febrile illness with an accuracy of 84.7%.

Another dreadful virus is West Nile Virus (WNV) which can cause chronic medi-
cal conditions and even death after severe infection [11]. Similar to Dengue virus, 
mosquitos are vectors of disease transmission for WNV in humans, but other known 
modes for this virus is through blood transfusion, breastfeeding, transplacental 
transmission, occupational exposure in laboratory workers and stem cell and solid 
organ transplantation [12]. In January 2004, the Organ Procurement and 
Transplantation Network (OPTN) and the Health Resources and Services 
Administration (HRSA) released their recommendations on the role of deceased 
donor screening in [13]. They recommended to reject donor from geographic areas 
affected by WNV infections. Thus, Bryce A. Kiberd et al. demonstrated use of med-
ical decision analysis to decide whether or not to implement deceased donor WNV 
screening by integrating differences in the type of organ transplanted, WNV disease 
prevalence, test characteristics and survival on the wait list [14]. The results of their 
analysis showed the potential loss of 452.4 life years (cumulative for heart, liver and 
kidney) due to screening annually, since most positive test results would be 
false-positive.

In another example decision tree was used to evaluate the performance of com-
mercial software used for clinical diagnosis. SELDI (surface-enhanced laser desorp-
tion/ionization) is mass spectrometry proteomic approach developed recently which 
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potentially can help in biomarker discovery [15, 16]. Attempts have been made for 
associating such biomarkers with various types of cancers [17–20]. Recent in many 
studies SELDI data has been used along with machine learning algorithms in iden-
tifying protein fingerprints specific for particular cancer which can be effectively 
used to accurately differentiate cancer from the noncancer groups [21–24]. Antonia 
Vlahou et  al. attempted to evaluate the classification algorithm called biomarker 
pattern software [BPS], which is commercially available for analysis of the SELDI 
serum protein profiling data [25]. Total 139 serum sample, 124 were considered for 
this study out of which 85 were controls and 39 were cancer samples. Randomly set 
of 15 was selected as learning set out of which 10 were controls and 5 were cancers 
to form test set for the algorithm. Decision tree that was generated from the learning 
set to classify the two groups. For evaluation the accuracy of the algorithm in pre-
dicting ovarian cancer, ten-fold cross-validation analysis was performed. It yielded 
80% of specificity and 84.6% of sensitivity. When test set was processed by the 
algorithm, 80% of sensitivity and specificity was obtained. In conclusion, this study 
highlighted some advantages of BPS software and also pointed out some drawbacks 
like it is prone to data overfitting.

As in many other areas, decisions play an important role also in medicine, espe-
cially in medical diagnostic processes. Decision support systems helping physicians 
are becoming a very important part in medical decision making, particularly in 
those situations where decision must be made effectively and reliably. Since con-
ceptual simple decision making models with the possibility of automatic learning 
should be considered for performing such tasks, decision trees are a very suitable 
candidate. They have been already successfully used for many decision-making 
purposes. As in many other areas, decisions play an important role also in medicine, 
especially in medical diagnostic processes. Decision support systems helping physi-
cians are becoming a very important part in medical decision making, particularly 
in those situations where decision must be made effectively and reliably. Since con-
ceptual simple decision making models with the possibility of automatic learning 
should be considered for performing such tasks, decision trees are a very suitable 
candidate. They have been already successfully used for many decision making 
purposes.

3  Random Forest Algorithm

Random Forest (RF) is an ensemble of randomly constructed independent (and 
unpruned i.e. fully grown) decision trees [26–28]. It uses bootstrap sampling tech-
nique, which is an improved version of bagging. Each tree differs from all others 
owing to the randomness introduced in RF algorithm in two ways: one in the sample 
dataset for growing the tree and the other in the choice of the subset of attributes for 
node splitting while growing each tree. Such a RF is grown in the following manner:

 1. From the training data of n examples, draw a bootstrap sample (i.e., randomly 
sample, with replacement, ‘n’ examples).

S. Modak et al.
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 2. For each bootstrap sample, grow a regression tree with the following modifica-
tion: at each node, choose the best split among a randomly selected subset of m 
(rather than all) features. Each tree is grown to the maximum size.

 3. Repeat the above steps until (a sufficiently large number) N such trees are grown.

For each tree, a bootstrap sample (with replacement) is drawn from the original 
training data set, i.e. a sample is taken from the training data set and is then replaced 
again in the data set before drawing the next sample. Likewise, ‘n’ numbers of 
samples are taken to form ‘In-Bag’ data for a particular tree, where ‘n’ is the size of 
the training data set. The main advantage of bootstrap sampling is to avoid over fit-
ting the training data. In each of the Bootstrap training sets, about one-third of the 
instances are unused for making the ‘In Bag’ data on an average and these are called 
the Out-Of-Bag (OOB) data for that particular tree. The decision tree is induced 
using this ‘In-Bag’ data using the CART (Classification and Regression Trees) algo-
rithm [2].

Pruning is not necessary in RF, since bootstrap sampling takes care of the over 
fitting problem. This further reduces the computational load of the RF algorithm. 
There is no need for a separate test data in RF for checking the overall accuracy of 
the forest. It uses the OOB data for cross validation. After all the trees are grown, 
the kth tree classifies the instances that are OOB for that tree (left out by the kth tree). 
In this manner, each case is classified by about one third of the trees. A majority 
voting strategy is then employed to decide on the class affiliation of each case. The 
proportion of times that the voted class is not equal to the true class of case-‘n’, 
averaged over all the cases in the training data set is called as the OOB error esti-
mate. Now after growing the forest, if an unseen validation test dataset is given for 
regression, each tree in the Random Forest contributes a unit vote. The output of the 
classifier is determined by a majority vote of the trees. The prediction error rate of 
the forest, depends on the strength of each tree and the correlation between any two 
trees in the forest. The key to higher prediction accuracy is to keep low bias and low 
correlation among the trees. This may be done by adjusting the number of variables 
randomly selected for each tree (mtry). If the value of ‘mtry’ is decreased, the 
strength of each tree decreases, but with increase in ‘mtry’ the correlation among 
the trees increases and the computational load may also increase. The default value 
of ‘mtry’ is chosen as M/3 for regression problems and M  for classification prob-
lems, where ‘M’ is the total number of attributes.

The important features of Random Forests are that they can handle most high 
dimensional and multi-class data easily and the threshold noise limit is more for 
Random Forest compared to the other algorithms. It can be used even if the number 
of attributes is more than the number of examples.

3.1  Variable Selection Using Random Forests

Random Forest can also be used to get an estimate of the variables that are less 
important for prediction. All the cases that are OOB for a particular tree are put 
down the tree to get a prediction with some votes. Now to get an estimate of vari-
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able importance, the value of each of the attributes is randomly permuted in the 
OOB cases of a particular tree and the decrease in the number of votes for the 
majority voted class is calculated. This decrease in the number of votes, when 
averaged over all the trees in the forest, gives the raw importance score for that 
variable. So, higher the raw importance score, greater is the importance of that 
variable in classification. Thus the raw importance score can be employed for 
feature ranking.

