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    “So far, the results have been very, very exciting…But now we got involved 
into practical application”  --Edgar Ribi [1] 

   Vaccine adjuvants have an interesting and empirical history, which led immunologist Charles 
Janeway to refer to them as the “immunologist’s dirty little secret.” Nevertheless, pioneer-
ing work led by Edgar Ribi elucidated structure-function relationships of adjuvant compo-
nents while emphasizing practical application and manufacturing aspects, leading to the 
development of the TLR4 ligand MPL ®  that is now contained in approved human vaccines. 
In recent years, progress in vaccine adjuvant technology has accelerated to an exciting pace, 
including FDA approval of adjuvant-containing vaccines such as Cervarix ®  (2009) and 
Fluad ®  (2015), and positive phase III clinical results of adjuvanted vaccines for malaria, 
shingles, and hepatitis B. In addition to these signifi cant clinical advances, earlier stage 
progress in adjuvant development including use of synthetic raw materials, novel formula-
tion and characterization approaches, elucidation of mechanisms of action, and technology 
transfer to developing country institutions is likewise highly encouraging. Moreover, the 
critical role of adjuvants with regard to global pandemic preparedness is being realized. 
Given these considerations, there is a clear need for up-to-date information on the practical 
methods and protocols important for successful adjuvant synthesis, formulation, and evalu-
ation from the experts in the fi eld. 

 The complex factors involved in the design, synthesis, formulation, physicochemical 
and bioactivity characterization, and clinical development of vaccine adjuvants are often 
underestimated, in part because adjuvant access and formulation know-how have histori-
cally not been widely available. This collection seeks to elucidate the practical methods 
necessary for successful adjuvant development, with a particular focus on the synthesis, 
formulation, manufacturing, and characterization aspects involved. It is anticipated that 
readers will be empowered to develop effective and stable vaccine adjuvants with product 
potential through application or adaptation of these techniques. While in some cases there 
is necessarily some overlap, my intent has been to avoid duplication of material covered in 
previous books from the Springer Protocols series, including the excellent volumes edited 
by Derek T. O’Hagan ( Vaccine Adjuvants: Preparation Methods and Research Protocols , 
Methods in Molecular Medicine, 2000) and by Gwyn Davies ( Vaccine Adjuvants: Methods 
and Protocols , Methods in Molecular Biology, 2010). The reader is referred to these previ-
ous books for further information on vaccine adjuvants. 

 The present volume begins with two review chapters, one focused on an overview of 
adjuvants in general and the other a specifi c case study on the development of the CpG 
adjuvant 1018. Chapters 2–8 concern the in silico design, chemical synthesis, biosynthesis, 
and/or purifi cation from natural raw materials of specifi c adjuvant molecules. Chapters 
9–15 involve adjuvant formulation approaches, including liposomes, oil-in-water emul-
sions, aluminum salts, block copolymer gels, biodegradable polymeric particles, and lyophi-
lized cakes. The analytical characterization of adjuvant formulations and adjuvant-containing 
vaccines is treated in Chapters 16–21, involving particle sizing, vibrational spectroscopy, 
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antigen-specifi c fl uorescent and gel-based techniques, methods to separate antigens from 
adjuvants prior to analysis, and stressed stability approaches. Finally, chapters 22–26 involve 
the biological characterization of vaccine adjuvant activity, including in vitro and in vivo 
approaches, including modern bioinformatic tools, to measure innate and adaptive immune 
responses. Given the expansiveness of current adjuvant research and development, it was 
not possible to include every topic of interest. Nevertheless, a wide range of molecular and 
particulate adjuvants has been represented in the chapters included here. 

 It is my sincere pleasure to introduce the reader to this volume on vaccine adjuvants. 
I hope he or she will fi nd it to be as informative and useful as I have, and that the methods 
described here by expert hands-on authors will facilitate vaccine adjuvant product develop-
ment efforts. I have long been impressed with the practical approach and helpful notes 
featured in the Springer  Methods in Molecular Biology  series. By focusing this volume on the 
pragmatic aspects of vaccine adjuvants, my goal is to help them become more accessible, 
manufacturable, and better characterized. Ongoing efforts along these lines should help in 
removing the “dirty little secret” sobriquet from adjuvants, and in the tradition of Edgar 
Ribi, turn exciting results into practical applications. 

