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Preface

Traditional insight into the process of infection has stemmed largely either from
conventional bulk ensemble average techniques in vitro or from imaging methods
either fixed tissue samples or on living cells but restricted to standard limits of
optical resolution. However, recently many state-of-the-art interdisciplinary tech-
niques of modern biophysics have emerged which enable us to understand details
of the mechanisms of infection far more clearly than before. Essentially, many
of these new methods enhance both the spatial and temporal resolutions of data
acquisition. This has enabled us to probe dynamic processes of infection directly,
and at a precision comparable to the molecular length scale of the key processes
involved. These emerging interfacial tools of biophysics include, for example, a
range of single-molecule biophysics methods as well as super-resolution micro-
scopy techniques. This volume of The Biophysics of Infection, in the Advances in
Experimental Medicine and Biology series includes new protocols, reviews and
original research articles for such emerging experimental and theoretical approa-
ches, which have resulted in a substantial improvement to our understanding of the
complex processes of infection.

December 2015 Mark C. Leake
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Chapter 1
The Biophysics of Infection

Mark C. Leake

Abstract Our understanding of the processes involved in infection has grown
enormously in the past decade due in part to emerging methods of biophysics. This
new insight has been enabled through advances in interdisciplinary experimental
technologies and theoretical methods at the cutting-edge interface of the life and
physical sciences. For example, this has involved several state-of-the-art biophys-
ical tools used in conjunction with molecular and cell biology approaches, which
enable investigation of infection in living cells. There are also new, emerging
interfacial science tools which enable significant improvements to the resolution of
quantitative measurements both in space and time. These include single-molecule
biophysics methods and super-resolution microscopy approaches. These new
technological tools in particular have underpinned much new understanding of
dynamic processes of infection at a molecular length scale. Also, there are many
valuable advances made recently in theoretical approaches of biophysics which
enable advances in predictive modelling to generate new understanding of infec-
tion. Here, I discuss these advances, and take stock on our knowledge of the
biophysics of infection and discuss where future advances may lead.

Keywords Single-molecule biophysics � Super-resolution

This volume in the Advances in Experimental Medicine and Biology series consists
of a collection of truly cutting-edge research studies, laboratory protocols, experi-
mental and theoretical biophysical techniques and applications in use today by some
of the leading international experts in the field of infection research. A key difference
in emphasis with this volume compared with other earlier themed collections of
infection research is on the emphasis on the utility of interfacial methods, which
increase the underlying physiological relevance of infection investigation. These
developments are manifested through applying methods such as single-molecule

M.C. Leake (&)
Department of Physics and Biology, Biological Physical Sciences Institute (BPSI),
University of York, York YO10 5DD, UK
e-mail: mark.leake@york.ac.uk

© Springer International Publishing Switzerland 2016
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cellular biophysics which strive to maintain the native physiological context through
investigation of living cells (Leake 2013), especially experimental methods using
emerging tools of optical microscopy (Wollman et al. 2015), as well as methods
which combine in vivo, in vitro and computational approaches to probe biological
process such as the interaction of proteins with DNA (Wollman et al. 2015), such as
the use of fluorescence microscopy methods to probe functional, living cells,
especially so using microbial systems as model organisms (Lenn et al. 2008; Plank
et al. 2009; Chiu and Leake 2011; Robson et al. 2013; Bryan et al. 2014;
Llorente-Garcia et al. 2014; Reyes-Lamothe et al. 2010; Badrinarayanan et al. 2012;
Wollman and Leake 2015; Lenn and Leake 2015; Cordes et al. 2015). The length
scale of precision of experimental protocols in this area has improved dramatically
over recent years and many cutting-edge methods now utilize state-of-the-art
single-molecule approaches, to enable imaging of biomolecule structure to a pre-
cision better than the standard optical resolution limit (Miller et al. 2015), as well as
emerging biophysics tools which use single-molecule force spectroscopy (Leake
et al. 2003, 2004, 2006; Linke and Leake 2004; Bullard et al. 2006). This volume
also includes more complex representative methods to investigate infection through
the use of advanced mathematical analysis and computation.