3.2  Applications of Random Forests in Virology

With the knowledge of all aspects of Random Forest technique, it can effectively 
use as a tool to construct prediction models for problems in virology domain. One 
of the most notorious viral strains in influenza A, responsible for at least one major 
episode of global health threat in a decade. It occasionally breaks the restriction 
barrier of the primary host, which is mostly animal populations, and infect humans 
leading to potential pandemic.

Host tropism is a property of viruses which defines its infection specificity to 
particular hosts and host tissues. Thus, it explains why viruses are only capable 
of infecting a limited range of host organisms. To greater extent the species bar-
rier restricts influenza strains to infect other hosts since new viral stains needs to 
overcome host range restriction to adapt to a new host. Most important determi-
nant of tropism is hemagglutinin protein (HA) receptor specificity on host cells. 
Studies have already revealed the preference of stains affecting humans recog-
nizes a2,6- sialic acid linkage while avian strains preferentially bind receptors of 
a2,3-sialic acid linkages [29–31]. The second most crucial determinant is PB2 
subunit of viral polymerase complex. Host range of influenza viruses can be effi-
ciently determined by the amino acid residue residing at position 627  in PB2 
[32–34]. Apart from these important factors, comparison of genomic signatures 
of the hosts [35] and position specific mutations might be explored to evaluate 
the capability of avian stains infecting humans. Christine LP Eng et al. studied 
host tropism of influenza A virus proteins using random forest [36]. A combined 
prediction model was trained using 3272 positive human samples and 3923 nega-
tive avian samples, while 799 positive samples and 989 negative samples used as 
external testing dataset. These proteins sequences were transformed into feature 
vectors extraction their physicochemical properties. Twenty feature vectors were 
derived from composition of each of the 20 standard amino acids. The next step 
of transformation was performed using a method developed by Dubchak et al., in 
which three descriptors: composition, transition, and distribution, were calcu-
lated to globally describe amino acid properties [37, 38]. Training of Random 
Forest prediction models were conducted using ten- fold cross-validation, where 
entire dataset is divided into 9 training subsets and 1 testing subset. Grid search 
approach was employed to fine tune the parameters for best performance. In this 
comparative study, Random Forest outperformed over Naïve Bayes, k-Nearest 
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Neighbours algorithm (kNN), SVM and Artificial Neural Network (ANN) clas-
sifiers, yielding 98.58% prediction accuracy (AUC = 0.996; MCC = 0.972), and 
hence was chosen as the classifier to train the remaining prediction models for 
individual proteins.

In another study Yu Wei et al. demonstrated effective use of Random Forest tech-
nique in discovery of novel potent targets for developing new drugs to block virus 
infection [39]. The viral specie targeted for this study was hepatitis C virus (HCV), 
because its chronic infection can result in chronic liver disease, progressing to cir-
rhosis and hepatocellular carcinoma [40]. There is urgent need to develop new anti- 
HCV drugs because of several critical issues with current HCV therapies, which 
includes side effects and drug resistances [41]. HCV NS5B polymerase is an RNA- 
dependent RNA polymerase which plays an important role in replication process of 
genomic RNA of HCV [42, 43]. Current studies based on X-ray structures of 
inhibitor- bound HCV NS5B polymerase [44, 45] is proving extremely informative 
in discovering and developing of new structure-based NS5B polymerase inhibitors. 
Authors developed a virtual screening workflow that includes random forest, 
e-pharmacophore, and molecular docking methods to discover a series of novel 
small molecule NS5B polymerase inhibitor leads. Random Forest method was first 
used to build the predictive models of the NS5B polymerase inhibitors. Sixteen 
descriptors were selected, and the overall classification accuracy of the model was 
84.4%. The outcome of this study was 5 compounds which showed inhibitory 
potency against NS5B polymerase with IC50 value of 2.01–23.84 μM. Furthermore 
these compounds further optimized and developed to be potent and highly active 
NS5B polymerase inhibitors.

Some studies corelated the increase in incidences of hepatocellular carcinoma 
(HCC) with increased prevalence of HCV infection [46–48]. The significance of 
HCV viral infection in the pathogenesis of HCC can be validated by understanding 
the transition of liver tissues from benign to malignant. Valeria R Mas et al. studied 
the gene expression patterns of 108 liver tissue samples at different stages, includ-
ing normal, cirrhosis, and different HCC stages [49]. For 58 HCV cirrhotic tissues, 
863 differentially expressed probe sets were yielded by comparing cirrhotic tissues 
with (n = 17) and without (n = 41) HCC. There was a need of a classifier to predict 
whether the HCV cirrhotic tissue was from a patient without HCC versus cirrhotic 
tissue with HCC. Fifteen probe sets were consistently identified among the random 
forest classifiers, which helped authors to identify gene signatures that distinguish 
the pathological stages of HCC and potential molecular markers for early HCC 
diagnosis in high risk cirrhotic HCV patients.

The predictive power of Random Forest method can also be employed in devel-
opment of time series models in disease prediction. A comparative analysis of viral 
outbreak data was performed by Michael J Kane et al. between an autoregressive 
integrated moving average (ARIMA) model and Random Forests model [50]. Time 
series models of both the methods was applied to outbreaks incidence data of avian 
influenza (H5N1) virus in Egypt. Authors not only found Random Forest model 
outperforming the ARIMA model in predictive ability, but also inferred that it effec-
tive for predicting outbreaks of H5N1 in Egypt.
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4  Neural Network Algorithm

A Neural Network is an artificial intelligence tool which mimics human brain for 
carrying out useful tasks rapidly [51]. More specifically, ANN is inspired by human 
information processing through the interaction of many billions of neurons con-
nected to each other. Figure  3 illustrates how the neural network algorithm is 
inspired by the properties of brain cells and its analogy with the actual functioning 
of the neurons. A typical dendrite in the human brain receives signals from other 
neurons and cell body sums the incoming signals and when the sum exceeds a 
threshold value, neuron fires and the signal is transmitted through axons to other 
neurons. The signal quantity is proportional to the strength of the connections which 
can be inhibitory or excitatory.

ANNs mimic this cooperative functioning of the neurons by connecting the 
inputs of a given data (input neurons) to the required outputs of a specific task 
through a series of layers of neurons. The structure of a standard neural network 
architecture consists of input, weights, activation function hidden layers of neurons 
and outputs.

4.1  Model of Artificial Neural Network

A general model of ANN is schematically represented in Fig. 4, followed by its 
processing. For the above general model of artificial neural network, the net input 
can be calculated as follows:

Dentrites

Nucleus

Axon

Cell Body

out

Axon Terminals

bias

in1

in2

inn

Σ fx

Fig. 3 Diagrammatic representation of neural network
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The output can be calculated by applying the activation function over the net 
input. Hence, output is the net function of the net input. Activation functions are 
used to achieve non-linear functional mapping. Such non-linear mapping is neces-
sary for handling data which are not linearly classifiable.