     Seattle, WA, USA     Christopher     B.     Fox    
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    Chapter 1   

 Overview of Vaccine Adjuvants: Introduction, 
History, and Current Status                     

     Ruchi     R.     Shah    ,     Kimberly     J.     Hassett    , and     Luis     A.     Brito      

  Abstract 

   Adjuvants are included in sub-unit or recombinant vaccines to enhance the potency of poorly immuno-
genic antigens. Adjuvant discovery is as complex as it is a multidiscplinary intersection of formulation sci-
ence, immunology, toxicology, and biology. Adjuvants such as alum, which have been in use for the past 
90 years, have illustrated that adjuvant research is a methodical process. As science advances, new analytical 
tools are developed which allows us to delve deeper into the various mechanisms that generates a potent 
immune response. Additionally, these new techniques help the fi eld learn about our existing vaccines and 
what makes them safe, and effective, allowing us to leverage that in the next generation of vaccines. Our 
goal in this chapter is to defi ne the concept, need, and mechanism of adjuvants in the vaccine fi eld while 
describing its history, present use, and future prospects. More details on individual adjuvants and their 
formulation, development, mechanism, and use will be covered in depth in the next chapters.  

  Key words     Adjuvant  ,   Alum  ,   Nanoemulsion  ,   Vaccine  ,   Immunopotentiator  

1      Introduction 

 Vaccination has protected the human race from numerous devas-
tating diseases, improved the quality of life, and extended the aver-
age lifespan. According to statistics released by National Institute 
of Health in 2010, vaccines have prevented approximately 2.5 mil-
lion deaths and countless cases of illness each year [ 1 ]. The modern 
day concept of vaccination was introduced by Edward  Jenner   in 
the eighteenth century when he made the connection between the 
lack of small pox infections and milk maids. Using this observation 
Jenner took cow pox (which does not cause severe disease in 
humans) and inoculated individuals. Those individuals were then 
found to be protected against small pox infection [ 2 ]. However, 
well before Jenner’s observation many Asian and African countries 
had practiced a similar concept of variolation (using infected mate-
rial to immunize a healthy individual against the same infection) 
for centuries [ 2 ,  3 ]. This history of vaccination is not only 
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 interesting but also suggestive of the empirical approach that has 
always been a trademark of vaccine development from inception 
until today, despite our increasing understanding of the fi eld of 
vaccinology [ 4 ]. 

 Vaccination is a process of mimicking infection in the body 
leading to the activation of the immune system for the generation 
of a potent immune response [ 5 ,  6 ]. Once injected,  pathogen- 
associated molecular patterns (PAMPs)   present in the vaccine 
interact with the  pattern recognition receptors (PRRs)   on the 
innate immune cells present at the  site of injection (SOI)   and initi-
ate an immune cascade. This involves upregulation in the produc-
tion of chemokines and cytokines that subsequently lead to an 
increase in the number of  antigen presenting cells (APCs)   at the 
SOI. The APCs are involved in antigen uptake and subsequent 
presentation to  T-cells   that ultimately are responsible for priming 
CD4+ and CD8+ responses. These T-helper cells also activate the 
 B cells  , leading to the production and secretion of  antibodies  . 
Activation of both B and T cells is required for a robust immune 
response. A portion of the total T and B cells transform into mem-
ory cells which can mount an adaptive immune response quickly 
during future infections [ 6 ]. 

