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 The most effective way to control and ultimately eliminate an infectious disease is through 
vaccination. Man has successfully eliminated small pox with this ingenious strategy but 
other diseases are proving harder to eradicate, even when highly effective vaccines do exist. 
Malaria is caused by the eukaryotic pathogen parasite  Plasmodium , and to date no effi ca-
cious vaccine against any eukaryotic pathogen is widely available. Nevertheless seminal 
studies in the 1960s showed the power of immunity in controlling malaria disease. In 1961 
Sydney Cohen and colleagues showed that the passive transfer of gamma immunoglobulin 
from adults living in areas of high malaria endemicity to young children with severe malaria 
disease could help eliminate parasites from the blood. This study clearly demonstrated the 
ability of humoral immunity to control severe disease. In 1967, Ruth Nussensweig and col-
leagues demonstrated that the immunization of mice with irradiated  Plasmodium berghei  
sporozoites led to the generation of an immune response that completely protected the 
immunized mice from a sporozoite challenge. Subsequently, in 1973, David Clyde and col-
leagues repeated these studies in man using irradiated  Plasmodium falciparum  parasites and 
again showed that complete protection could be achieved. These pivotal breakthroughs 
have fueled decades of research into malaria vaccine efforts focusing on both blood stage 
vaccines and preerythrocytic vaccines. It is now known that both humoral and cellular 
immunity are important partners in effective vaccine design, and large bodies of work have 
shown that antibodies can prevent both merozoite and sporozoite invasion while CD4 +  T 
cells and CD8 +  T cells play critical roles in the destruction of infected erythrocytes and 
hepatocytes respectively. 

 The goal of this volume, which focuses exclusively on malaria vaccinology, is to intro-
duce researchers to a subset of the many methods regularly being used in this fi eld. This 
volume complements a recent “Methods in Molecular Biology” volume that is devoted 
exclusively to malaria and provides a complete overview of the protocols and tools used by 
the molecular and cellular malariologist. Working with the human malaria parasite both 
in vitro and in vivo is challenging due to its unique tissue tropism, and research efforts on 
malaria vaccine design have required the creation of novel methodologies for determining 
vaccination effi cacy as well as pinpointing correlates of protection. These methodologies 
have been fi ne-tuned over the years, and this volume brings together a large number of 
nuanced chapters from leading experts in the fi eld that will help any aspiring malaria vac-
cinologist determine the effectiveness of vaccine regimens. Thus, the volume provides a 
unique resource and exquisitely detailed methodologies that are not typically found in 
published literature. 

 The chapters contained within talk to interventions concerning all aspects of life cycle 
progression—measuring antibody responses to blood stage parasite survival, the T cell 
responses engendered by attenuated sporozoite vaccination, and the unique effect on trans-
mission of antibodies that target the mosquito stage of the life cycle. Additionally, methods 
concerning the ability to generate targeted gene deletions and replacements in the genome 
of  Plasmodium  parasites convey how  Plasmodium  parasite phenotypes can be created to 
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precise specifi cations. More recently, the potential power of humanized mouse models of 
disease progression has been demonstrated and these are discussed herein. 

 We thank all authors for their dedication in creating step-by-step methodologies that 
will undoubtedly lead to further discoveries and further improvements. Hopefully these 
fi ndings will ultimately lead to the creation of an effective vaccine regimen for the elimina-
tion and ultimately the eradication of malaria.  

  Seattle, WA, USA     Ashley     M.     Vaughan    

Preface
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Ashley M. Vaughan (ed.), Malaria Vaccines: Methods and Protocols, Methods in Molecular Biology, vol. 1325,
DOI 10.1007/978-1-4939-2815-6_1, © Springer Science+Business Media New York 2015

    Chapter 1   

 Isolation of Non-parenchymal Cells from the Mouse Liver 

           Isaac     Mohar     ,     Katherine     J.     Brempelis    ,     Sara     A.     Murray    , 
    Mohammad     R.     Ebrahimkhani    , and     I.     Nicholas     Crispe   