Some commonly used activation functions are:

 (a) Sigmoid or Logistic
 (b) Tanh  ( Hyperbolic tangent)
 (c) ReLu (Rectified linear units)

A typical ANN architecture consists of an Input layers, 1 or 2 Hidden layers and 
1 or multiple Output layers. For the Defensin classification problem illustrated in 
Fig. 2 the input layer denotes the concentrations of Alanine, Cysteine and Aspartic 
Acid amino acids. In Fig. 5, there are 4 hidden neurons in each of the two layers. 
The inputs are weighted and then sent to each of the neurons in the first hidden 
layer. These are summed, squashed (non-linearly mapped), weighted and then sent 
to the next hidden layer of neurons. These are summed and further squashed by 
activation functions, summed up and sent to the output layer. Every input example 
is sent through the layers, following the same procedure. The network output is 
compared with the actual output and overall error is computed. The weights are 
revised using a gradient decent algorithm known as Back Propagation algorithm. 
The procedure is repeated until the total error in minimised.

Inputs

Activation Function Output

x1 w1

w2

w3

w4

wm

x2

x3

x4

xm

YinΣ fx Y

Fig. 4 General model of an Artificial Neural Network
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4.2  Applications of Neural Networks in Virology

Viral epidemics are caused because of outbreak of a viral infection which can read-
ily transmitted to other targets. One of the notorious example is Zika virus disease, 
which is caused by a virus transmitted primarily by Aedes mosquitoes [52]. In early 
period of infection Zika virus infection symptoms might not visible in most of the 
patients, but consequences of severe cases are very frightening like innate micro-
cephaly in new-borns, preterm birth and miscarriage if infected during pregnancy, 
congenital malformations, etc. [53–55]. Even after advancements in several fields of 
computational biology, there is lack of reliable approach to correctly predict an 
outbreak and expected geographic scale. Mahmood Akhtar et al. attempted to build 
a dynamic neural network model to predict the geographic spread of outbreaks in 
real-time [56]. Most important part was gathering data for model building from 
diverse source that must include socioeconomic, population, epidemiological, travel 
and mosquito vector suitability data. For this problem Nonlinear AutoRegressive 
models based neural network was employed with eXogenous inputs known as 
NARX neural networks [57–59]. For identifying top 10% of at-risk regions, the 
average accuracy of the model remains above 87% for prediction up to 12-weeks in 
advance. Further, the model is almost 80% accurate for 4-week ahead prediction for 
all classification schemes, and almost 90% accurate for all 2-week ahead prediction 
scenarios, i.e., the correct risk category of 9 out of 10 locations can always be 
 predicted. There were several other important finding of this study, indicating the 
efficiency of neural networks is solving such prediction problems.

Certain properties of HIV-1 isolates can be helpful in classifying the viruses 
phenotypically. One such properties includes ability to replicate form multinucle-
ated cell fusion with MT-2 cell, which is transformed T-cell line [60]. Another prop-
erty is based on use of primary coreceptor to enter cells [61–66]. In recent studies, 

Fig. 5 Schematic block diagram of an Artificial Neural Network
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the V3 region of HIV-1 envelope protein has been identified as a major determinant 
of coreceptor usage [67–70]. Wolfgang Resch et al. generated neural networks to 
predict coreceptor usage or MT-2 cell tropism from the amino acid sequence using 
a subset of positions in V3 [71]. For evaluating exiting methods and by implement-
ing neural network, set of MT-2 cell tropism (NSI/SI set), and set of known corecep-
tor usage (R5/X4 set) was assembled. Additional features included in this set was 
the epidemiologic relatedness, which was never considered before in sequence sets 
used in earlier studies. Neural networks were fully connected feed-forward net-
works with 16 sigmoidal input nodes, three hidden sigmoidal nodes, and one linear 
output node. Amino acids and gaps were encoded numerically by consecutive num-
bers from 1 to 21. Training was done using a Bayesian regulation modification of 
backpropagation and started with random weights [72]. The training target used 
values of 0 for R5/NSI and 1 for X4/SI. In summary, The mean reliability for X4 
prediction of the R5/X4 neural network was 0.69 for 100 subsets of unrelated 
sequences, a considerable improvement over the reliability of 0.48 achieved 
by method.

5  Deep Neural Networks

Deep-learning networks differ from conventional neural networks by their depth. 
Most of the earlier versions were shallow consisting of one input and one output 
layer, and at most one hidden layer in between. Deep neural networks on the other 
hand consist of several hidden layers between input and output. Additionally, in 
deep-learning networks, each layer of nodes trains on a distinct set of features based 
on the previous layer’s output. With further advancement in layers nodes recognize 
higher level features. As the further you advance into the neural net, the more com-
plex the features your nodes can recognize, since they aggregate and recombine 
features from the previous layer. CNNs, like conventional neural networks, consists 
of layers of neurons which receive input data, take a weighted sum and propagates 
through an activation function. The outputs received from the last layer of hidden 
neurons is compared with the actual output and the weights are corrected using back 
propagation algorithm.

Unlike neural networks, where the input is a vector, here the input is a multi- 
channelled image. For an RGB image let us assume CNN receives an image of size 
32X32X3. This input undergoes a series of convolution operations in CNN. For this 
operation several filters each having random weights are used and they convolve 
over the image, shown in Fig. 6. Let us assume we take the 5∗5∗3 filter and slide it 
over the complete image covering all possible unique 5X5X3 subsets of the image. 
On every convolution operation we obtain a dot product between the image and the 
filter and the output (WT.X + B) is a scalar(one number) Similarly for every other 
dot product taken, the result is a scalar. It is easy to arrive at the figure of 28×28 
unique image subsets are to be convolved and a complete convolution operation 
with a single filter yields an output of size 28X28X1, shown in Fig. 7. The convolu-
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32 x 32 x 3 image
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Convolution Processing an image

Fig. 6 Example of multi-channelled image as input for Convolutional Neural Network

32 x 32 x 3 image

5 x 5 x 3 filter

32 3

28

28
1

Convolving filter over spatial locations of
the image

Fig. 7 Convolution operation with a single filter

tion layer normally consists of several filters and if we assume six filters are taken 
each of the six independent layers convolve and the total output will be six feature 
maps and the combined size will be 28X28X6 . Each filter is independently con-
volved with the image and we end up with 6 feature maps of shape 28∗28∗1, which 
is diagrammatically represented in Fig.  8. The architecture consisting of several 
convolution layers in sequence will look like Fig. 9.

So with each layer there is a thickening of the width and thinning of the breadth. 
If the finalized filters with random weights learn at the entire set of layers through 
back propagation each successive layers will learn higher and higher levels of fea-
tures. Another building block of CNN is the pooling layer. This layer down samples 
the image and progressively reduces the size and the parameters to learn. This pool-
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Fig. 8 Output of multiple feature maps in in a Convolutional Neural Network
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Fig. 9 Convolution layers in a Convolutional Neural Network

ing layer operates on each feature map. CNN like the conventional network consists 
of activation blocks and the most commonly used in CNN is the ReLU activation 
function. The fully connected layer of neurons converts the image to a linear struc-
ture like the ones in regular neural networks.