 As medical science advanced the crude methodology of  Jenner   
was refi ned leading to an improvement in the  safety   and effi cacy of 
vaccines. Building directly from Jenner’s work, live attenuated and 
whole killed pathogens are considered the fi rst generation of vac-
cines.  Live attenuated vaccines   contain weakened versions of the 
pathogen, virus or bacteria. These attenuated pathogens can repli-
cate inside the host leading to long lasting immunity. These vac-
cines are highly effective; yet there is a concern of reversion to its 
virulent form. For example the vaccine for  Venezuelan Equine 
Encephalitis   has to undergo only two-point mutations to return to 
virulence, limiting its utility to vaccinating high-risk individuals 
such as lab workers [ 7 ]. Whole killed vaccines on the other hand 
are incapable of replication as they undergo a viral inactivation step 
such as crosslinking, or viral splitting. Despite the lack of reversion 
for these types of vaccines,  safety   is still a concern. In the 1960s a 
formalin- inactivated vaccine   against RSV in a clinical trial killed an 
infant subject [ 8 ]. This tragedy hampered the RSV fi eld, and until 
recently no vaccine candidates have entered into late-stage clinical 
trials [ 9 ]. Another type of commercially available vaccine is the 
inactivated toxoid, e.g., tetanus. These traditional vaccines are still 
in use as they are highly potent; but in certain disease targets there 
are  safety   concerns and issues with the manufacturing process and 
in some non-cultivable microorganisms this traditional approach 
does not work [ 10 ,  11 ]. The limitations outlined above led to the 
introduction of subunit  and   recombinant protein vaccines. Subunit 
and recombinant proteins are highly purifi ed antigens which 
require only a part of the pathogen to generate a protective immune 

Ruchi R. Shah et al.



3

response. These antigens improved vaccine development as they 
proved to be safe with no ability to revert to a virulent form and 
were easier to manufacture and characterize. Also, these antigens 
exhibit low potency due to  fewer   PAMPs in comparison to the 
conventional attenuated or whole  inactivated vaccines  . Adjuvants 
were thus introduced in vaccines to enhance the  immunogenicity   
of these weaker antigens and help in improving the overall potency 
of poorly immunogenic  subunit vaccines   [ 11 ]. 

 Adjuvants are defi ned as materials added to vaccines in order to 
improve the immunological response. Adjuvants have many poten-
tial benefi ts such as reducing the frequency of vaccination, reducing 
the dose of antigen per vaccine (dose sparing), improving the qual-
ity of the immune response, and promoting cross-clade immunity 
and in certain cases they may improve the  stability   of the fi nal  vac-
cine   formulation [ 12 ]. Adjuvants have been used to improve  immu-
nogenicity   of vaccines in immune-comprised patients (e.g., HIV 
positive), infants, and elderly patients. Adjuvants such as  MF59   and 
 AS04   have even improved the effi cacy profi le of the vaccine in com-
parison to non-adjuvanted vaccines or placebo [ 13 ,  14 ]. In this 
chapter we focus on adjuvants which are added specifi cally to 
enhance the immune responses of a poorly immunogenic antigen. 

 Conventional classifi cation schemes based on origin, disease tar-
get, route of administration, type of  formulation  ,  mechanism of 
action  , intended use (delivery vs. immune potentiation), etc. may 
not be directly applied to vaccine adjuvants. One way to classify 
adjuvants is according to different generations—based on how they 
interact with the immune system and their composition [ 15 ]. 
Particulate adjuvants like alum, emulsions, liposomes, and mic-
roparticles can be considered as the fi rst generation of vaccine adju-
vants. This fi rst generation can also be considered as antigen  delivery 
systems   which promote the uptake of the co-administered antigen 
from the SOI [ 15 ]. The second generation of vaccine adjuvants may 
be best described as combinational adjuvants as they are comprised 
of immune potentiators combined with the fi rst generation of vac-
cine adjuvants, e.g.,  AS04   which is included in  Cervarix ®    and con-
sists of alum and a TLR4 agonist [ 15 ]. AS04 is a part of the adjuvant 
systems by GlaxoSmithKline which applies a similar concept of com-
bining  delivery systems   and immune potentiators into one single 
system; we will discuss these individually in the following sections. 

