
Nutrient Delivery

Editor Alexandru Mihai Grumezescu

VOLUME 5

NUTRIENT DELIVERY

Page left intentionally blank

NUTRIENT DELIVERY Nanotechnology in the Agri-Food Industry, Volume 5

Edited by

ALEXANDRU MIHAI GRUMEZESCU

Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Bucharest, Romania

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1800, San Diego, CA 92101-4495, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2017 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-804304-2

For information on all Academic Press publications visit our website at https://www.elsevier.com/

www.elsevier.com • www.bookaid.org

Publisher: Nikki Levy Acquisition Editor: Patricia Osborn Editorial Project Manager: Jaclyn Truesdell Production Project Manager: Caroline Johnson Designer: Mark Rogers

Typeset by Thomson Digital

CONTENTS

List o	of Contributors
Serie	es Forewordxxiii
Serie	es Prefacexxv
Volu	me Preface
Chap	oter 1 Nutrition—Nutrient Delivery
Giulia	ana Vozza, Minna Khalid, Hugh J. Byrne, Sinead Ryan, Jesus Frias
1	Introduction
2	Functional Foods and Bioactives2
3	Nutraceutical Formulation Challenges4
4	Oral Delivery
5	Bioavailability Enhancement With Nanoparticles9
6	Food Grade Delivery Systems13
7	Protein-Based Nanodelivery Systems
8	Lipid-Based Nanodelivery Systems
9	Carbohydrate-Based Nanodelivery Systems
10	Polysaccharide Nanoparticles for Nutrient Delivery21
	Chitosan-Based Delivery Systems
	Regulations Surrounding Nanomaterial Safety
	Uptake of Nanoparticles and Potential Toxicity27
	Conclusions and Future Directions
Re	ferences
Chap	oter 2 Nanostructured Biobased Systems for Nutrient and
Bioa	ctive Compounds Delivery 43
Migu	el Ângelo Parente Ribeiro Cerqueira, Ana Cristina Braga Pinheiro, Cátia Vanessa

Saldanha do Carmo, Catarina Maria Martins Duarte, Maria das Graças Carneiro da Cunha, António Augusto Martins de Oliveira Soares Vicente

1	Introduction	43
2	Design of Nanostructured Biobased Systems	45

3	Nanostructured Biobased Systems as a Nutrient and Bioactive Compound Carrier50
4	Evaluation of Nanostructured Biobased Systems Behavior in Their Passage Through the Gastrointestinal Tract60
5	Conclusions
Re	eferences
	pter 3 Nanoscale Nutrient Delivery Systems
	ca Đorđević, Ana Belščak-Cvitanović, Ivana Drvenica, Draženka Komes, pr Nedović, Branko Bugarski
1	Introduction
2	Bioaccessibility and Bioavailability of Nanoencapsulated
	Nutrients
3	Nanocarrier Materials 101
4	Formulation Technologies
5	Nanoscale Delivery Systems
6	Conclusions
Re	eferences
Cha Nily	pter 4Engineering Effective Nanoscale Nutrient Carriers141Dan
1	Introduction
2	Surface Active Molecules (Emulsifiers)
3	Nanoparticles for the Encapsulation of Hydrophobic
	Compounds
4	Nanoparticles for the Encapsulation of Hydrophilic Compounds
5	Transport in Nano and Microparticles
6	Discussion and Conclusions
Re	eferences

	pter 5 Nanotechnology Applied to Improve ctionality in Food
Was	hington Luiz Esteves Magalhães, Patrícia Raquel Silva Zanoni, tiane Vieira Helm, Marcelo Lazzarotto, Kestur G. Satyanarayana
1	Introduction
2	Delivery Systems
3	Processing of Delivery Systems
4	Applications
5	Market Aspects
6	Challenges Ahead
7	Concluding Remarks
W	ebsites
A	opendix
Re	eferences
Des Mari	pter 6 Bioactive Compounds Delivery Using Nanotechnology: ign and Applications in Dairy Food
1	Introduction
2	Nanotechnology Delivery Applied in Food: Theoretical Aspects
3	Safety and Regulations
4	Delivery Systems: Characteristics and Functionalities
5	Biomolecules of Interest for Delivery in Dairy Foods
6	Conclusions and Future Trends
Re	eferences