    Abstract 

   Hepatocytes comprise the majority of liver mass and cell number. However, in order to understand liver 
biology, the non-parenchymal cells (NPCs) must be considered. Herein, a relatively rapid and effi cient 
method for isolating liver NPCs from a mouse is described. Using this method, liver sinusoidal endothelial 
cells, Kupffer cells, natural killer (NK) and NK-T cells, dendritic cells, CD4+ and CD8+ T cells, and qui-
escent hepatic stellate cells can be purifi ed. This protocol permits the collection of peripheral blood, intact 
liver tissue, and hepatocytes, in addition to NPCs. In situ perfusion via the portal vein leads to effi cient liver 
digestion. NPCs are enriched from the resulting single-cell suspension by differential and gradient cen-
trifugation. The NPCs can by analyzed or sorted into highly enriched populations using fl ow cytometry. 
The isolated cells are suitable for fl ow cytometry, protein, and mRNA analyses as well as primary culture.  

  Key words     Liver  ,   Perfusion  ,   Cell isolation  ,   Sinusoidal endothelial cells  ,   Kupffer cells  ,   Hepatic stellate cells    

1     Introduction 

 The principle cell types in a healthy liver are hepatocytes, liver sinusoi-
dal endothelial cells (LSEC), Kupffer cells, and hepatic stellate cells 
(HSC) [ 1 – 3 ]. Fewer in number are bile duct cells, venous and arterial 
endothelial cell, hepatic progenitor cells, and dendritic cells. 
Furthermore, the number and proportion of leukocytes can increase 
tremendously in an infected or damaged liver [ 4 ,  5 ]. As a result, granu-
locytes, monocytes, natural killer (NK) and NK-T cells, dendritic cells, 
CD4+ and CD8+ lymphocytes, and B cells are important determinants 
of the liver biology. Thus, the dissected dynamics of each cell type can 
provide powerful information to understand the pathology and immu-
nology of the tissue. This information, in combination with serologi-
cal, histological and tissue- level observations, allows for a comprehensive 
assessment of each experimental mouse, thus reducing the number of 
 experimental mice while increasing the likelihood of discovery. 

 Isaac Mohar and Katherine J. Brempelis are co-fi rst authors of this chapter. 
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 The purpose of this protocol is to provide a detailed description 
of materials and methods by which liver cell populations can be 
isolated from the mouse liver and studied, while also permitting the 
collection of blood and intact liver tissue. The liver dissociation pro-
tocol is derived from the method published by Seglen [ 6 ] for isolat-
ing rat liver cells. Dr. Seglen provides an extensive description of the 
theory behind rat liver dissociation that extends to the mouse. We 
have evolved the method of Seglen to allow rapid, yet effective, 
isolation of mouse liver cells, permitting the dissociation of up to 
fi ve livers per hour by two skilled technicians—one conducting per-
fusions and dissections, the other processing cell suspensions. 

 The basic protocol relies upon in situ perfusion of the liver via 
the portal vein. Peripheral blood and cells are fl ushed from the liver 
in a Ca 2+ -free buffer, prior to perfusion with the collagenase diges-
tion solution. Following liver digestion, the liver is removed and 
mechanically dissociated. Hepatocytes are separated by low-speed 
centrifugation, and then non-parenchymal cells (NPCs) are 
enriched by gradient separation. The enriched NPCs allow for rela-
tively effi cient cell type-specifi c analysis and/or further purifi cation 
by fl ow cytometry [ 7 ]. For purifi cation, magnetic bead-based 
methods can be applied and in certain circumstances are preferred 
[ 8 ], however, cell sorting allows for multi-way separation from 
each preparation. 

 Although liver NPCs are the focus of this protocol, hepatocytes 
are readily purifi ed and cultured with good success. In addition, it is 
not yet clear if this protocol is able to isolate the population of sessile 
Kupffer cells, which are radioresistant and appear somewhat distinct 
in function from their non-sessile counterparts [ 2 ]. This caveat in 
mind, this protocol establishes a reproducible method to isolate and 
enable the study of many cell types from the mouse liver. Indeed, a 
parallel understanding of cell-specifi c responses associated with tis-
sue immune and pathological responses offers promise of new 
insights into treatment and prevention of infection and disease.  