It is clear is that combining pioneering molecular biology, biochemistry, struc-
tural biology and genetics methods with emerging, exciting tools from the younger
areas of biophysics, bioengineering, computer science and biomathematics, that our
understanding of the processes of infection are being transformed. Improvements in
all of these fields are likely to add yet more insight over the next years in the near
future into the complex interactions between multiple key molecular players
involved in infection.

Acknowledgements MCL was assisted by a Royal Society URF and research funds from the
Biological Physical Sciences Institute (BPSI) of the University of York, UK.
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Chapter 2
Single-Molecule Observation of DNA
Replication Repair Pathways in E. coli

Adam J.M. Wollman, Aisha H. Syeda, Peter McGlynn
and Mark C. Leake

Abstract The method of action of many antibiotics is to interfere with DNA
replication—quinolones trap DNA gyrase and topoisomerase proteins onto DNA
while metronidazole causes single- and double-stranded breaks in DNA. To
understand how bacteria respond to these drugs, it is important to understand the
repair processes utilised when DNA replication is blocked. We have used tandem
lac operators inserted into the chromosome bound by fluorescently labelled lac
repressors as a model protein block to replication in E. coli. We have used
dual-colour, alternating-laser, single-molecule narrowfield microscopy to quantify
the amount of operator at the block and simultaneously image fluorescently labelled
DNA polymerase. We anticipate use of this system as a quantitative platform to
study replication stalling and repair proteins.

Keywords Single-molecule � Super-resolution � Fluorescent protein � In vivo
imaging � DNA repair

2.1 Introduction

2.1.1 Antibiotics Interfere with DNA Replication

Different types of antibiotics kill bacteria by interfering with DNA replication. In
bacteria, a sophisticated complex of protein machinery, called the replisome,
replicates DNA by unwrapping its double helix and using the two exposed single
strands as templates for DNA synthesis creating a structure called the replication
fork (Reyes-Lamothe et al. 2010). Failure to copy DNA completely or accurately
results in potentially disastrous consequences for the cell. The antibiotic family of
Quinolones bind to two bacterial complexes associated with DNA replication, DNA

A.J.M. Wollman (&) � A.H. Syeda � P. McGlynn � M.C. Leake
Department of Physics and Biology, Biological Physical Sciences Institute,
University of York, York YO10 5DD, UK
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gyrase and topoisomerase IV (Mustaev et al. 2014). These complexes remove
positive DNA supercoils generated by the replisome and also disentangle inter-
twined sister chromosomes as replication proceeds. These reactions occur by
binding of gyrase or topoisomerase IV to one DNA duplex, cleavage of that duplex
and passage of another region of the chromosome through the break prior to sealing
the break to reform an intact chromosome. The outcome of this complex reaction is
the release of torsional strain or chromosome disentanglement (Drlica and Zhao
1997). Quinolones trap these topoisomerases on the DNA by stabilising a covalent
protein-DNA complex that is a normal part of the reaction cycle for both gyrase and
topoisomerase IV, generating a protein block to replication and disrupting the DNA
architecture (Mustaev et al. 2014). Another antibiotic, metronidazole, disrupts
replication by inducing single-strand and double-strand breaks on DNA in anaer-
obic pathogens (Edwards 1977). Metronidazole is readily reduced, creating DNA
damaging compounds in anaerobes but is easily re-oxidised in aerobes. There is
evidence of increased DNA repair in Helicobacter pylori when exposed to
metronidazole (Goodwin et al. 1998).

2.1.2 Replisome Response to Blocks

DNA damage occurs naturally in E. coli, due to reactive oxygen species, chemicals
and radiation causing double- and single- stranded breaks on DNA. There are also
natural protein blocks to replication. Transcription occurs concurrently with DNA
replication and as RNA polymerases are an order of magnitude slower than repli-
somes in bacteria, collisions can occur (McGlynn et al. 2012). RNA polymerases
can also become stalled on the DNA by template damage, leading to the build-up of
many polymerases (McGlynn et al. 2012). Thus, the replisome encounters many
blocks to replication during the normal cell cycle and has been shown to pause
frequently (Gupta et al. 2013). Many of these stalled replisomes can continue if the
block is removed, which is advantageous, as reloading the replisome can lead to
genome rearrangements (Syeda et al. 2014). However, replisomes lose functionality
over time (Yeeles and Marians 2011) and so replisome reloading mechanisms are
required, for when replisome barriers are not cleared sufficiently rapidly, prior to the
blocked replisome losing activity (Duch et al. 2013).