	pter 7 Food-Derived Biopolymers for Nutrient Delivery 251 gchao Luo, Qiaobin Hu
1	Introduction
2	Polysaccharide-Based Nanoscale Delivery Systems
	for Nutrients
3	Protein-Based Nanoscale Delivery Systems for Nutrients267
4	Conclusions and Future Perspectives
R	eferences
For	pter 8 Applications of Nanomaterials in Functional tified Dairy Products: Benefits and Implications Human Health
	peralda Santillán-Urquiza, Héctor Ruiz-Espinosa, Aracely Angulo-Molina, ge F. Vélez Ruiz, Miguel A. Méndez-Rojas
1	Introduction
2	Nanotechnology in Dairy Food Products
3	Milk
4	Methods and Techniques Used for Incorporating
	Nanostructures into Milk and Dairy Products
5	Health Benefits and Potential Risks from the Incorporation
~	of Nanomaterials into Milk and Dairy Products
6 D	Conclusions and Final Comments
R	eferences
Cha	pter 9 Controlled Release Nutrition Delivery Based
Inte	elligent and Targeted Nanoparticle
Zah	ra Shafaei, Behafarid Ghalandari, Adeleh Divsalar, Ali Akbar Saboury
1	Introduction
2	Nonpolymeric Nanocarriers
3	Polymeric Nanocarriers

4	Conclusions	358
Re	eferences	359
~		
	apter 10 Nanodelivery of Nutrients for Improved	200
	availability Bhushani, Udayakumar Harish, Chinnaswamy Anandharamakrishnan	309
Anu	Bhushani, Ouayakumar Harish, Chinnaswaniy Ananunaramakhshnan	
1	Introduction to Nanodelivery	369
2	Nutraceutical Bioavailability Classification Scheme	
	(NuBACS)	
3	Techniques for Nanoencapsulation of Nutrients	
4	Food Grade Nanodelivery Systems.	381
5	Lipid-Based Delivery Systems	
6	Surfactant-Based Delivery Systems	390
7	Biopolymer-Based Delivery Systems	393
8	Mechanisms for Nutrient Bioavailability Enhancement	
	with Nanoparticles	
9	Conclusions	401
Re	eferences	402
	apter 11 Nanotechnology for Enhanced Bioactivity	
	Bioactive Phytomolecules	413
Ragl	huraj Singh, Premlata Kumari, Satyanshu Kumar	
1	Introduction	413
2	Biocompatible and Biodegradable Nanoparticles	417
3	Application of Nanotechnology for Improvement in	
	Physico-Chemical Characteristics and Bioactivities	
	of Phytochemicals	431
4	Potential Challenges for Using Nanoparticles	442
5	Conclusions	444
Re	eferences	445

	pter 12 Vitamins and Minerals Fortification Using Nanotechnology: availability and Recommended Daily Allowances
	da Juveriya Fathima, Ilaiyaraja Nallamuthu, Farhath Khanum
1	Introduction
2	Staple Foods to Be Fortified461
3	Properties of Vitamins to Be Fortified
4	Properties of Minerals to Be Fortified
5	Methods of Fortification
6	Development of Fortified Premixes
7	Bioavailability, Advantages, and Toxicity
	of Nanoencapsulated Micronutrients
8	Quality Assurance (QA) and Quality Control (QC)
9	Conclusions and Perspective
Re	eferences
Cha	pter 13 Adding Biological Function to Nonbiological
Nar	10particles
Jiao	yan Ren, Rong Zhang, Joe M. Regenstein
1	Introduction
2	Drug Release and Loading Mechanisms
3	Stability of the Nanoparticles
4	Protein/Peptide-Based Drug Delivery Systems
5	Polysaccharides-Based Drug Delivery Systems
6	Perspective
Re	eferences
Cha	pter 14 Development of Phenolic Compounds Encapsulation
	hniques as a Major Challenge for Food Industry and for
	Alth and Nutrition Fields
	eti Botelho, Sara Canas, Jorge Lameiras
1	Introduction
2	Sources and Classification of Phenolic Compounds537