2    Materials 

 All solutions and consumables should be purchased as “tissue cul-
ture tested” from a trusted commercial source in order to assure 
minimal contamination with endotoxin and sterility. All surgical 
instruments should be thoroughly washed, rinsed and autoclaved 
for sterility, especially if primary culture is the end goal. As with any 
protocol involving animals, institutional guidelines for handling, 
anesthesia, and waste disposal should be followed. 

       1.    Anesthesia approved for terminal procedures such as Avertin; 
1.25 % (w/v) 2,2,2-tribromomethanol, 2.5 % (v/v) 2-methyl- 
2-butanol, sterile water. Filter-sterilize and then store at 4  ° C 
protected from light ( see   Note 1 ).   

2.1  Anesthesia

Isaac Mohar et al.
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   2.    28G ½ inch needle, suitable for intraperitoneal injections.   
   3.    1-cc syringe.      

       1.    Peristaltic pump; such as Gilson MINIPULS 3 with medium 
fl ow-rate pump head.   

   2.    Pump tubing and connectors; such as F1825113 and 
F1179951.   

   3.    Tubing extension with slip-tip end; such as Hospira 1265528.   
   4.    Catheter; 24G, IV, such as BD 381412 ( see   Note 2 ).   
   5.    Scissors, straight fi ne-tipped dissection.   
   6.    Forceps, 2 blunt tip.   
   7.    50-ml conical tubes.   
   8.    15-ml conical tubes.   
   9.    5-cm sterile petri dish (optional).   
   10.    10-cm sterile petri dish.   
   11.    Stainless steel mesh “tea strainer.”   
   12.    10-cc syringe.   
   13.    100-μm fi lter.   
   14.    70-μm fi lter (optional).   
   15.    Gauze pads, large-size.   
   16.    Surgical tape, such as 3 M Transpore.   
   17.    Disposable absorbent underpads.   
   18.    37  ° C water bath with 50-ml conical rack.      

       1.    Hank’s Balance Salt Solution (HBSS); no Ca 2+ , no Mg 2+ , no 
phenol red.   

   2.    HBSS with phenol red.   
   3.    Phosphate buffered saline (PBS), pH 7.4.   
   4.    Distilled water, TC-grade.   
   5.    PBS, 10×.   
   6.    HEPES; 1 M (Stock).   
   7.    EDTA; 0.5 M (Stock).   
   8.    CaCl 2 ; 0.5 M (Stock).   
   9.    Fetal bovine serum (FBS).   
   10.    Collagenase;  Clostridium histolyticum , Sigma-Aldrich C5138 

( see   Note 3 ).   
   11.    OptiPrep; 60 % iodixanol solution in water.   
   12.    Tissue fi xative; 4 % formaldehyde in PBS.   
   13.    70 % ethanol.     

2.2  Perfusion/Liver 
Dissociation Hardware 
Components

2.3  Perfusion/Liver 
Dissociation Solution 
Components

Liver Cell Isolation
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 These solutions can be prepared in advance and stored at 4  ° C.

    1.    Perfusion Buffer, 5–10 ml per mouse; HBSS, 5 mM HEPES, 
0.5 mM EDTA.   

   2.    Wash Buffer, 50 ml per mouse; PBS, 4 % FBS, 0.5 mM EDTA.   
   3.    PBS Flow Buffer (PFB), 20 ml per mouse; PBS, 1 mM EDTA, 

2 % FBS.    

  These solutions should be prepared on the day of isolation.

    1.    Collagenase solution, 5–10 ml per mouse; HBSS (w/phenol 
red), 5 mM HEPES, 0.5 mM CaCl 2 , 0.5 mg/ml collagenase.   

   2.    40 % iodixanol in PBS, 2.5 ml per mouse; 1.67 ml 
OptiPrep + 0.25 ml 10× PBS + 0.58 ml TC-grade water.      