DNA replication is initiated from oriC in a sequence-specific manner on the
genome. However, the replisome can stall anywhere and so different reloading and
re-initiation mechanisms are required for stalled replication forks that are DNA
structure-rather than DNA sequence-specific. These mechanisms are not fully
understood. Two proteins, PriA and PriC, can both reload the replicative helicase
DnaB back onto replication fork structures. DnaB plays a central role in the
replisome, unwinding the two DNA template strands and also acting as an
organising hub for the entire replisome complex. PriA and PriC recognise different
forked DNA structures that together represent all possible types of fork structure on
the chromosome (Yeeles et al. 2013). priA and priC can be separately deleted from

6 A.J.M. Wollman et al.



the genome but a knock-out mutant of both is not viable, thus these repair pathways
are essential for cell survival. The in vivo dynamics of these proteins are unknown
and there is evidence that DNA at forks needs processing by other proteins to allow
repair or bypassing the block (Lecointe et al. 2007; Atkinson and McGlynn 2009).
There is also an accessory helicase, Rep, which promotes the movement of repli-
somes through protein blockages on DNA (Guy et al. 2009; Boubakri et al. 2010).

It is therefore important to study blocks to replication not only to understand the
effect of antibiotics but also to understand how DNA replication is successfully
completed in the face of the many natural blocks to replisomes inside cells. To
study stalled replication, we have used a model protein block to replication by
inserting tandem binding sites (34 copies of lacO) for the lacI transcription factor
into the E. coli genome and over expressing the LacI protein. The Lac
repressor-operator complex mimics naturally occurring protein-DNA complexes
and inhibits fork movement with an affinity typically encountered during genome
duplication. Since the majority of forks continue through a single complex
unhindered, multiple complexes are required to give detectable inhibition of fork
movement (Payne et al. 2006; Guy et al. 2009). Studying replisomes stalled at these
blocks is an ideal problem for single-molecule microscopy, as it requires obser-
vation of individual replication machineries at blocks in the natural cell environ-
ment and also the associated repair proteins.

2.1.3 Single-Molecule Fluorescence Microscopy

Fluorescent protein fusions can act as reporters to provide significant insight into a
wide range of biological processes and molecular machines. They can be used to
gain insight into stoichiometry and architecture as well as details of molecular
mobility inside living, functional cells with their native physiological context intact
(Lenn et al. 2008; Plank et al. 2009; Chiu and Leake 2011; Robson et al. 2013;
Llorente-Garcia et al. 2014; Bryan et al. 2014; Corbes et al. 2015). These fusion
proteins can be used in conjunction with single-molecule narrowfield microscopy,
and its similar counterpart Slimfield microscopy, as a versatile tool to investigate a
diverse range of protein dynamics in live cells to generate enormous insight into
biological processes at the single-molecule level. It has been used in E. coli to
investigate DNA replication by determining the stoichiometry of the components of
the bacterial replisome (Reyes-Lamothe et al. 2010) and the proteins involved in the
structural maintenance of chromosomes (Badrinarayanan et al. 2012).

In narrowfield microscopy, the normal fluorescence excitation field is reduced to
encompass only a single cell and produce a Gaussian excitation field (∼20 μm2)
with 100–1000 times the laser excitation intensity of standard epifluorescence
microscopy. Using such intense illumination causes fluorophores to emit many
more photons, greatly increasing the signal to noise. This allows millisecond
timescale imaging of individual fluorescently labelled proteins in their native

2 Single-Molecule Observation of DNA Replication … 7



cellular environment. This time scale is fast enough to observe the diffusional
motion of proteins and the dynamics which may occur around the replication fork.

