110

Nanobiosensors

Editor Alexandru Mihai Grumezescu

VOLUME 8

NANOBIOSENSORS

Page left intentionally blank

NANOBIOSENSORS Nanotechnology in the Agri-Food Industry, Volume 8

Edited by

ALEXANDRU MIHAI GRUMEZESCU

Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Bucharest, Romania

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1800, San Diego, CA 92101-4495, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2017 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

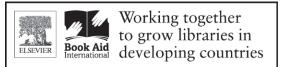
Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data


A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-804301-1

For information on all Academic Press publications visit our website at https://www.elsevier.com/

www.elsevier.com • www.bookaid.org

Publisher: Nikki Levy Acquisition Editor: Patricia Osborn Editorial Project Manager: Jaclyn Truesdell Production Project Manager: Caroline Johnson Designer: Mark Rogers

Typeset by Thomson Digital

CONTENTS

	of Contributors
	es Foreword
	es Preface
Volu	ıme Preface
Cha	pter 1 Nanomaterials-Based Optoelectronic Noses for
	d Monitoring and Classification
	Vicente Ros-Lis, Jose-Luis Vivancos, Ramón Martínez-Máñez
1	Introduction
2	Principles of Chromogenic Arrays5
3	Multivariate Analysis Methodologies
4	Examples of Application of Chromogenic
	Optoelectronic Noses
5	Freshness Monitoring
6	Quantification of Microbiological Loading, Storage Days,
	and Sensory Score
7	Determination of Blue Cheese Origin26
8	Conclusions
Re	eferences
01	
	pter 2 Biosensors for Detection Mycotoxins and
	10genic Bacteria in Food
Geni	
1	Introduction
2	Biosensors and Nanomaterials: General Consideration
3	Mycotoxins
4	Pathogenic Microorganisms65
5	Conclusions
Re	eferences

Cha	pter 3 Bioconjugated Nanomaterials for Monitoring
Foo	d Contamination
Baba	ar Hussain, Meral Yüce, Naimat Ullah, Hikmet Budak
1	Introduction
2	Aptamers
3	Conventional Methods for Food Contamination Detection 100
4	Monitoring Food Contamination Through Bioconjugated
	Nanomaterials104
5	Multiplexed Biosensors115
6	Summary
Re	eferences
Cha	pter 4 Detection of Food Contaminants by Gold
	Silver Nanoparticles
lda E	Evangeline Paul, D. Nanda Kumar, A. Rajeshwari, Sruthi Ann Alex, arthiga, Ashok M. Raichur, N. Chandrasekaran, Amitava Mukherjee
1	Introduction
2	Melamine Detection Using Gold Nanoparticles
3	Malathion Detection Using Silver Nanoparticles
4	Colorimetric Detection of LPS Using Gold Nanorods (AuNRs) 152
5	Conclusions
Re	eferences
01	when F Non-sectorial Data di Flandura hamia di Dia any ang
	pter 5 Nanomaterial-Based Electrochemical Biosensors
	Food Safety and Quality Assessment
	na Dridi, Mouna Marrakchi, Mohamed Gargouri, Joelle Saulnier, Ie Jaffrezic-Renault, Florence Lagarde
1	Introduction
2	Typical NMs Used in New Electrochemical Biosensing
-	Devices for Food Analysis
3	NM-Based Electrochemical Biosensors for Food
	Contaminants Analysis

4	Conclusions	196
Re	erences	197

Daniel S. Correa, Adriana Pavinatto, Luiza A. Mercante, Luiz H.C. Mattoso, Juliano E. Oliveira, Antonio Riul, Jr

1	Introduction to Hybrid Nanomaterials
2	Chemical Sensors Aspects
3	Types of Nanomaterials Employed for Sensor Design214
4	Types of Sensors and Methods of Detection
5	Novel Sensing Platforms Based on Microfluidics
6	Final Remarks
Re	ferences

Chapter 7 Prevention of Food Spoilage Using

Nanoscale Sensors	245
Krystian Mistewicz, Marian Nowak	

1	Introduction
2	Nanobiosensors
3	Gas Nanosensors
4	SbSI Nanosensors of Humidity
5	Conclusions
Re	eferences

Chapter 8 Biosensor Technologies for Analyses of

Food	I Contaminants	289
Elif B	urcu Bahadır, Mustafa Kemal Sezgintürk	
1	Introduction	289
2	Biosensors	290