 Currently there are many types of adjuvants available for vac-
cine use being evaluated throughout various stages of vaccine devel-
opment. Ultimately the selection of an adjuvant for a vaccine should 
take many factors into consideration.  Safety   of an adjuvant is the 
fi rst criteria and it is dependent on the risk to benefi t ratio of the 
intended vaccine. An adjuvant should be safe, well tolerated, easy to 
scale up and manufacture, pharmaceutically acceptable (in regard to 
pH, osmolality, endotoxin levels, etc.) with a reasonable shelf life, 
compatible with the antigen, and economically feasible [ 16 ]. 
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Establishing all these parameters while maintaining the safety of the 
adjuvanted vaccine is a diffi cult time-consuming process; therefore 
currently only a handful of vaccine adjuvants are included in com-
mercial vaccines.  

2    Current Adjuvants 

 Although many well-respected academic and industry groups have 
excellent adjuvant research programs, very few of their discoveries 
have successfully translated to components in licensed vaccines. In 
the USA aluminum salts,  AS04   (monophosphoryl lipid A [MPL]    
with aluminum hydroxide),  AS03   (oil-in-water emulsion consisting 
of  squalene  ,  alpha-tocopherol  , and Tween 80), and  MF59   (oil- in- 
water emulsion consisting of squalene,  polysorbate 80  , and  sorbi-
tan trioleate  ) are adjuvants included in licensed vaccines [ 17 ,  18 ]. 
In addition to adjuvants licensed in the USA, Europe has licensed 
vaccines containing  virosomes   [ 17 ]. Each vaccine adjuvant has had 
its own challenges and successes. Experiences from previously stud-
ied adjuvants and the pharmaceutical feasibility of adjuvants have 
impacted and directed the development of the future adjuvants. 

   Aluminum salt solutions were originally added to growth medium 
to help purify tetanus and diphtheria vaccine antigens through pre-
cipitation, but it was soon discovered that aluminum precipitated 
antigens were more immunogenic than the soluble antigens [ 19 ]. 
Aluminum-based adjuvants have been used since the 1920s, mak-
ing them the adjuvant used for the longest period of time and the 
most frequently used adjuvant in licensed vaccine products with 
approximately one-third of licensed vaccines containing alum [ 20 ]. 
As a result alum has an extensive track record of  safety   in vaccines. 

 Although potassium aluminum sulfate was originally referred 
to as alum, aluminum hydroxide and aluminum phosphate are 
more commonly referred to as alum in the vaccine community. 
Aluminum hydroxide has a crystalline needle like morphology 
whereas aluminum phosphate appears as amorphous loose aggre-
gates [ 21 ]. Alum has been used as an antigen  delivery system   where 
the antigen interacts primarily though electrostatic interactions 
and ligand exchange. The electrostatic interactions of antigen and 
alum are a function of pH and type of alum. The point of zero 
charge (PZC) will determine the charge of alum; for aluminum 
hydroxide and aluminum phosphate the PZC are approximately 
11 and 5, respectively [ 22 ]. Based on the  formulation   pH and the 
isoelectric point (PI) of the antigen, the appropriate alum adjuvant 
can be chosen to maximize adjuvant-antigen electrostatic interac-
tions by having oppositely charged antigen and adjuvant [ 23 ]. 
Ligand exchange occurs when hydroxide groups on the alum 
exchange with phosphate groups present on the antigen. Although 
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association of antigen to alum allows the antigen to remain at the 
 site of injection   for longer periods of time, association of antigen to 
alum may not be critical for immune potentiation [ 24 ]. 

 Alum promotes a strong  Th2  -biased response, also referred to 
as a humoral immune response. Although the exact  mechanism of 
action   for alum is still unknown, proposed mechanisms include 
depot effect, an infl ammatory response which recruits  antigen- 
presenting cells  ,  NALP3    infl ammasome   activation, release of  DNA   
from cell death causing  danger-associated molecule pattern 
(DAMP)   recognition, and enhanced phagocytosis by antigen- 
presenting cells [ 15 ,  25 – 27 ]. Despite the success of alum use in 
many vaccines, it has limitations particularly for use against intracel-
lular pathogens and pathogens that require a strong cellular 
immune response. In addition, alum is sometimes found to be not 
potent enough as an adjuvant for some antigens, e.g., infl uenza 
vaccines where alum was found to be a poor adjuvant [ 28 ,  29 ]. 