We have labelled the lac operator replication block with a fluorescent lac
repressor-mCherry fusion protein together with the dnaQ replisome component
fused to the monomeric green fluorescent protein (GFP) allowing simultaneous
imaging of the replisome and block. Using a bespoke narrowfield microscope, we
have observed complexes of these proteins in live cells (see schematic in Fig. 2.1).
To reduce the impact of autofluorescence caused by the blue GFP-excitation light,
we have used high speed alternating-laser excitation (ALEX) to alternately excite
each fluorophore at high speed. This enables the relatively dim mCherry protein to
be observed without autofluorescence contamination and co-localised with GFP at
high speed. Using custom software (Miller et al. 2015; Wollman et al. 2015a), we
can quantify the number of fluorescently labelled proteins present in molecular
complexes. Here, we demonstrate quantification of a replisome component and
model protein replication block and show simultaneous imaging of both in the same
live cell.

2.2 Methods

2.2.1 Generating Fluorescent Strains

2.2.1.1 Construction of Chromosomal dnaQ-mGFP Fusion

To create a dnaQ-mGFP C-terminal fusion, a PCR fragment containing mGFP and
a downstream kanamycin resistance cassette amplified from pDHL580 (Landgraf
et al. 2012) using primers oAS77 and oAS78 was recombineered as described
(Datsenko and Wanner 2000) immediately downstream of dnaQ into PM300, a
derivative of MG1655. The recombinants were selected for kanamycin resistance

Fig. 2.1 Schematic of slimfield observation of fluorescently labelled replisome components
encountering a fluorescently labelled protein block in E. coli

8 A.J.M. Wollman et al.



and successful integration was confirmed by PCR and subsequent sequencing. The
verified strain was called AS217.

2.2.1.2 Construction of LacI-mCherry Fusion

A synthetic lacI-mCherry C-terminal fusion from plasmid pAS13 (Eurofins MWG
operon synthesis) was subcloned into pBAD24 between NcoI and XbaI sites that
placed it under the control of the arabinose inducible promoter. The presence and
orientation of the construct was confirmed by restriction digestion, sequencing and
phenotypic testing in a reporter strain. The verified plasmid was called pAS17.

2.2.1.3 Construction of Strain with Lac Repressor Array,
dnaQ-mGFP and LacI-mCherry

dnaQ-mGFP was moved from AS217 to a laboratory stock strain AS249 carrying
lacO34 (Payne et al. 2006) by phage P1-mediated transduction. The transductants
were selected for kanamycin resistance and presence of the dnaQ-mGFP allele was
confirmed by PCR. The resulting lacO34 dnaQ-mGFP strain (AS271) was trans-
formed with pAS17 to create a dual-labelled strain with an inducible roadblock to
replication.

2.2.2 Growing Strains and Inducing the Lac Repressor

Single colonies from transformation of AS271 with pAS17 were grown in 5 ml
Luria-Bertani (LB) ampicillin and Isopropyl-β-D-thiogalactopyranoside (IPTG) in
15 ml culture tubes overnight. 1 ml of the overnight culture was washed twice with
1X 56 salts and inoculated into 10 ml 1X 56 salts together with ampicillin, glucose
for growth and arabinose for Lac repressor induction and grown to an A650 of 0.4–
0.6 (mid log phase). Concentrations of ampicillin, glucose, arabinose and IPTG
were 100 µg/ml, 0.1 %, 0.02 % and 1 mM respectively. Cells from 1 ml of culture
were resuspended in 100 µl of fresh 1X 56 salts medium for visualisation.

2.2.3 Fluorescence Microscopy

2.2.3.1 The Microscope

Our bespoke inverted fluorescence microscope was constructed from a Zeiss
microscope body using a 100x TIRF 1.49 NA Olympus oil immersion objective
lens and a xyz nano positioning stage (Nanodrive, Mad City Labs). Fluorescence
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excitation used 50 mW Obis 488 and 561 nm lasers, modulated using TTL pulses
sent from National Instruments digital modulation USB module. A dual pass
GFP/mCherry dichroic with 25 nm transmission windows centred on 525 and
625 nm was used underneath the objective lens turret. The beam was reduced 0.5x,
to generate an excitation field of intensity *6 Wcm–2. The beam intensity profile
was measured directly by raster scanning in the focal plane while imaging a sample
of fluorescent beads. A high speed camera (iXon DV860-BI, Andor Technology,
UK) was used to image at 5 ms/frame with the magnification set at *50 nm per
pixel. Laser emission was modulated such that each laser was on for 5 ms in
alternating frames to give a 10 ms sampling time with 5 ms exposure time. The
camera CCD was split between a GFP and mCherry channel using a bespoke colour
splitter consisting of a dichroic centred at pass wavelength 560 nm and emission
filters with 25 nm bandwidths centred at 525 and 594 nm. The microscope was
controlled using our in-house bespoke LabVIEW (National Instruments) software.