3	Application of Biosensors for Food Contaminants Detection
4	Commercial Biosensors for Food Contaminants
5	Conclusions and Future Perspectives
R	eferences
~	
	apter 9 Analytical and Advanced Methods-Based
	ermination of Melamine in Food Products
1	Introduction
2	Melamine Structure and Application
3	Toxicology of Melamine and Its Metabolite
4	Melamine Contamination Cases
5	Tolerable Daily Intake (TDI) and Risk Assessment
	of Melamine
6	Modern Instrument Analytical Methods
7	Advanced Methods for Determination of Melamine
8	Conclusions
R	eferences
Cha	apter 10 Nanomaterial-Based Sensor Platforms for Facile
	tection of Food Contaminants
	an Genç
1	Introduction
2	Current Approaches for Pathogen Detection from Contaminated Food
3	Nanomaterials as Recognition Element and Signal Enhancer
4	
5	Conclusions and Future Perspectives
	eferences

	pter 11 Evanescent Field Effect–Based Nanobiosensors
	Agro-Environmental and Food Safety 429 a Adányi, Krisztina Majer-Baranyi, András Székács
NUT	
1	Introduction
2	Label-Free Optical Biosensor Techniques Based on
~	Evanescent Field Effect
3	Nanobiosensor Applications for Agro-Environmental and Food Safety
4	Conclusions
-	bbreviations
	eferences
Cha	pter 12 Micro- and Nanotechnology-Based Approaches
to D	Detect Pathogenic Agents in Food
	naniel C. Cady, Vincenzina Fusco, Giuseppe Maruccio, abetta Primiceri, Carl A. Batt
1	Introduction
2	Food Pathogen Detection Using Micro- and
2	Nanotechnologies
3	Summarizing Remarks
R	eferences
	pter 13 Contaminant Sensors: Nanosensors, an Efficient
	rm for Food Pathogen Detection
Che	unjit Prakitchaiwattana, Rachatida Det-udom
1	Introduction
2	Foodborne Pathogens and Their Significant
	Characteristics Used for Detection
3	Potential of Nanotechnology in Microbiological
4	Analysis Development
4	Conclusions and Outlook
K	eferences

	apter 14 Contaminant Sensors: Nanotechnology-Based
	itaminant Sensors
Niha	a Mohan Kulshreshtha, Divya Shrivastava, Prakash Singh Bisen
1	Introduction
2	Biosensors
3	Nanosensors
4	Detection Using Nanosensors
5	Nanobiosensors in Food Technology Market
6	Safety and Challenges615
7	Future Prospects616
8	Conclusions
R	eferences
Cha	apter 15 Nanocomposite Biosensors for Point-of-Care—
	luation of Food Quality and Safety
	sha A. D'Souza, Durga Kumari, Rinti Banerjee
1	Introduction
2	Biosensors and the Food Industry
3	Nanocomposite-Based Biosensors
4	Application of Nanosensors in the Food Industry
5	Advanced Packaging Quality
6	Smart Food Packaging Sensors
7	Regulatory Aspects
8	Future Aspects and Challenges
	bbreviations
	eferences
	pter 16 Plasmonic Nanoparticles and Quantum
	s in the Identification of Inorganic and Organic
	Itaminants in Food Samples
1	
1	Introduction

2	Identification of Metal lons by Plasmonic Nanoparticles and Quantum Dots as Probes	680
3	Identification of Pesticides and Organic Contaminants by Plasmonic Nanoparticles as Probes	683
4	Identification of Pesticides and Organic Contaminants by Quantum Dots as Probes	
5	Summary	
-	eferences.	
Cha	apter 17 A Technique Comes to Life for Security of Life:	
The	• Food Contaminant Sensors	. 713
Sant	tanu Patra, Ekta Roy, Rashmi Madhuri, Prashant K. Sharma	
1	Introduction	713
2	Contamination due to Environmental and	
	Industrial Exposure	. 719
3	Food Adulterant Detection	. 752
4	Food Packaging Materials	760
5	Conclusions and Future Outlook	. 761
Re	eferences	762
Cha	pter 18 New Trends in the Food Industry: Application of	
Nan	nosensors in Food Packaging	. 773
Thia	ago Caon, Silvia Maria Martelli, Farayde Matta Fakhouri	
1	Introduction	773
2	Smart/Intelligent Packaging Systems	774
3	Sensor, Biosensor, and Nanosensor Concepts	
4	Classification Nanosensors	. 778
5	Radio Frequency Identification (RFID) Sensors	779
6	Gas Sensors	. 783
7	Sensors for Food Pathogens and Contaminants	. 788
8	Main Challenges and Directions for Nanosensor Applications	795
9	Concluding Remarks	
Re	eferences.	799

	pter 19 Nanomaterial-Based Biosensors for Food taminant Assessment
	o B. Dominguez, Akhtar Hayat, Gustavo A. Alonso, Juan M. Gutiérrez, erto Muñoz, Jean-Louis Marty
1	Introduction
2	Biosensors as Emerging Tools for Analysis
3	Applications of Nanomaterial-Based Biosensors for
	Food Analysis
4	Applications of Sensor Arrays for Food Analysis
5	Conclusions
Re	eferences
Cha	pter 20 Fluorescent Nanosensors: Rapid Tool for Detection
	ood Contaminants
	swati Bhattacharya, Siddhartha Singha, Santanu Basu
1	Introduction
2	What Is Fluorescence?
3	Nanotechnology-Enabled Sensors: Quantum Dots
4	Quantum Dots: Sensing Foodborne Pathogens and
	Toxicants
5	Conclusions
Re	eferences