3	Phenolic Compounds in Human Nutrition	. 552
4	Improvement of Phenolic Availability for Nutrition and Health.	. 559
5	Conclusions	. 571
Re	ferences	. 572

Cha	pter 15	Ro	le	0	f N	anoted	chno	blo	DQ	JY	in	E	n	ha	nc	in	g E	Bio	Dav	v a	ila	abi	ili	ty	
and	Deliver	y of	Di	e	tary	y Facto	ors .																		 587
		~		_			~							~		_			~	_					

Mian Kamran Sharif, Faiz-ul-Hassan Shah, Masood Sadiq Butt, Hafiz Rizwan Sharif

1	Introduction	587
2	Nanotechnology and Nutrient Delivery	588
3	Food Microstructure for Health	591
4	Opportunities for Nutrition and Health	611
5	Conclusions	613
Re	ferences	614

Chapter 16 Enhanced Nutrient Delivery Through Nanoencapsulation Techniques: the Current Trend in

1	Introduction
2	Nutrient Delivery Systems
3	Digestion and Absorption of Nanoformulations625
4	Testing the Efficacy of the Encapsulated Nutrients628
5	Targeted Delivery of Nutrients
6	Nanostructures, a Class of Modified-Release Products642
7	In Vitro–In Vivo Correlation (IVIVC)643
8	Evaluation of Nanostructures in Food Matrices644
9	Safety Assessment of Nanostructures in Food
10	Conclusions and Future Prospects646
Re	ferences

Desiree Nedra Karunaratne, Dunusingha Asitha Surandika Siriwardhana, Isuru Rangana Ariyarathna, Rajakaruna Mudiyanselage Pradeepa Indunil Rajakaruna, Frousnoon Thasneem Banu, Veranja Karunaratne

1	Introduction	653
2	Delivery of Water Soluble Vitamins.	657
3	Delivery of Fat Soluble Vitamins	667
4	Conclusions	675
Re	eferences	675

Chapter 18 Colloidal Systems: an Excellent Carrier for

utrient Delivery	. 681
orun Cara Cazal Sharma Coutam Path Amit K Coval	

Tarun Garg, Gazal Sharma, Goutam Rath, Amit K. Goyal

1	Introduction	681
2	Challenges Associated with Delivery of Nutrients	686
3	Colloidal Systems for Nutrient Delivery	688
4	Conclusions	707
Re	eferences	708

J. Efrén Ramírez Bribiesca, Raymundo Lira Casas, Rosy G. Cruz Monterrosa, Atmir Romero Pérez

1	Introduction
2	Digestive Function in Ruminants714
3	Sources and Physiology of Selenium and Zinc in Ruminants717
4	Deficiency of Zinc and Selenium in Humans721
5	Selenium and Zinc in Muscle722
6	Nanotechnology Applied to Animal Production
7	Polymers Used in the Formulation of Nanoparticles728
8	Nanoparticles Characterization730
9	Designing of Selenium and Zinc Nanoparticles: an Experience 735

	Toxicity of Nanoparticles. 739 Conclusions 740
Re	eferences
Cha	pter 20 Lipids from Oleaginous Yeasts: Production
	Encapsulation
And	réia Anschau
1	Introduction
2	Microorganisms for Lipid Production
3	Composition of Fatty Acids in Microbial Lipids
4	Fermentation Conditions for SCO Production
5	Bioresources Available for Lipid Production
6	Stoichiometry of Carbon to Lipid Conversion
7	Mechanism of TAG Production in Oleaginous Yeast
8	Modes of Cultivation for Microbial Lipid Production774
9	Economics of Microbial Lipid Production
10	Downstream Process
11	Encapsulation
12	Future Perspectives784
13	Conclusions
Re	eferences

Subject Index																											• •				7	9	5
---------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-----	--	--	--	---	---	---