5.1  Applications of Deep Neural Networks in Virology

Well accepted applications of deep neural networks algorithms includes image pro-
cessing and face recognition [73]. The most commonly employed deep learning 
network architecture for image analysis is the convolutional neural network (CNN). 
The basic cores of CNN are Pattern matching (convolution) and aggregation 
 (pooling) operations [74]. Reza Ahsan et al. attempted a novel approach of devel-
oping, training and validating image processing convolution neural network algo-
rithms for prediction of influenza proteins [75]. The method used was conversion 
of two important influenza virus A subtypes protein sequences (HA and NA) into 
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binary images. Sequences of five hemagglutinin (HA) proteins (H1, H3, H4, H5, 
H9) and four neuraminidase (NA) proteins (N1, N2, N6, and N8) extracted from 
UniProt Protein database [76]. HA Polynomial Dataset (HAPD) and NA 
Polynomial Dataset (NAPD) are created by converting each amino acid position 
into one feature or variable. Thus number of features (or column) for each sample 
will be equal to length of the longest protein sequence. While the Binary Image 
Datasets, viz. HA Binary Image Dataset (HABID) and NA Binary Image Dataset 
(NABID), for these proteins are created by converting sequence character of sin-
gle-letter codes of an amino acid to an integer. Then numeric data of HA sequences 
converted to the binary image, composed of nineteen 0 and 1. For an example 
authors assigned amino acid Arginine (R) number 2, to get the binary numbers 
01000000000000000000. Likewise, image of the binary matrix for 20∗(number of 
protein sequences) was created. The polynomial datasets of HA and NA amino 
acids sequences was created which was later used for constructing a binary image 
datasets of the amino acids sequences. Conventional predictive models were trained 
and tested using the polynomial datasets. Finally the prediction model for the virus 
subtypes based on images of protein sequences was developed, trained and vali-
dated using CNN, followed by its comparison with conventional predictive models. 
The performances of conventional predictive models varied, from 35% to 99%, 
while authors were able to reach 99% accuracy with Naïve Bayes model in predict-
ing the HA subtype, that dataset created based on thousands of physicochemical 
features of proteins, not protein sequence. While the image processing models 
using CNN yielded performance upto100%. The main outcome of this work was 
highlighting that raw amino acid sequences can be directly fed into the prediction 
model, and extraction of physicochemical properties as features can be skipped.

Similar work was done by Youngmahn Han et  al. where they developed an 
approach for computationally scanning the peptide candidates that bind to a specific 
major histocompatibility complex (MHC) to speed up the peptide-based vaccine 
development process [77]. For this problem Deep convolutional neural network 
(DCNN) was employed. The peptide-MHC interactions were encoded into image- 
like array(ILA) data. The dataset used for this work was nonapeptide i.e. 9 physico-
chemical scores [78], binding data for HLA-A and -B. For the binary classification 
of peptide binding affinities, peptides with a halfmaximal inhibitory concentration 
(IC50) value of less than 500  nM were designated as binders. The contact site 
between the peptide and MHC molecule is corresponded to a “pixel” of the ILA. For 
each “pixel”, physicochemical property values of the amino acid pair at the contact 
site are assigned to its channels. The predictive performance DCNN was evaluated 
with leave-one-out and five-fold cross-validation approaches. The mean validation 
losses were 0.318 in leave one-out and 0.254 in five-fold cross-validation, and the 
mean validation accuracies were 0.855 and 0.892, respectively, and this indicate 
that our DCNN was able to be generally trained on the ILA data without much 
overfitting problems. The DCNN showed a reliable performance for the indepen-
dent benchmark datasets. DCNN significantly outperformed other tools in peptide 
binding predictions for alleles belonging to the HLA-A3 supertype.
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Virus causing infections in plants is another concerning area that can severely 
affect economy of a country when case of an viral outbreak. Usually climate change 
in a region affects ecological variable like precipitation humidity and temperature, 
which consequently serve as a vector in which viruses to spread if changes are 
favourable [79]. Alvaro Fuentes et al. worked on developing an approach to identify 
and recognize of diseases affects tomato plants using deep neural network algorithm 
[80]. Dataset used in this approach was images affected by several diseases and 
pests in tomato plants. Additional important data used annotations, which were 
added manually by experts by creating the bound box around the anomaly in the 
image and assign the class to define the impact.

Input Images are passed through CNN meta-architectures mentioned in Table 1. 
The output of the CNN architecture is passed through a fully connected layer (fea-
ture extractor). Finally SoftMax layer is used to produce the output. The fully con-
nected layer used in this work employs different standard feature extractors, already 
available in the literature. These are AlexNet [81], VGG-16 [82], GoogLeNet [83], 
ResNet-50 [84], ResNet-101 [84], ResNetXt-101 [85] etc. While the performance 
of all the architecture is generally very good, due to the small number of samples in 
few classes, these examples were predicted poorly. Resulting in false positive and 
lower average precision. The input image with different resolutions and scales was 
feed into the system. These images were first pre-processed and later used for 
extracting features for deep neural networks. The outcome of the pipeline was class 
disease and localization of the infected area of the plant in the mage. In this study, 
authors demonstrated a non-destructive local solution in identification of plant 
disease of pest infection. This approach can be proved extremely helpful in making 
correct remedial approach, avoid the disease expansion to the whole crop and reduce 
the excessive use of chemical solutions.

6  Genetic Algorithms

Genetic algorithms belong to a family of computational models, which has been 
inspired by evolution [86–88]. They are immensely popular because they are simple 
to implement and have widespread applications. Genetic algorithms are population- 
based, stochastic algorithms and are popularly used as optimization tools. GA for 

Table 1 Deep meta-architectures for object detection

Architecture Title Description

Faster 
R-CNN

Faster region-based 
convolutional neural 
Network

Region proposal Network (RPN) takes an image as 
input and processes it by a feature extractor and 
features are used to predict objects [154].

SSD Single shot multibox 
detector

Object recognition in a fixed-size collection of 
bounding boxes, which are produced by feed-forward 
convolutional network [155].

R-FCN Region-based fully 
convolutional networks

It uses position-sensitive maps to address the problem 
of translation invariance [156].
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most optimization problems, starts with a randomly generated initial population, 
where each individual of the population represents a possible solution, and is 
encoded into a string. There are different encoding techniques like binary encoding 
where each solution is converted into a string of a given size consisting of zeros and 
ones and real encoding where each solution is represented by a real number. The 
encoding technique must be clearly defined in advance. Each individual is evaluated 
for its fitness. The fitness of a solution is either the value of the objective function 
which we want to optimize, or a function of the objective function. The function that 
defines the fitness has to be specified distinctly for each problem. Generally, a fitter 
individual has a better probability to be selected for further operations to evolve 
newer solutions with better fitness. In most GAs there are three primary genetic 
operations, which are applied to the population members repeatedly until the solu-
tion has converged.

 1. Selection

This operation involves the selection of individuals from the current population, 
to create a mating pool for the next generation. Individuals with higher fitness val-
ues have a greater chance of being selected. Tournament and Roulette wheel selec-
tion are the most popular selection schemes.

 2. Crossover

Where (randomly selected) elements or chunks of elements are swapped (with a 
probability known as crossover probability) between individuals, to create popula-
tion members of a new generation.