       1.    Flow cytometer; such as BD Biosciences, LSRII or Aria.   
   2.    Flow cytometry tubes ( see   Note 4 ).   
   3.    Antibodies for sorting cell type and/or analysis (Table  1 ) 

( see   Note 5 ).

3            Methods 

       1.    Warm perfusion and collagenase solutions to 37  ° C for approx-
imately 15 min prior to beginning the perfusion.   

   2.    Prepare tubing for perfusion ( see   Note 6 ).   
   3.    Prepare perfusion area with absorbent pad, dissection tools, 

gauze, 10-cm petri dish, tea strainer, and 10-cc syringe (Fig.  1 ).    
   4.    Fill perfusion line with perfusion solution.      

2.4  Cell Analysis 
and Purifi cation 
Components

3.1  Prepare 
for Perfusion(s)

     Table 1  
  Antibodies for FACS-based purifi cation of some of the major liver NPC and 
leukocytes   

 Epitope  Fluorophore  Clone  Dilution 

 CD8a  Pacifi c Blue  53-6-7  1:250 

 CD4  PerCP-Cy5.5  RM4-5  1:250 

 CD11b  FITC  M1/70  1:200 

 NK1.1  Per-Cy7  PK136  1:200 

 Tie2  PE  TEK4  1:250 

 F4/80  APC  BM8  1:200 

 GR1  APC-Cy7  RB6-8C5  1:200 

 N/A  Live/Dead Violet  N/A  1:1000 

  The antibodies listed here will allow for selection or analysis of some of the most numer-
ous liver NPC as well as some leukocytes  

Isaac Mohar et al.
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       1.    Inject mouse with appropriate amount of anesthesia.   
   2.    Once adequate level anesthesia is obtained, proceed to 

Subheading  3.3  ( see   Note 7 ).      

        1.    Place mouse belly-up on large gauze pad.   
   2.    Secure mouse by footpads using surgical tape in an X orienta-

tion (Fig.  2a ).    
   3.    Disinfect and wet mouse fur using 70 % ethanol. Wipe off 

excess.   
   4.    Open skin to expose the peritoneal membrane (Fig.  2b ).   
   5.    Open peritoneal membrane (Fig.  2c ), gently move intestines 

and stomach to the right and very gently “stick” the liver to 
the diaphragm. This should expose the portal vein and descend-
ing vena cava ( see   Note 8 ) (Fig.  2d ).   

   6.    Use sharp scissors to nick the portal vein; blood will fl ow 
( see   Note 9 ).      

3.2  Anesthetize 
Mouse

3.3  Surgical 
Preparation

  Fig. 1    Suggested workspace set-up. Position the water bath and pump to allow the perfusion tubing to reach 
the bottom of the 50-ml conical tubes. The water bath should be to the  left , in order to allow switching of the 
perfusion line while holding the catheter with the  right hand . Place absorbent pad on the work surface; this pad 
will both absorb perfusion solutions and act as the foundation to adhere the mouse. Place large gauze pad in 
the center of the work area; this small pad will absorb most of the perfusion solutions as well as blood and 
should be changed after every other if not every mouse. Place tea strainer in a 10-cm petri dish. Place the lid 
of the dish to the left of the smaller gauze pad. Place one pair of sharp scissors and forceps above the gauze. 
Place the other scissors and forceps to the right of the gauze. Position the surgical tape, small gauze pads, and 
70 % ethanol within easy reach.  Inset  ( a ) illustrates the connection between extension tubing and silicon peri-
staltic pump tubing.  Inset  ( b ) illustrates the catheter connected to the male end of the extension tubing       
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       1.    Collect 0.2–0.5 ml of blood as it pools near the portal vein. 
Transfer to proper collection tube.   

   2.    Locate and remove ~2/3 of the right posterior liver lobe 
(Fig.  2d, e ). Transfer to 4 % formaldehyde for fi xation or fur-
ther divide for other assessments.      

       1.    Turn on pump to fl ow of ~2 ml/min.   
   2.    Drip perfusion buffer onto the cut portal vein.   
   3.    Use gauze sponge to draw perfusion solution to the left.   
   4.    Identify the opening in the vein ( see   Note 10 ).   