Page left intentionally blank

LIST OF CONTRIBUTORS

Tamatam Anand

Biochemistry and Nanoscience Division, Defence Food Research Laboratory (DFRL), Department of Biochemistry and Nanoscience, Siddarthanagar, Mysore, Karnataka, India

Chinnaswamy Anandharamakrishnan

Centre for Food Nanotechnology, Food Engineering Department, CSIR-Central Food Technological Research Institute; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI Campus, Mysore, India

Aracely Angulo-Molina

Department of Chemical & Biological Sciences, Universidad de Sonora, Sonora, México

Andréia Anschau

Federal University of Technology (UTFPR), Department of Bioprocess Engineering and Biotechnology, Parana, Brazil

Isuru Rangana Ariyarathna

University of Peradeniya, Department of Chemistry, Peradeniya, Sri Lanka

María Ayelén Vélez

Institute of Dairy Science and Industry (INLAIN), National University of Litoral/ National Council of Science and Technology (UNL/CONICET), Faculty of Chemical Engineering (FIQ), Santa Fe, Argentina

Frousnoon Thasneem Banu

University of Peradeniya, Department of Chemistry, Peradeniya, Sri Lanka

Ana Belščak-Cvitanović

University of Zagreb, Department of Food Engineering, Faculty of Food Technology and Biotechnology, Pierottijeva, Zagreb, Croatia

Anu Bhushani

Centre for Food Nanotechnology, Food Engineering Department, CSIR-Central Food Technological Research Institute; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI Campus, Mysore, India

Goreti Botelho

Food Science and Technology Department, Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Coimbra College of Agriculture (IPC-ESAC), Bencanta, Coimbra, Portugal

Branko Bugarski

University of Belgrade, Department of Chemical Engineering, Faculty of Technology and Metallurgy, Karnegijeva, Belgrade, Serbia

Masood Sadiq Butt

University of Agriculture, National Institute of Food Science & Technology, Faisalabad, Pakistan

Hugh J. Byrne

FOCAS Research Institute, Dublin Institute of Technology, Dublin, Ireland

Sara Canas

Strategic Unit of Research on Technology and Food Security, Laboratory of Enology, National Institute of Agrarian and Veterinary Research (INIAV), Dois Portos, Dois Portos; Institute of Mediterranean Agricultural and Environmental Sciences (ICAAM), University of Évora, Pólo da Mitra, Évora, Portugal

Raymundo Lira Casas

Postgraduate College, Livestock Science, Montecillo, México

Miguel Ângelo Parente Ribeiro Cerqueira

International Iberian Nanotechnology Laboratory; University of Minho, Campus de Gualtar, Centre of Biological Engineering, Braga, Portugal

María Cristina Perotti

Institute of Dairy Science and Industry (INLAIN), National University of Litoral/ National Council of Science and Technology (UNL/CONICET), Faculty of Chemical Engineering (FIQ), Santa Fe, Argentina

Maria das Graças Carneiro da Cunha

Universidade Federal de Pernambuco—UFPE, Biochemistry Department, Pernambuco, Brazil

Nily Dan

Drexel University, Department of Chemical and Biological Engineering, Philadelphia, PA, United States

Adeleh Divsalar

Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran

Cátia Vanessa Saldanha do Carmo

Universidade Nova de Lisboa, IBET, Institute of Experimental Biology and Technology, Portugal and Institute of Chemical Technology and Biological Antonio Xavier, Oeiras, Portugal

Verica Đorđević

University of Belgrade, Department of Chemical Engineering, Faculty of Technology and Metallurgy, Karnegijeva, Belgrade, Serbia

Ivana Drvenica

University of Belgrade, Department of Chemical Engineering, Faculty of Technology and Metallurgy, Karnegijeva, Belgrade, Serbia

Catarina Maria Martins Duarte

Universidade Nova de Lisboa, IBET, Institute of Experimental Biology and Technology, Portugal and Institute of Chemical Technology and Biological Antonio Xavier, Oeiras, Portugal