 3. Mutation

Where (randomly chosen) elements are modified.
As can be seen from the above description, the encoding and the fitness evalua-

tion are defined specifically for each problem whereas the implementation of the 
genetic operators is a common one.

6.1  GA for Attribute Selection

Selection of the most informative attributes is an important pre-processing steps 
involved in a function annotation problem in viral biology. GA employing the three 
genetic operators (selection, crossover and mutation) iteratively evolves the best 
attributes from a set of attributes in a given data set. The size of an individual is the 
size of the total number of attributes. As an example, if the original set of descriptors 
are six in number each member will have a string length of six. The algorithm starts 
with random generation of a predefined number of solutions. For each solution, 
every bit is randomly filled with ones and zeros. Each bit represents one attribute 
and a value of one represents presence of an attribute in the solution and zero repre-
sents absence of a solution. Once the solutions are generated the attributes selected 
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in each solution are input to a classifier and the performance is measured in terms of 
suitable performance measures like Cross Validation (CV) accuracy. After evalua-
tion the fitter solutions are selected by a selection process like tournament selection 
and the crossover process is carried out with a crossover probability on the selected 
solutions . After this the mutation step is conducted in which each of the bit is 
flipped (ones to zero and zero to one). This completes one generation and the next 
and subsequent generations the process of selection, crossover and mutation are 
conducted . This process is repeated until convergence and the best solution pro-
vides the most informative subset of descriptors.

6.2  Generalized GA

The algorithm consisting of generating random population, selection and mutation, 
is illustrated below for a representative data set with six features:

A population is randomly generated with each solution having number of bits 
equivalent to the total number of attributes. The attributes which are selected in each 
individual represented by ones are sent to a standard classifier to get the perfor-
mance measure like CV accuracy.

CV Accuracy = 78%

1 1 0 0 1 0

Accuracy = 82%

1 1 1 1 1 1

Accuracy = 74%

1 1 1 0 0 0

Accuracy = 75%

0 1 0 1 1 0

Accuracy = 73%

1 1 0 1 0 0

Accuracy = 81%

1 1 1 0 1 1

Accuracy = 71%

0 1 1 0 0 0
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Accuracy = 72%

1 0 1 1 0 1

Accuracy = 78%

0 1 1 0 0 1

Accuracy = 74.5%

1 1 0 0 0 1

6.2.1  Selection

Accuracy is directly used as fitness measure and in the selection step solutions are 
selected based on the selection mechanism. Here we illustrate the process with tour-
nament selection process.

6.2.1.1 Tournament Selection

From a given populations, two chromosomes are chosen at random, and the one 
with higher accuracy is selected for crossover. See Fig. 10 for diagrammatic repre-
sentation of the Tournament Selection where the length represents the accuracies 
and longer chromosome means better accuracy. It can be seen in Fig. 10 that chro-
mosomes 2,3,6 and 7 are selected, because their accuracies are better than the chro-
mosomes they are compared with. This selection process is conducted twice so that 
number of chromosomes before selection and after selection remains same. In 
Tournament selection, it is guaranteed that worst solution will never chose for 
crossover.
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Fig. 10 Diagrammatic representation of the Tournament Selection
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6.2.2  Crossover

In the crossover process new solutions are generated from an existing population 
stochastically. Solutions are chosen at random from population with a crossover 
probability. There are different types of crossover and the following three are most 
popular:

 1. Single point crossover
 2. Multi point crossover
 3. Uniform Crossover

6.2.2.1 Single Point Crossover

In this illustration we employ single point crossover in which two randomly chosen 
members are made to undergo the process of crossover with a predefined probabil-
ity. A random intersection point is chosen and using this intersection point two new 
solutions are generated as shown in Fig. 11. This process is repeated until a new 
population is created after crossover with the same number of solutions originally 
present. After completion of crossover the solutions undergo the process of muta-
tion with a small mutation probability.

6.2.3  Mutation

It is used to maintain genetic diversity of solutions from generation to generation. It 
is used to avoid problem of rapid convergence to a poor local optimum. The flip 
mutation operation flips one or more-bit values (from zero-to-one or from one-to- 
zero) from a crossover chromosome from its initial state stochastically. Mutation 
operation is done according to mutation probability, usually very small. Starting 
from the first offspring after crossover, each bit of the solution flipped (zero to one 

Fig. 11 Example of single point crossover in Genetic Algorithms
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or one to Zero) with the predefined mutation probability. It can be seen in Fig. 12, 
the fifth bit got flipped. Similarly every solution is subjected to mutation operation 
and after mutation operation accuracy of each solution is estimated by sending to a 
classifier. These three operations, namely selection, crossover and mutation, com-
plete in generation and the same steps of selection, crossover and mutation are car-
ried out for a large number of generations until convergence.

6.3  Applications of GA in Virology

Applications of Genetic Algorithms are not only restricted primarily to solve opti-
mization problems but also, they are frequently used in diverse areas like training 
Neural Networks, digital image processing, genetics-based machine learning, spec-
trometric data analysis, etc. Due to recent advancements in laboratory methodolo-
gies, there is a rapid increase in the amount of published and experimental data in 
several domains of Life Sciences. Virology is no exception and there is a recognized 
need for better optimization method to address problems like fitting a model to 
observed data generated by virology studies.

Viral genomes show great variation in nature and genome sequencing projects 
are uncovering many unique features of these that had been previously known. 
Human immunodeficiency virus type 1 (HIV-1) is one of the two types of HIV 
viruses that causes AIDS, which is the most advanced stage of HIV infection [89, 
90]. Provirus in retroviruses like HIV-1, is referred to the genomic unit formed 
when viral genetic material is translocated to the nucleus and integrated into the 
host-cell chromosomal DNA. Prior to provirus formation, a double-stranded mole-
cule of DNA is generated by reverse transcribing two viral RNA copies. During 
metamorphosis of RNA into DNA, point mutations can occur. These mutations 
were in focus for understanding the viral biology with a view to identify drug targets 
for clinical intervention. However, recently it has been shown that the majority of 
HIV-1-infected cells in vivo can contain multiple proviruses [91]. The number of 
proviruses may vary from one to eight copies per infected splenocyte. This implies 
that recombination could also be playing major role in the intrapatient evolution of 
HIV. To analyze and understand HIV evolution in host, Gennady Bocharov et al. 
developed a stochastic model that reflects in some detail both the biology of HIV 
replication and the infection process within a host [92]. In this study, multiple fac-

Fig. 12 Example of Mutation in Genetic Algorithms
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tors impacting the viral evolution has to be considered to mimic real HIV infection. 
These factors include the extent of virus expansion and degradation, selection pro-
cesses and the multiplicity of infected cells. Thus, genetic algorithms fits perfectly 
here to take into account all factors as variation operators and simulate viral evolu-
tion. Genetic algorithms proved effective in segregating the contribution of the 
inherently linked processes of multi-infection and recombination. The model devel-
oped by the authors in this work, provides a versatile platform for predicting the 
response of HIV towards therapeutic interventions.