Subject Index						• •					•				• •				•	• •			•		•			•					•	•		8	7!	5
---------------	--	--	--	--	--	-----	--	--	--	--	---	--	--	--	-----	--	--	--	---	-----	--	--	---	--	---	--	--	---	--	--	--	--	---	---	--	---	----	---

LIST OF CONTRIBUTORS

Nóra Adányi

National Agricultural Research and Innovation Center, Food Science Research Institute, Budapest, Hungary

Sruthi Ann Alex

VIT University, Centre for Nanobiotechnology, Vellore, India

Gustavo A. Alonso

Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico

Elif Burcu Bahadır

Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey

Rinti Banerjee

Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, India

Santanu Basu

Panjab University, Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Chandigarh, India

Carl A. Batt

Cornell University, Department of Food Science, Ithaca, NY, United States

Bhaswati Bhattacharya

National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India

Prakash Singh Bisen

Jiwaji University, School of Studies in Biotechnology; Tropilite Foods Pvt. Ltd., R&D Division, Gwalior, Madhya Pradesh, India

Hikmet Budak

Sabanci University, Faculty of Engineering and Natural Sciences; Sabanci University, Nanotechnology Research and Application Center, Istanbul, Turkey

Nathaniel C. Cady

SUNY Polytechnic Institute, Colleges of Nanoscale Science & Engineering, Albany, NY, United States

Thiago Caon

Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil

N. Chandrasekaran

VIT University, Centre for Nanobiotechnology, Vellore, India

Daniel S. Correa

National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentation (CNPDIA), São Carlos, São Paulo, Brazil

Anisha A. D'Souza

Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, India

Rachatida Det-udom

Chulalongkorn University, Faculty of Science, Food Research and Testing Laboratory (FRTL), Bangkok, Thailand

Rocio B. Dominguez

Advanced Materials Research Center, S.C., Chihuahua, Chihuahua, Mexico

Fatma Dridi

University of Lyon, Lyon 1, Institute of Analytical Sciences, Villeurbanne, France; University of Carthage, National Institute of Applied Sciences and Technology, Laboratory of Ecology and Microbial Technology, Tunis, Tunisia

Gennady A. Evtugyn

Kazan Federal University, A.M. Butlerov' Chemistry Institute, Kazan, Russian Federation

Farayde Matta Fakhouri

Faculty of Engineering, Federal University of Grande Dourados, Campo Grande, Mato Grosso do Sul, Brazil

Vincenzina Fusco

National Research Council of Italy, Institute of Sciences of Food Production, CNR-ISPA, Bari, Italy

Mohamed Gargouri

University of Carthage, National Institute of Applied Sciences and Technology, Laboratory of Ecology and Microbial Technology, Tunis, Tunisia

Rükan Genç

Mersin University, Functional Nanomaterials Lab, Chemical Engineering Department, Yenişehir/Mersin, Turkey

Juan M. Gutiérrez

CINVESTAV-IPN, Department of Electrical Engineering, Bioelectronics Section, Mexico DF, Mexico

Akhtar Hayat

COMSATS Institute of Information Technology (CIIT), Interdisciplinary Research Centre in Biomedical Materials (IRCBM), Lahore, Pakistan

Tibor Hianik

Comenius University, Department of Nuclear Physics and Biophysics, Bratislava, Slovakia

Babar Hussain

Sabanci University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey

Nicole Jaffrezic-Renault

University of Lyon, Lyon 1, Institute of Analytical Sciences, Villeurbanne, France

Suresh Kumar Kailasa

S. V. National Institute of Technology, Department of Applied Chemistry, Surat, Gujarat, India

D. Karthiga

VIT University, Centre for Nanobiotechnology, Vellore, India

Niha Mohan Kulshreshtha

Jaipur National University, School of Life Sciences, Jaipur, Rajasthan, India

D. Nanda Kumar

VIT University, Centre for Nanobiotechnology, Vellore, India

Durga Kumari

Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, India

Florence Lagarde

University of Lyon, Lyon 1, Institute of Analytical Sciences, Villeurbanne, France

Rashmi Madhuri

Indian School of Mines, Department of Applied Chemistry, Dhanbad, Jharkhand, India

Krisztina Majer-Baranyi

National Agricultural Research and Innovation Center, Food Science Research Institute, Budapest, Hungary