Syeda Juveriya Fathima

Biochemistry and Nanoscience Division, Defence Food Research Laboratory (DFRL), Department of Biochemistry and Nanoscience, Siddarthanagar, Mysore, Karnataka, India

Jesus Frias

School of Food Science and Environmental Health, Dublin Institute of Technology, Dublin, Ireland

Tarun Garg

ISF College of Pharmacy, Department of Pharmaceutics, Moga, Punjab, India

Behafarid Ghalandari

Department of Medical Nanotechnology, Science and Research Branch, Islamic Azad University, Tehran, Iran

Amit K. Goyal

ISF College of Pharmacy, Department of Pharmaceutics, Moga, Punjab, India

Udayakumar Harish

Centre for Food Nanotechnology, Food Engineering Department, CSIR-Central Food Technological Research Institute, Mysore, India

Cristiane Vieira Helm

Department of Technology of Forestry Products, Embrapa Forestry Estrada da Ribeira, Colombo PR, Brazil

Qiaobin Hu

Department of Nutritional Sciences, University of Connecticut, Storrs, CT, United States

Erica Hynes

Institute of Dairy Science and Industry (INLAIN), National University of Litoral/ National Council of Science and Technology (UNL/CONICET), Faculty of Chemical Engineering (FIQ), Santa Fe, Argentina

Desiree Nedra Karunaratne

University of Peradeniya, Department of Chemistry, Peradeniya, Sri Lanka

Veranja Karunaratne

University of Peradeniya, Department of Chemistry, Peradeniya; Sri Lanka Institute of Nanotechnology, Mahenwatta, Pitipana, Homagama, Sri Lanka

Minna Khalid

School of Food Science and Environmental Health, Dublin Institute of Technology; FOCAS Research Institute, Dublin Institute of Technology, Dublin, Ireland

Farhath Khanum

Biochemistry and Nanoscience Division, Defence Food Research Laboratory (DFRL), Department of Biochemistry and Nanoscience, Siddarthanagar, Mysore, Karnataka, India

Draženka Komes

University of Zagreb, Department of Food Engineering, Faculty of Food Technology and Biotechnology, Pierottijeva, Zagreb, Croatia

Satyanshu Kumar

ICAR-Directorate of Medicinal and Aromatic Plants Research, Boriavi, Anand, Gujarat, India

Premlata Kumari

Applied Chemistry Department, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India

Jorge Lameiras

University of Aveiro, Campus Universitário de Santiago, Aveiro; Research in Education and Community Intervention (RECI), Unit. Alto do Gaio - Galifonge, Lordosa (Viseu), Portugal

Marcelo Lazzarotto

Department of Technology of Forestry Products, Embrapa Forestry Estrada da Ribeira, Colombo PR, Brazil

Yangchao Luo

Department of Nutritional Sciences, University of Connecticut, Storrs, CT, United States

Washington Luiz Esteves Magalhães

Department of Technology of Forestry Products, Embrapa Forestry Estrada da Ribeira, Colombo PR, Brazil

Ana María Gennaro

IFIS Litoral, National University of Litoral/National Council of Science and Technology (UNL/CONICET), and Department of Physics FBCB, UNL, Santa Fe, Argentina

Miguel A. Méndez-Rojas

Department of Chemical & Biological Sciences, Universidad de las Américas Puebla, Puebla, México

Rosy G. Cruz Monterrosa

Metropolitan Autonomous University, Lerma, México

Ilaiyaraja Nallamuthu

Biochemistry and Nanoscience Division, Defence Food Research Laboratory (DFRL), Department of Biochemistry and Nanoscience, Siddarthanagar, Mysore, Karnataka, India

Viktor Nedović

University of Belgrade, Department of Food Technology and Biochemistry, Faculty of Agriculture, Nemanjina, Belgrade-Zemun, Serbia

Atmir Romero Pérez

University of Alberta, Edmonton, Alberta, Canada

Mahantesh Mallikarjun Patil

Biochemistry and Nanoscience Division, Defence Food Research Laboratory (DFRL), Department of Biochemistry and Nanoscience, Siddarthanagar, Mysore, Karnataka, India