Genomics studies have revealed the sequence of molecular events in the replica-
tion cycle of the HIV [93], including the following seven steps:

 (i) viral entry
 (ii) reverse transcription
 (iii) integration
 (iv) gene expression
 (v) assembly
 (vi) budding
 (vii) and maturation

To design strategies to inhibit the HIV replication or develop effective antiviral 
agents, each individual step within the HIV life cycle may be used as a potential 
target. Antiviral chemotherapy is effective in some extent to supress the infection, 
but it comes with deleterious side effects. Styrylquinoline derivatives are class of 
compounds, which at non-toxic concentrations shown to inhibit integration activity 
in vitro and to block viral replication [94]. Nasser Goudarzi et al. used genetic lgo-
rithms for descriptor selection in quantitative structure–activity relationships 
(QSAR) based study to understand the pharmacophore properties of styrylquinoline 
derivatives and to design inhibitors of HIV-1 integrase [95]. Two factors which gov-
erns the predictive accuracy of QSAR models are: predictive model selected, and 
descriptor selection that sufficiently represent the structural information. Thus 
genetic algorithm–multiple linear regression (GA–MLR) was considered as best 
option for predicting the anti-HIV activity (pIC50) values of styrylquinoline deriva-
tives. For this work pIC50 values of for 36 molecules of styrylquinoline derivatives 
from the literature [96] were taken. GA process first generated random feature sub-
sets of the molecule, followed by subset-wise evaluation of selected descriptors for 
fitness to predict pIC50. Based on the fitness GA operators of selection, crossover 
and mutation were repeatedly applied to get better subsets of descriptors, as itera-
tion proceeded. After convergence, GA narrowed down the search from 302 descrip-
tors to 7 best descriptors by iterating 100 generation of simulation, on population 
size 64, mutation rate 0.005, and cross-over 0.6. The correlation coefficients (R2) 
GA–MLR model for training set was 0.9519 while for test set it was 0.7977. The 
results of this study provided enough information related to different molecular 
properties, which can participate in the physicochemical process that affected the 
HIV inhibition activity of styrylquinoline derivatives.

Similar work has been done by Yong Cong et al., where another variant of GA 
with Partial Least Square (GA–PLS) was employed to select best descriptor subset 
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for QSAR modeling in a linear model to study influenza virus neuraminidase 
(H1N1) inhibitors [97]. In this work SVM (GA-SVM) was used to build regression 
model to evaluate structural and physicochemical features of compounds contribut-
ing to the influenza virus NA inhibitory activity. Data used by this group was 108 
compounds with carbocyclic and flavonoid scaffolds, which have clear inhibitory 
activity against influenza virus strain A/PR/8/34 (H1N1) reported in the literature 
[98–105]. Further, these compounds were separated into the training set (80 com-
pounds) and test set (28 compounds) based on their similarity and distribution in the 
chemical space. The chemical space here denotes the used structural and chemical 
descriptors [106]. GA generated random population to subsets of descriptors and 
these descriptors were evaluated by GA-PLS to calculate the fitness, fitness operator 
described before. After large number of iterations of subsequent evaluation, best top 
9 descriptors were found to give the highest performance. These selected 9 descrip-
tors were used by GA-SVM to create regression models. Here GA was used to 
select best set of kernel parameters, to provide the highest correlation coefficient 
(R) of 0.9189 for the training set. While the correlation coefficient values achieved 
for testing set was 0.9415. for the testing set. Thus, authors demonstrated how com-
binatory methods can be effectively used to address complex problems like investi-
gating inhibitory activity of compounds against of viral proteins, which potentially 
can be used as base for receptor-based and ligand-based anti-influenza drug design.

There are other examples where GA was also used for applications which deals 
with handling genomic sequence data. Chunlin Wang et al. performed a benchmark-
ing experiment where genetic algorithm was implemented in parallel mode to opti-
mize multiple genomic sequence alignments initially generated by various alignment 
tools [107]. They developed a program, GenAlignRefine, which improves the over-
all quality of global multiple sequence alignments (MSA) by using a genetic algo-
rithm to improve alignments in local regions. Addressing such a problem statement 
was a challenge since MSA can provide only approximate solutions to alignments 
except for the smallest alignments. Already a number of novel heuristic algorithms 
have been proposed [108]. Deciding factors of the effectives are: (a) choice of an 
objective function (OF) that assesses the quality of an alignment, (b) algorithm 
design to optimize the score from that objective function. Sum-of-pair (SP) function 
is frequently used OF [109], which is an extension of the scoring method used in 
pair-wise alignments. Alternatively, COFFEE (Consistency based Objective 
Function For alignmEnt Evaluation) [110] function can be used which assesses the 
evenness between a multiple alignment and libraries of optimal pair-wise align-
ments of the same sequences. Authors used the COFFEE OF as a measure of the 
optimization of the MSA, since other studies proved its robustness better align-
ments [111]. Genetic algorithm was employed to optimize an alignment by attempt-
ing to maximize its COFFEE score. The columns in an alignment that contain a gap 
adjacent to a gap-free region of at least 20 nucleotides as defined in this study as 
“fuzzy” regions. The starting point for the genetic algorithm in the method devel-
oped was the initial alignment produced by T-Coffee [111] alignment on fuzzy 
regions. GenAlignRefine then optimizes the application of the genetic operators by 
using a combination of only 3 operators rather than the full set by pre-aligning each 
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fuzzy region using T-Coffee, similar to studies done earlier [112]. Using these 3 
genetic operators as genetic operators, authors effectively utilized genetic algo-
rithms to efficiently improve MSA of whole genome sequences.

Totally other side of virology is the remedial approaches undertaken to either 
avoid, or reduce the dreadful consequences of viral infection. Worldwide, immu-
nologists are working actively to develop preventive and therapeutic vaccines 
against cancer. There are several challenges related to this work, out of which most 
critical is translating positive immunoprevention from animal models to human 
situations. Thus, a successful experiment confirming effectiveness of vaccine on a 
particular cancer, seeks devising an optimal vaccination schedule that maximizes 
chances of demonstrating best effects. Cristiano Calonaci et al. [113] developed an 
agent-based model (ABM) [114] to summarize outcome of vaccination experiments 
for mammary carcinoma [115–119]. Genetic algorithms in this case was employed 
to deduce optimal vaccination schedule. To make this process more robust and 
effective, genetic algorithm was parallelized using Message Passing Interface 
(MPI), where a simulator was used as a fitness evaluator. The suggested schedule 
was then tested in vivo, giving good results. Thus, successful application of drug 
optimization using parallel computing was demonstrated by authors, leading to the 
development of a real virtual lab to analyze and optimize vaccine protocol 
administrations.

7  Ant Colony Optimization

The Ant System (AS) was initially proposed as a metaheuristic for optimization 
problems, by Marco Dorigo in 1992 [120]. It constitutes a class of algorithms in the 
area of Swarm Intelligence. The first problem studied in AS was that of searching 
for the most optimal path in a graph popularly known as the Traveling Salesman 
Problem (TSP) [121]. Over a period of time, the Ant System branched into several 
variations, sometimes to give better results for benchmark problems and sometimes 
varying as per the requirements of a domain problem. Thus, Ant Colony Optimization 
algorithm (ACO) is a probabilistic algorithm aimed at solving computationally 
intensive problems by drawing on random ant system behavior, towards incremen-
tally finding better solutions.