 One approach to overcome the limitations of alum is to use it 
to co-deliver it with additional adjuvants. Adjuvant system  AS04   
combines aluminum hydroxide or aluminum phosphate with the 
immunostimulatory molecule  monophosphoryl lipid A (MPL)   
[ 30 ]. Mechanistic studies suggest that alum and MPL do not work 
synergistically, but alum facilitates the delivery of MPL at the  site 
of injection   and increases the duration of cytokines [ 31 ]. 
Monophosphoryl lipid A (MPL) is a modifi ed version of  lipopoly-
saccharide (LPS)   that is signifi cantly less toxic but still remains a 
TLR4 agonist [ 32 ]. By including  MPL   with aluminum hydroxide, 
both a  Th1   and  Th2   response can be created [ 30 ].  AS04   is cur-
rently used in licensed human papillomavirus ( Cervarix ®   ) and  hep-
atitis B   ( Fendrix ®   ) vaccines [ 30 ]. 

 Alum-based vaccine  formulations   have limitations regarding 
 stability  . When alum is frozen, alum particles signifi cantly aggregate 
leading to a decrease in vaccine effi cacy when administered [ 33 –
 36 ]. To avoid potential freezing, vaccines need to be transported 
and stored in a very narrow temperature range throughout the cold 
chain. Although no commercial  formulations   containing alum are 
stored frozen or lyophilized, proof-of-concept studies have shown 
the feasibility of lyophilizing alum formulations [ 20 ,  36 – 38 ].  

   Another approach that has an extensive history of use as vaccine 
adjuvants are emulsions. The earliest used emulsion designed as a 
vaccine adjuvant was a mineral oil-based water-in-oil emulsion 
called Freund’s adjuvant. The water-in-oil (w/o) emulsion comes 
in two forms,  complete Freund’s adjuvant (CFA)   which contains 
 mineral oil  , emulsifi er, and killed bacteria  M. tuberculosis  and  incom-
plete Freund’s adjuvant (IFA)   which has the same composition as 
CFA without the bacteria [ 39 ]. Although Freund’s adjuvant has a 
long history of use, it will likely never be included as originally 
described in human vaccines due to  safety   concerns; it has been 

2.2  Emulsions
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approved for use in certain large animal veterinary vaccines [ 40 ]. 
Toxicity issues were caused by the non-biodegradable oil, high lev-
els of oil in the emulsion (water-in-oil), reproducibility of emulsion, 
and poor oil and/or emulsifi er quality [ 41 – 45 ]. Despite this, 
 CIMAvax EGF  , a therapeutic non-small lung  cancer vaccine   devel-
oped and marketed in Cuba contains another mineral oil containing 
water-in-oil emulsion adjuvant  Montanide ISA 51   by Seppic [ 46 ]. 

 To create an adjuvant without the tolerability issues associated 
with  FCA   or IFA, oil-in-water emulsions prepared with  biodegrad-
able  /biocompatible oils such as  squalene   (e.g.,  MF59  ) were devel-
oped in the 1980s [ 47 ]. MF59 is primarily used in infl uenza 
vaccines since it can improve immune responses and improve cross- 
reactivity to a wide array of infl uenza strains [ 48 ].  MF59   has been 
shown to be safe and well tolerated with millions of doses admin-
istered in over 35 countries [ 49 ]. MF59 is composed of squalene, 
Span 85, and Tween 80 in 10 mM sodium citrate buffer at pH 6.5 
with an average droplet size of approximately 165 nm [ 47 ,  50 ]. 
Recently the  mechanism of action   of  MF59   has been extensively 
studied and although it is still ongoing various theories have been 
established [ 51 ,  52 ]. MF59 does not create an antigen depot at the 
 site of injection   and the antigen and  MF59   are cleared indepen-
dently from the site of injection. An immune competent environ-
ment is created at the SOI leading to an infl ux  of   APCs and other 
immune cells. MF59 also upregulates production of cytokines and 
chemokines which further attracts the immune cells to the 
SOI. This migration of APCs leads to an increase in uptake of the 
antigen, especially by  neutrophils   and  monocytes  , and transloca-
tion to draining  lymph nodes   where  MF59   also helps in priming 
the immune responses [ 51 ,  52 ]. 