2.2.3.2 Preparing Samples and Obtaining Fluorescence Data

E. coli cells were imaged on agarose pads suffused with media (Reyes-Lamothe
et al. 2010). In brief, gene frames (Life Technologies) were stuck to a glass
microscope slide to form a well and 500 µl 56 salts media plus 1 % agarose was
pipetted into the well. The pad was left to dry at room temperature before 5 µl
E. coli culture was pipetted in 6–10 droplets onto the pad. This was covered with a
plasma-cleaned glass coverslip and imaged immediately. For each sample 10–30
cells were imaged in fluorescence and brightfield.

2.2.4 Analysing the Data

Single fluorescent proteins or complexes of proteins can be considered point
sources of light and so appear as spatially extended spots in a fluorescence image
due to diffraction by the microscope optics (Wollman et al. 2015b). Narrowfield
fluorescence microscopy data consists of a time-series of images of spots which
require in silico analysis to track each spot. We used custom Matlab™ tracking
software to automatically identify spots, quantify them and link them into trajec-
tories (Miller et al. 2015; Wollman et al. 2015a). The software identifies candidate
bright spots using a combination of pixel intensity thresholding and image trans-
formation. The threshold is set using the pixel intensity histogram as the full width
half maximum of the peak in the histogram which corresponds to background
pixels. A series of morphological transformations including erosion and dilation is
applied to the thresholded image to remove individual bright pixels due to noise and
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leave a single pixel at each candidate spot co-ordinate. The intensity centroid of
candidate spots is found using iterative Gaussian masking (Thompson et al. 2002)
and the characteristic intensity is defined as the sum of the pixel intensities inside a
5 pixel radius region of interest around the spot minus the local background (Xue
and Leake 2009) and corrected for non-uniformity in the excitation field. If this spot
is above a pre-set signal to noise ratio, defined as the characteristic intensity divided
by the standard deviation of the local background, it is accepted. Trajectories are
formed by linking together spots in adjacent frames based on their proximity and
intensity.

The number of fluorophores present in a molecular complex is determined by
dividing its intensity by the intensity of a single fluorophore. The characteristic
intensity of a single fluorophore can either be determined from in vitro measure-
ments of purified fluorophore or from the in vivo data itself using the intensity of
spots found after bleaching the cell.

2.3 Results and Discussion

2.3.1 Quantifying dnaQ

The single labelled dnaQ-GFP strain was imaged using narrowfield microscopy. An
example cell is shown in Fig. 2.2. The brightfield image of the cell is shown in
Fig. 2.2a and the fluorescence image of dnaQ-GFP shown in Fig. 2.2b. Two spots
of dnaQ can be seen in the fluorescence image corresponding to the two copies of
the replisome, consistent with previous observations (Reyes-Lamothe et al. 2010).
Spots found by software over all frames are shown as green and blue circles in
Fig. 2.2a with their intensity values plotted against time in Fig. 2.2c in units of
characteristic GFP intensity. The spots have a stoichiometry of 3 dnaQ-GFP per
replisome, consistent with previous observations (Reyes-Lamothe et al. 2010).

The distribution of dnaQ replisome stoichiometries was obtained from a kernel
density estimation and is shown in Fig. 2.3. The stoichiometry peaks at 2 and
ranges up to 6 dnaQ per replisome. This agrees well with previous observations of
2–3 per replication fork. These forks appear to be overlapping when replication is
initiated from the origin leading to the observation of double stoichiometries. These
results combined with recent measures of the total copy number of dnaQ (Wollman
and Leake 2015) are in good agreement with a previous study which labelled dnaQ
with the Ypet fluorophore. It has been suggested that the fluorophore used in a
fusion protein can effect the stoichiometry of native complexes (Landgraf et al.
2012), but here we observe no difference between Ypet and monomeric GFP
fusions.
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Fig. 2.2 a Brightfield image
of an E. coli cell with tracked
dnaQ-GFP overlaid,
b fluorescence micrograph of
dnaQ-GFP, c intensity of each
spot over time in GFPs