Mouna Marrakchi

University of Carthage, National Institute of Applied Sciences and Technology, Laboratory of Ecology and Microbial Technology; Tunis El Manar University, Higher Institute of Applied Biological Science (ISSBAT), Tunis, Tunisia

Ramón Martínez-Máñez

Polytechnic University of Valencia, Inter-University Research Institute of Molecular Recognition and Technological Development (IDM), Mixed Unit-Polytechnic University of Valencia University of Valencia, Valencia; CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER - BBN), Zaragoza, Spain

Silvia Maria Martelli

Faculty of Engineering, Federal University of Grande Dourados, Campo Grande, Mato Grosso do Sul, Brazil

Jean-Louis Marty

Université de Perpignan via Domitia, IMAGES, Perpignan Cedex, France

Giuseppe Maruccio

University of Salento, Department of Mathematics and Physics "Ennio De Giorgi," CNR NANOTEC—Institute of Nanotechnology, Lecce, Italy

Luiz H.C. Mattoso

National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentation (CNPDIA), São Carlos, São Paulo, Brazil

Luiza A. Mercante

National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentation (CNPDIA), São Carlos, São Paulo, Brazil

Krystian Mistewicz

Silesian University of Technology, Institute of Physics, Center for Science and Education, Katowice, Poland

Roberto Muñoz

CINVESTAV-IPN, Department of Electrical Engineering, Bioelectronics Section, Mexico DF, Mexico

Amitava Mukherjee

VIT University, Centre for Nanobiotechnology, Vellore, India

Marian Nowak

Silesian University of Technology, Institute of Physics, Center for Science and Education, Katowice, Poland

Juliano E. Oliveira

Federal University of Lavras, Engineering Department, Lavras, Minas Gerais, Brazil

Santanu Patra

Indian School of Mines, Department of Applied Chemistry, Dhanbad, Jharkhand, India

Ida Evangeline Paul

VIT University, Centre for Nanobiotechnology, Vellore, India

Adriana Pavinatto

National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentation (CNPDIA), São Carlos, São Paulo, Brazil

Cheunjit Prakitchaiwattana

Chulalongkorn University, Faculty of Science, Department of Food Technology, Bangkok, Thailand

Elisabetta Primiceri

University of Salento, Department of Mathematics and Physics "Ennio De Giorgi," CNR NANOTEC—Institute of Nanotechnology, Lecce, Italy

Ashok M. Raichur

Indian Institute of Science, Department of Materials Engineering, Bangalore, India; Nanotechnology and Water Sustainability Unit, University of South Africa, Florida Park, Johannesburg, South Africa

A. Rajeshwari

VIT University, Centre for Nanobiotechnology, Vellore, India

Antonio Riul, Jr

University of Campinas, Institute of Physics Gleb Wataghin, Campinas, São Paulo, Brazil

Jigneshkumar V. Rohit

S. V. National Institute of Technology, Department of Applied Chemistry, Surat, Gujarat, India

Jose Vicente Ros-Lis

Polytechnic University of Valencia, Institute of Food Engineering for Development, Valencia, Spain

Kobun Rovina

University Malaysia Sabah, Biotechnology Research Institute, Sabah, Malaysia

Ekta Roy

Indian School of Mines, Department of Applied Chemistry, Dhanbad, Jharkhand, India

Joelle Saulnier

University of Lyon, Lyon 1, Institute of Analytical Sciences, Villeurbanne, France

Mustafa Kemal Sezgintürk

Namık Kemal University, Faculty of Science, Chemistry Department, Biochemistry Division, Tekirdağ, Turkey

Rezeda V. Shamagsumova

Kazan Federal University, A.M. Butlerov' Chemistry Institute, Kazan, Russian Federation

Prashant K. Sharma

Indian School of Mines, Department of Applied Physics, Functional Nanomaterials Research Laboratory, Dhanbad, Jharkhand, India

Divya Shrivastava

Jaipur National University, School of Life Sciences, Jaipur, Rajasthan, India

Shafiquzzaman Siddiquee

University Malaysia Sabah, Biotechnology Research Institute, Sabah, Malaysia

Siddhartha Singha

National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India

Rakesh Kumar Singhal

Bhabha Atomic Research Center, Analytical Chemistry Division, Mumbai, Maharashtra, India

András Székács

National Agricultural Research and Innovation Center, Agro-Environmental Research Institute, Budapest, Hungary

Naimat Ullah

Sabanci University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey

Jose-Luis Vivancos

Polytechnic University of Valencia, Inter-University Research Institute of Molecular Recognition and Technological Development (IDM), Mixed Unit-Polytechnic University of Valencia University of Valencia, Valencia; CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER - BBN), Zaragoza, Spain

Meral Yüce

Sabanci University, Nanotechnology Research and Application Center, Istanbul, Turkey