  AS03  , a GlaxoSmithKline proprietary adjuvant, has also been 
used for infl uenza vaccines where it enhances immune responses 
similar to MF59 [ 53 ]. The difference in composition ( squalene  , 
 alpha-tocopherol  , and Tween80 in phosphate buffered saline) of 
AS03 leads to a different mechanism than  MF59   [ 54 ]. Alpha-
tocopherol (vitamin E) has been shown to have antioxidant and 
immunostimulatory  properties which have been found to be criti-
cal to the adjuvant effect of AS03 [ 55 ].  AS03   and antigen must be 
delivered to the same site for an enhanced immune response to be 
achieved but emulsion  and   antigen do not have to be associated to 
generate the enhanced immune response [ 55 ].  Monocytes   and 
 granulocyte   recruitment at the SOI    are responsible for     mechanism 
of action   of AS03 [ 55 ]. 

 To further enhance the  immunogenicity   of AS03, adjuvant sys-
tem AS02 consists of the  AS03   emulsion and incorporates the 
immune potentiators QS-21 and  MPL   to induce both strong anti-
body and cellular immune responses [ 30 ,  56 ]. QS-21 is a saponin 
from the soap bark tree,   Quillaja saponaria   , and has been found to 
enhance the immune response by producing high antibody titers, 

Ruchi R. Shah et al.



7

improving responses for T cell-independent antigens, and promot-
ing  CD8+ T cell   responses [ 57 ]. 

 Another emulsion that contains a TLR4 agonist is stable emul-
sion with  glucopyranoside lipid adjuvant (GLA-SE)  . GLA-SE con-
tains  squalene  , glycerol, phosphatidylcholine,  glucopyranoside 
lipid adjuvant (GLA)  , and pluronic F68 in ammonium phosphate 
buffer [ 58 ]. A synthetic analogue of  MPL     , GLA has been shown to 
be more potent per molecule and less toxic than  MPL   [ 59 ]. The 
particles formed in stable emulsion are 100 nm in diameter [ 58 ]. 
 Formulations   containing GLA create a  Th1   type of immune 
response. GLA can also be formulated as an aqueous  formulation  , 
in a liposome or adsorbed to alum, where each  delivery system   
yields a slightly different immune response [ 58 ]. Additional emul-
sions have been evaluated as adjuvants including  AF03   and 
 WEC50  ; for a more detailed discussion on emulsion adjuvants the 
reader is referred to previously published reviews [ 10 ,  60 ].  

   Liposomes are spherical particles containing a bilayer of  phospho-
lipids   with an aqueous center [ 61 ]. Liposomes can be used to 
deliver both antigen and immunostimulatory molecules [ 61 ]. 
Components can be encapsulated within, associated with the mem-
brane, or adsorbed on to liposomes [ 62 ]. Since liposomes alone do 
not create a strong immune response, they are often combined 
with immunostimulatory molecules [ 63 – 65 ]. Cationic liposomes 
have been found to improve immune responses more than neutral 
or anionic liposomes since cationic liposomes increase the uptake 
of entrapped antigen to cells [ 66 ].  CAF01  , a cationic liposomal 
adjuvant developed by Statens Serum Institute containing DDA 
(dimethyldioctadecylammonium)    and TDB (trehalose  dibe-
henate  ), is now being clinically tested as a component of a tuber-
culosis vaccine [ 67 ]. 