3.4  Blood and Tissue 
Collection (Optional)

3.5  In Situ Liver 
Dissociation

  Fig. 2    General perfusion anatomy and procedure. ( a ) Adhere anesthetized mouse overtop of the gauze in an 
X-confi guration. ( b ) Make a crosswise incision through the mouse skin to reveal the peritoneum. ( c ) Being 
careful to avoid cutting internal organs, make a crosswise incision through the peritoneum. ( d ) Move the gas-
trointestinal organs to the  left , revealing the portal vein. Place forceps to hold tissue off of the vein. ( e ) Snip the 
portal vein (collect blood if desired), then remove a portion of the intact  right  posterior lobe. Catheterize the 
portal vein, then immediately cut the descending vena cava. ( f ) The liver will blanch once the portal vein is 
catheterized, and will fully perfuse once the vena cava is cut. Avoid pushing the catheter too far into the vein. 
The tip of the catheter should be easily observed within the vein. ( g ) Once digested, remove the liver by the 
falciform ligament, along the top of the medial lobe. The gall bladder is a good landmark for identifying the 
ligament       
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   5.    Gently catheterize the vein; the liver should blanch ( see   Note 11 ) 
(Fig.  2f ).   

   6.    Cut the descending vena cava; blood and buffer should visibly 
fl ow from the vena cava.   

   7.    Relax your hand ( see   Note 12 ).   
   8.    Perfuse liver with 5–10 ml of perfusion buffer. Most perfusion 

tubing setups hold about 5 ml of solution, thus once the 
descending vena cava is cut, proceed to  step 9 .   

   9.    Stop pump.   
   10.    Switch line to collagenase, using the left hand.   
   11.    Resume pump fl ow ( see   Note 13 ).   
   12.    Swell the liver using forceps to occlude buffer fl ow from the 

vena cava, every 45–60 s for 5–10 s. If part of the right poste-
rior lobe was removed, use the forceps to occlude fl ow into this 
lobe ( see   Note 14 ).   

   13.    Perfuse liver with 5–10 ml of collagenase buffer. After 3–4 min, 
the liver should soften and the left lobe will begin to fall over 
the portal vein. When this happens, use forceps to lift up the 
lobe to periodically check that the catheter is properly posi-
tioned. After 5 min, the internal structure of the liver cracks. 
This indicates a good digestion, and is most evident in the 
right anterior lobe.   

   14.    Stop the pump.   
   15.    Remove catheter from vein.   
   16.    Reverse pump to return unused collagenase solution to the 

50-ml conical tube.   
   17.    Switch line back to perfusion solution and refi ll the line in 

preparation for the next mouse.      

       1.    Using wide-tipped forceps, grasp the liver just to the left of the 
gall bladder along the falciform ligament (Fig.  2g ).   

   2.    Use scissors to separate the liver from the diaphragm and all 
other points of connection. Care should be taken to avoid cut-
ting the gastrointestinal tract.   

   3.    Transfer the digested liver into the tea strainer within a 10-cm 
petri dish.   

   4.    Remove the gall bladder ( see   Note 15 ).   
   5.    Add 30 ml of cold wash buffer to the dish.   
   6.    Use the rubber plunger of 10-cc syringe to gently massage the 

liver through the tea strainer, shake the strainer to disperse the 
cells. The liver should easily disperse with only the capsule and 
ligament remaining in the strainer.   

3.6  Single Cell 
Suspension

Liver Cell Isolation
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   7.    Use 10-cc syringe (or 10-ml pipet) to gently disperse any 
clumps.   

   8.    Filter (100 μm) the cell suspension into a 50-ml conical tube.   
   9.    Store on ice or at 4  ° C for no longer than 15 min before pro-

ceeding to Subheading  3.8 .      