Fig. 2.3 Kernal density
estimation of the number of
dnaQ-GFP per spot

12 A.J.M. Wollman et al.



2.3.2 Quantifying LacI

We then imaged the lac operator blocks. This required optimisation of the growth
conditions and expression levels as the fluorescently labelled lac protein is not
endogenously expressed in this strain. Cells were grown in minimal media so that
growth is slowed and there is, on average, only one replisome per cell. This not only
eliminates the noise caused by LB autofluorescence but also the signal from multiple
replisomes. Thus, having a single replisome greatly simplifies its tracking on the
chromosome when it encounters the block and also makes downstream analysis
easier by eliminating complexities due to multiple factors coming into play.

The results are shown in Fig. 2.4, with a brightfield image in Fig. 2.4a and
mCherry fluorescence image in Fig. 2.4b. Two mCherry spots are seen in the
fluorescence image, consistent with the lac operator sites having been replicated.
All spots found over time are marked as red circles in Fig. 2.4a and their intensity
plotted over time in Fig. 2.4c in units of mCherry intensities. The stoichiometry of
the complexes is much lower than the 34 possible sites on the DNA and is closer to
5–10. This is unlikely to be caused by low expression levels as there is a significant
diffuse background in the cell from unbound LacI-mCherry molecules. These
results imply that the lac operators are not saturated with repressor. Further study is
needed to understand the basis of this lack of saturation. The expression level could
be varied and the number of potential binding sites on the DNA changed.

Fig. 2.4 a Brightfield image
of an E. coli cell with tracked
LacI-mCherry overlaid,
b fluorescence micrograph of
LacI-mcherry, c intensity of
each spot over time in
mcherrys
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2.3.3 Dual-Colour Experiments

The lac operator block plus LacI-mCherry has been incorporated into the
dnaQ-GFP strain and preliminary data obtained. Figure 2.5 shows brightfield and
fluorescence micrographs of the dual-labelled strain. Our intention is to use this
strain as a platform to study stalled replication by observing the behaviour of the
replisome as it encounters different blocks with varying numbers of lac operators.
This system could also be used to study repair proteins and could be combined with
three colour microscopy, labelling the dnaQ with CyPet, the repair protein with
Ypet and retaining the mCherry labelled lac operator array.

2.4 Summary

We have used tandem lac operators inserted into the chromosome bound by
fluorescently labelled lac repressors as a model protein block to replication in
E. coli. This block is a model for the action of some antibiotics such as quinolones
which trap gyrases and topoisomerases on DNA. We have used dual-colour,
alternating-laser, single-molecule narrowfield microscopy to quantify the amount of
operator at the block and simultaneously image fluorescently labelled DNA poly-
merase. This quantitative platform for studying replication stalling will underpin
future investigations.

Fig. 2.5 Left brightfield image of an E. coli cell, middle fluorescence micrograph of dnaQ-GFP,
right fluorescence micrograph of LacI-mCherry in the same cell
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Chapter 3
Investigating the Swimming of Microbial
Pathogens Using Digital Holography

K.L. Thornton, R.C. Findlay, P.B. Walrad and L.G. Wilson

Abstract To understand much of the behaviour of microbial pathogens, it is
necessary to image living cells, their interactions with each other and with host
cells. Species such as Escherichia coli are difficult subjects to image: they are
typically microscopic, colourless and transparent. Traditional cell visualisation
techniques such as fluorescent tagging or phase-contrast microscopy give excellent
information on cell behaviour in two dimensions, but no information about cells
moving in three dimensions. We review the use of digital holographic microscopy
for three-dimensional imaging at high speeds, and demonstrate its use for capturing
the shape and swimming behaviour of three important model pathogens: E. coli,
Plasmodium spp. and Leishmania spp.

Keywords Optical microscopy � Holography � Image analysis � Leishmania �
Plasmodium

3.1 Introduction

Microbial pathogens are responsible for the majority of annual mortality and
morbidity. A high-profile example is malaria, which infects around 200 million
people, primarily in the developing world (World Health Organization 2014).
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