In addition, ACO displays a reinforcement learning behavior which gives it a 
remarkable capability to learn while building its solutions. As a result, owing to 
multiple important properties of the ACO algorithm, a majority of published papers 
have reported ACO performing very well in many problem domains in comparison 
to other metaheuristics. One such class where ACO has been known to perform very 
well is in the area of combinatorial bioinformatics optimization problems. In this 
context, the attribute selection problem is of extreme importance. As an example, 
Microarray datasets are composed of a huge number of gene expression profiles. 
These profiles from a computational perspective are extremely noisy and redundant. 
A model (predictive or otherwise) when derived out of this data, will therefore also 
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be inefficient and possibly misleading. As a result, pre-processing of these datasets 
is paramount. Collecting informative gene subsets, from this aspect, thus turns out 
to be very important. The reduced informative gene subsets thus obtained, help in 
building more expressive predictive models. At this time, popular classifiers like 
SVM, Random Forests etc. may take over. Sometimes, a feedback loop with the 
subset selection algorithm may help to improve the final model.

ACO has been motivated by the cooperative search behaviour of real life ants 
of a colony for finding food. As naturally observed, an ant wanders randomly and 
on finding food returns to its colony while laying down pheromone trails. Random 
ants on finding such trails follow the same with a very high probability and return 
to the nest by reinforcing the pheromone concentration on these trails. More and 
more ants follow the pheromone rich trail and the shortest route is established. 
Figure 13 illustrates this process. This probabilistic behaviour thus ensures that 
searching for food is not just in a local region and exploration thus continues. 
Once another new good path appears, ants start using that route. More informa-
tion on this can be found in [122].

In terms of an optimization algorithm, ACO is fundamentally described by the 
algorithm mentioned next.

7.1  Generalized ACO Algorithm

1. Initialisation
 Place ants at their initial positions;
  Initialize a Pheromone matrix that records an initial pheromone value for all 

possibilities;
2. For ‘itr' iterations -
 For ‘k’ ants -
  For ‘n’ moves towards building a complete solution-
    Select a partial solution probabilistically using problem heuristic and transi-

tion function using pheromone values;

Fig. 13 Pheromone trail for exploration by virtual ants
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   Evaluate the k-th ant’s solution and store it;
   Store and Select the best solution/s;
 Simulate reinforcement behaviour by increasing pheromone values for above  
selected solutions;

  Simulate pheromone evaporation by decreasing other solution components 
not selected;

Repeat.
3. Extract and report the final complete solution as the most optimal for the given 
parameters

While initialization of a generalized ACO, artificial ants may be placed on ran-
dom positions (partial solution components). Next, in a pre-determined ‘itr’ set of 
iterations with a certain ‘k’ ants, a solution is explored considering there are ‘n’ 
partial components of the complete solution.

The problem heuristic is normally associated with the amount of information 
provided by the partial component of the complete solution.

In a later approach, Dorigo et al. [121] introduced the notions of exploration and 
exploitation to the ACO algorithm for the symmetric TSP problem. This process 
involved the generation of a random value called q, between 0 and 1, which was 
tested against a threshold q0 (user defined).An exploitation, where the best available 
partial solution component would be chosen (the shortest edge with maximum pher-
omone concentration for TSP), constituted the next option if q was less than q0.
Otherwise, exploration, where a random solution component according to a proba-
bility distribution, would be selected. Elitism has also been used to improve results 
frequently. Such exploration and exploitation based search measures thus overcame 
many problems which normally a greedy algorithm would suffer from, for example 
the solution search being stuck in local optima.

The set of complete solutions for one iteration are then evaluated and the best are 
selected for updating pheromone concentration corresponding to a global update. 
Other solutions go through a local updation with pheromone evaporation.

7.2  Applications of ACO in Virology

Several viral diseases and outbreaks not only cause threats to humans, but also 
adversely affects the plant agriculture and animal husbandry in worst possible ways. 
One such example is shrimp aquaculture which has been severely affected by White 
spot disease (WSD) [123–125] resulting in a huge economic burden to the industry. 
Researchers have been working on developing approaches to find potential antiviral 
agents which will be used in docking analysis. These drug-like molecule obtained 
from the docking experiments would be used to optimize to a candidate drug. The 
objective is to find the inhibitors that blocks the binding of the viral protein to the 
receptor, thus averting the viral infections.
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Finding or developing new drug is a lengthy, complex, and costly process, with 
no assurance that the drug will actually be effective. There is a lack of validated 
diagnostic and therapeutic biomarkers to objectively detect and measure biological 
states. In-silico techniques have become important part of the drug discovery cycles 
because of their crucial role from hit identification to lead optimization. These 
methodologies are employed screen numerous molecules and narrow down the 
search to few potent candidates. One such widely used approach is ligand or struc-
ture based virtual screening [126]. Protein-ligand docking problem (PLDP) involves 
the calculation of approximate binding free energy of the complex formation, based 
on which ligands are ranked. To address this problem Oliver Korb et al. proposed 
new algorithm based on ant colony optimization (ACO), called Protein–Ligand 
ANT System (PLANTS) for sampling the search space [127]. In conclusion, differ-
ent parameter settings were evaluated in this study to assure high success rates in 
pose prediction for different timings. Default docking settings were able to repro-
duce ligand geometries similar to the crystal geometry in about 72% of the cases at 
average docking times of 97 seconds.

HIV-1 and HIV-2 viral strains have different amino acid and nucleotide sequences. 
As discussed in genetic algorithm section, both of these viruses require a reverse 
transcriptase (RT) to convert viral RNA into proviral DNA that can then be inserted 
into the host DNA. Thus a lot of focus has been targeted on RT for drug discovery 
against HIV. 1-[(2-Hydroxyethoxy)methyl]-6-(phenylthio)-thymine (HEPT) acts as 
nonnucleoside inhibitor against HIV-1 [128, 129]. HEPT derivatives has been 
extensively exploited QSAR studies [130–142]. Vali Zare-Shahabadi et al. worked 
on developing QSAR model for a large set of HEPT derivatives to predict its anti- 
HIV1 activity, where ant colony system (ACS) was employed to select best descrip-
tors [143]. Probability vectors were derived as colony of ants, where each ant is a bit 
string representation of all descriptors. That means that the elements in the bit string 
are set to zero for the nonselected descriptors, whereas the selected ones are set to 
one [144]. With randomly selected set of descriptors, a regression model was built, 
followed by assessment of each ant by fitness function, which in this case was cross-
validation correlation coefficient. Outlier detection and regeneration of the linear 
model was employed to increase the quality of the linear model. The final model 
yielded RMSE values for the training and prediction sets 0.47 and 0.52, respec-
tively. The R2 value for the training was 0.90 along with an F statistic value of 100.7. 
The RMSE values for the training and prediction sets were 0.56 (R2 = 0.86) and 0.58 
(R2 = 0.85), respectively.