  Immunostimulating complexes (ISCOMs)   were developed in 
the 1980s. ISCOMs originally had antigen incorporated with Quil A 
adjuvant with  phospholipids   and  cholesterol   [ 68 ]. To facilitate anti-
gen association with the 40 nm ISCOMATRIX particles, it was found 
that the antigen must be amphiphilic [ 69 ]. Due to its poor tolerabil-
ity Quil A is now replaced with more refi ned saponin preparations 
[ 70 ].  ISCOMATRIX   has a dual role: immunomodulation and anti-
gen delivery [ 69 ]. While it modulates the immune response by acti-
vation of immune cells and upregulation of cytokines and chemokines, 
it is hypothesized that it interacts with membranes on the cell surface 
and endosomes to deliver the antigen into the cytosol [ 69 ,  71 ]. As 
 ISCOMATRIX   can effi ciently induce CD8+ responses it has been 
used as the gold standard for CTL immune responses [ 15 ]. 

 The most clinically advanced liposomal adjuvant is  AS01  , a 
liposome composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine 
(DOPC),  cholesterol  ,  MPL  , and QS21. Immediately before injec-
tion, AS01 is combined with the antigen. It has been reported that 

2.3  Lipid-Based 
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for AS01 to be effective, the adjuvant and antigen must be deliv-
ered to the same injection site at the same time which leads to 
AS01 recruiting  antigen-presenting cells   to the injection site [ 72 ].  

   During the 1980s poly(lactide-co-glycolide) (PLG)  microparticles   
began to be evaluated for use as adjuvants [ 73 ]. In addition to 
being  biodegradable   and bio-compatible, these particles offer the 
possibility of a single-shot vaccine, thus overcoming the need for 
booster shots [ 74 ]. Since PLG is biodegradable, antigen entrapped 
within the polymer was able to be released once the particle was 
introduced into an aqueous environment [ 75 ]. Unfortunately, 
harsh conditions are required to entrap the antigen in PLG which 
results in a loss of antigen  stability   [ 76 ]. To overcome the loss of 
antigen stability during incorporation of antigen into the PLG par-
ticle, adsorption of antigen on the surface of PLG particles has also 
been attempted [ 77 ]. Since PLG particles induce immune responses 
only marginally better than alum, further development of this 
adjuvant has been halted since alum has a long history of use and 
safety. To increase the immune response generated with PLG par-
ticles, immune stimulating molecules have also been entrapped in 
the microparticle [ 76 ,  78 ]. Polymeric  nanoparticles   have also been 
evaluated as adjuvants, but there has been no biological advantage 
to the use of nanoparticles as opposed to microparticles [ 79 ].   

3    Future Prospects for Adjuvants 

 Adjuvant research is an active fi eld due in part to an increased need 
to improve immune responses of poorly immunogenic antigens, an 
increased understanding of the molecular mechanism of the innate 
immune system, improved biophysical analytical techniques for 
analysis of nanoscale assemblies, and a number of clinical successes 
in the past 15–20 years. Approval of an adjuvanted infl uenza vac-
cine containing  MF59   in 1997 in Europe illustrated a path forward 
for emulsion adjuvants. Emulsions such as  AS03  ,  AF03  , and  SE   
soon followed a similar path and the fi eld largely focused on the 
use of  squalene   as the oil of choice within emulsion adjuvants. 
Alternate oils have been evaluated further supporting the use of 
squalene as an adjuvant [ 80 ]. Interesting to note is the sizes were 
not evaluated in that report; we recently identifi ed the size of the 
oil droplet to be critical to eliciting the appropriate immune 
response with changes as little as 70 nm impacting immune 
responses [ 81 ]. Recently a series of papers have focused on detail-
ing the  mechanism of action   of  MF59   [ 52 ,  82 ]. This increased 
mechanistic understanding is useful to benchmark novel adjuvants 
against a safe well-tolerated class of adjuvants. 

 A number of adjuvanted clinical candidates have recently 
gained signifi cant attention. The adjuvant systems developed by 

2.4  Polymeric 
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GSK have been advancing through the clinic. Recently scientists at 
GSK reported >96 % effi cacy with an AS01 B -adjuvanted herpes 
zoster vaccine in a phase III clinical trial [ 83 ]. An  AS01  -adjuvanted 
malaria vaccine was recently given a positive recommendation from 
the EMA [ 84 ]. Additionally the AS04-adjuvanted  hepatitis B   and 
human papilloma virus vaccines have successfully been in use for a 
number of years [ 85 ]. These examples clearly illustrate how an 
adjuvant can improve immune responses for vaccines where the 
mechanism of neutralization is understood in part. 

 Dynavax’s hepatitis B vaccine Hepsilav-B has shown promising 
results in three phase III trials. Hepsilav-B includes immunostimu-
latory sequence 1018 which contains unmethylated CpG motifs 
allowing it to act as a TLR 9 agonist [ 86 ]. Several advantages over 
currently marketed products have been seen in Hepsilav-B includ-
ing a reduced number of doses required from three doses over 6 
months (Engerix-B) to two doses in 1 month to achieve seropro-
tection, and increased seroconversion in hypo-responsive popula-
tions such as obese, smokers, males, and diabetics while maintaining 
a similar  safety   profi le to approved vaccines [ 86 ]. After receiving a 
rejection on the FDA regulatory fi ling in 2013 due to insuffi cient 
 safety   data and concerns about adjuvant caused autoimmunity, 
Dynavax hopes to resubmit the application in 2016 with an 
increased number of safely immunized patients and positive results 
from the latest phase III trials [ 87 ]. 

 The late-stage failure of the  AS15  -adjuvanted  cancer vaccine   is a 
reminder that a powerful adjuvant alone cannot generate the desired 
immune response [ 88 ,  89 ]. Deep understanding of biology is needed 
to generate the appropriate immune response. Although the fi eld of 
immune-oncology has clearly made signifi cant advances through the 
use of PD-1  antibodies   and CAR-T therapy, the fi eld in general has 
not yet reached a consensus on how to generate the most potent 
immune response against cancer cells within the patient. Therapeutic 
vaccines will rely heavily on adjuvants in order to coax the immune 
system to break tolerance (in the case of  cancer vaccines  ), generate 
tolerance (in the case of allergy vaccines), or generate  antibodies   
against poorly immunogenic antigens (e.g., nicotine vaccine). 

 Early-stage concepts include a recent report from Wu et al. 
describing a novel  small-molecule   adjuvant that binds to alum for 
enhanced responses [ 90 ]. Combining an existing well-established 
adjuvant with a novel immunostimulator leverages the existing 
 safety   record of alum while introducing a novel potent adjuvant for 
improving cellular responses and breadth of response. Recent phase 
II data for a peptide-based vaccine adjuvanted with the  Matrix M2   
saponin-based adjuvant was found to be highly effective in reduc-
tion of viral shedding for herpes simplex virus [ 91 ,  92 ]. 

 During the 2009 infl uenza pandemic, a small but signifi cant 
subset of vaccinated individuals who received  AS03  -adjuvanted fl u 
vaccine in Europe developed narcolepsy [ 93 ,  94 ]. It was not until 
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recently that Soheil et al. identifi ed homology between an antigen 
found in the vaccine and a protein found in the human body to lead 
to narcolepsy [ 95 ]. As the adjuvant improved the overall immune 
response of the vaccine, it likely helped elicit  antibodies   against this 
protein in a subset of patients. This example is a reminder that adju-
vants need to be combined with well-defi ned and well-character-
ized vaccine antigens. Although vaccine adjuvants can improve 
responses and lead to improved health, particularly for unmet med-
ical needs, an in-depth understanding of the biology and well-char-
acterized antigens is critical for the fi eld to succeed as a whole. 

 The increased use of recombinant proteins will inevitably lead 
to a greater use of adjuvants. Not many vaccines will require the 
“kitchen sink” approach where multiple immune stimulators are 
combined to create a varied and long-lasting immune response, 
although recent late-stage trials are illustrating the clear need to 
combine different classes of adjuvants for improving responses. As 
our understanding of the immune system improves through the 
use of antibody repertoire analysis and deep sequencing combined 
with other recent bio-analytical advances the immune system will 
be harnessed not only to be used for preventing infectious disease, 
but for treating autoimmunity and cancer, and there is a high likeli-
hood that vaccine adjuvants will be a central player in those next- 
generation treatments.     
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