8  Particle Swarm Optimization

The particle swarm is a population-based stochastic algorithm for optimization 
which is based on social–psychological principles of bird flocking. The synchrony of 
flocking behaviour of a group of birds is believed to be a function of bird’s efforts to 
maintain an ideal separation among themselves and their neighbours. Birds change 
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their movement and path to stay away from predators, look for maintaining their life 
existence, enhance survivability in different environmental parameters and so on.

PSO is similar to a genetic algorithm (GA), as PSO also is initialized with ran-
dom population called particles. Unlike GA, in PSO all population members survive 
from the beginning of a trial until the end, each potential solution is also assigned a 
randomized velocity [145, 146]. Each particle keeps track of its coordinates in the 
search space associated with the best fitness achieved so far. At each time step (gen-
erations) the particle is updated by following two ‘best’ values:

 (a) Best solution obtained by a given particle so far. This values is called as pBest
 (b) Best value obtained so far by any particle in the swarm. This values is called as 

gBest

8.1  Generalized PSO Algorithm

 1. Initialize a population of particles with random positions and velocities on d 
dimensional search space.

 2. Each particle fitness is evaluated over a desired optimization function.
 3. pBest and gBest values are computed.
 4. Compare each particle fitness with, particle having best fitness (gBest). If current 

fitness of a particle is better than best particle, then replace current particle as 
best particle along with position and velocities.

 5. Update the velocity and position of the particles according to following 
equations.

 

v = v + c rand pBest present

+c rand gBest pr
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 6. Update pBest and gBest.
 7. Repeat procedure from step 2 until convergence

8.1.1  Advantages and Disadvantages

Two notable advantages includes:

 (a) very few parameters to tune
 (b) slight variations works well in a wide variety of applications

While downsides includes:

 (a) easy to fall into local optimum in high-dimensional space
 (b) low convergence rate in the iterative process
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8.2  Applications of PSO in Virology

There are several noteworthy examples in problems in life sciences, where Particle 
Swarm Optimization was efficiently used to optimize the pool of candidate solution 
by iterative screening based on quality of measure. One excellent example in field of 
virology is work done by Mehdi Neshat et al. where PSO was used to diagnose hepa-
titis disease type [147]. Hepatitis literally means inflammation of the liver and it can 
be caused because of several factors. One of the major causative agents are viruses. 
Viral hepatitis is an infection that causes liver inflammation and damage. Treatment 
and medication of Hepatitis heavily depends on its correct diagnosis. Researchers 
have already started exploiting computational intelligence in diagnosing different dis-
eases. The most frequently used method for this purpose is neural networks. Different 
kinds of neural networks with various specifications have been used in diagnosing 
diseases [148]. There are other studies employing neural networks and fuzzy system 
for diagnosis of B hepatitis disease [149, 150]. Mehdi Neshat et al. used combination 
of two methods of PSO and CBR (case-based reasoning). This is a classification prob-
lem of determining whether patients with hepatitis will live or die. Thus, dataset of 
155 samples considered for this study has these two classes (32 “die” cases, 123 “live” 
cases). The database created in this study using the patient data contains 19 attributes. 
These attributes include details like physiology of the patient (age, sex, etc.), symp-
toms (Fatigue, Anorexia, etc.), treatments (Steroid, Antivirals, etc.) and clinical test 
results (Bilirubin, Alk phosphate, etc.). CBR generates weighted attributes for the 
original dataset. Centroids are randomly selected from the dataset, which acts as 
classes to which appropriate data points will be assigned. This is followed by calcula-
tion of accuracy for each cluster. Figure 14 is the diagrammatic representation of the 
methodology used by the authors. PSO performs these steps for each of particle and 
outcome of large number of iterations is the best accuracy. The accuracy of CBR-PSO 
method in diagnosing hepatitis disease was found to be 94.58%, far better compared 
to PSO method whose best accuracy was 89.46%.

Viral Load (VL) Test is a laboratory test that measures the amount of HIV in a 
blood sample. Results are reported as the number of copies of HIV RNA per milli-
liter of blood. HIV-1 infection cannot be effectively diagnosed without viral load 
testing [151, 152] thus routine use of this test is also recommended by World Health 
Organization (WHO). However, this implementation is subjected to cost, availabil-
ity and accessibility of testing instruments. K. Kamalanand et al. worked on effi-

HDD CBR PSO

CLUSTERING

Hepatitis
Disease Dataset

Original
Data

Weighted Attributed
Data

Classification
Results

Fig. 14 Diagrammatic representation of PSO-CBR methodology
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ciently estimating HIV-1 viral load from CD4 cell count using a computational 
swarm intelligence (PSO) technique in conjunction with the three-dimensional HIV 
model [153]. In this work authors attempted to estimate the HIV-1 viral load from 
CD4 cell count in the acute and chronic phase of the HIV1 infection. For this pur-
pose, below nonlinear differential equation was employed:

 

dx t

dt
a x x t bx t z t

( )
= − ( )( ) − ( ) ( )0

 

 

dy t

dt
c y y t dy t z t

( )
= − ( )( ) + ( ) ( )0

 

 

dz t

dt
z t ex t fy t

( )
= ( ) ( ) − ( )( )

 

In these equations, x(t), y(t), z(t) are the concentrations of the CD4, CD8 lym-
phocyte population, and concentrations of the HIV-1 viral load respectively. While 
x0 and y0 are the normal unperturbed concentrations of the CD4 and CD8 lympho-
cyte population respectively. Here, a, b, c, d, e and f are the system parameters.

The objective function used in this study that needed to be minimized for estima-
tion of HIV-1 viral load, can be given as:
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Where, is the set of HIV parameters to be estimated; represents the CD4 cell 
population; N is the total number of samples available for CD4 data.

Thus, using the principles of PSO, newer parameters will be generated for all the 
samples, until best results are obtained as per the fitness function. Moving particles 
in PSO methodology, here is equivalent to trying random values for parameters of 
the differential equation to calculate the viral load. The average error in estimation 
of viral load was found to be 3.317%. Further, the maximum estimation error in the 
acute stage of the disease was found to be 14.19%, whereas, the maximum estima-
tion error in the chronic phase of the disease was found to be 0.4399%. Hence it 
appears that the PSO algorithm for estimation of HIV-1 viral load is highly efficient 
during the chronic phase of the disease.

9  Concluding Remarks

In this review, we illustrated the use of Artificial Intelligence and Machine learning 
methods in viral biology. We have shown the power of machine learning to extract 
useful patterns from large biological data and convert to useful knowledge. Different 
machine learning algorithms including decision tree, random forest, neural net-
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works and deep neural networks have been explained lucidly. We also dealt with the 
use of Artificial intelligence methods like genetic algorithms, ant colony optimiza-
tion and particle swarm optimization methods in synergistic combination with 
machine learning methods to provide optimal solutions computationally faster and 
with increased accuracy and robustness. We have also listed large number of case 
studies and examples in different areas of viral biology where AI and ML tools have 
been beneficially employed for solving real life problems.
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