        1.    Locate and remove spleen.   
   2.    Place spleen into 5-ml petri dish fi lled with 10 ml of PFB.   
   3.    Place the spleen on the rough surface of a glass slide.   
   4.    Use the rough surface of a second glass slide to dissociate the 

spleen by gentle pressure applied in a circular motion. Continue 
this gentle mashing until the tissue is clearly dispersed.   

   5.    Scrape the cells into the buffer using the edge of the slide.   
   6.    Disperse the cells by pipetting.   
   7.    Filter (70 μm) into 50-ml conical tube.   
   8.    Store on ice until the NPC isolation reaches Subheading  3.10 , 

 step 7 , then process as NPC.      

        1.    Centrifuge the cell suspension at 50 ×  g  for 3 min at room tem-
perature. At this speed and duration, hepatocytes and debris 
will pellet while most NPCs will remain in suspension.   

   2.    Transfer the supernatant, which contains the hepatocyte- 
depleted NPCs, to a new 50-ml conical tube.      

        1.    Wash the hepatocyte pellet in 40 ml of wash buffer.   
   2.    Pellet at 50 ×  g  for 3 min.   
   3.    Resuspend in 10 ml of media.   
   4.    The resulting hepatocytes can be further enriched by magnetic 

bead depletion of contaminating cells and/or plated on 
collagen- coated tissue culture dishes. For the mouse, anti-
 CD45 and anti-CD146 microbeads will deplete most immune 
cells and endothelial cells, respectively.      

         1.    Pellet the NPC suspension at 500 ×  g  for 5–7 min at 4  ° C.   
   2.    Gently resuspend in 2.5 ml of PFB.   
   3.    Mix cell suspension with 2.5 ml of 30–40 % iodixanol solution 

in 15-ml conical. A fi nal concentration of 20 % iodixanol will 
enrich for most if not all intact NPCs.   

   4.    Gently overlay with 2 ml of PFB.   
   5.    Centrifuge at 1500 ×  g  for 25 min at room temperature. If 

available, turn the brake OFF on the centrifuge to minimize 
disturbance to the cell interface.   

3.7  Isolate 
Splenocytes (Optional,    
 See Note 16 )

3.8  Crude Liver Cell 
Fractionation

3.9  Hepatocyte 
Enrichment (Optional)

3.10  Non- 
parenchymal Cell 
Enrichment

Isaac Mohar et al.
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   6.    During the centrifugation add 10 ml of cold PFB to a 15 ml 
conical tube.   

   7.    After centrifugation a well-defi ned interface of cells should be 
visible. Carefully transfer this cell layer from the iodixanol gra-
dient to the 10 ml of PFB in order to wash away excess 
iodixanol.   

   8.    Centrifuge at 500 ×  g  for 5 min at 4  ° C.   
   9.    Resuspend the enriched NPC pellet in 0.5 ml of cold PFB or 

appropriate buffer for desired applications.      

       1.    Prepare the necessary number of fl ow cytometry tubes.   
   2.    Add anti-CD16/anti-CD36 (Fc receptor blocking) antibody 

to each sample to a fi nal concentration of 1:250 ( see   Note 17 ).   
   3.    Incubate for 5 min at room temperature.   
   4.    Add antibody cocktail ( see  Table  1 ).   
   5.    Vortex briefl y and gently.   
   6.    Incubate for 20 min at 4  ° C.   
   7.    Wash the cells by adding 1 ml of PFB to each sample.   
   8.    Centrifuge at 500 ×  g  for 5 min at 4  ° C.   
   9.    Aspirate supernatant.   
   10.    Resuspend cell pellet in 0.5 ml of PFB.   
   11.    In order to minimize clogs during cell sorting, fi lter the cell 

suspension.      

    Liver NPCs have yet to become absolute in their defi ning charac-
teristics. However, many distinct cell populations can be sorted 
from a mouse liver. Those identifi ed here represent a cross-section 
of major cell types, including endothelial cells, macrophage, quies-
cent hepatic stellate cells, lymphocytes, and natural killer cells. If a 
population of cells appears diffuse in characteristics, separation by 
an additional dimension may reveal multiple cell populations. The 
successful isolation of pure and viable cells is as much art as science 
and will be aided by the direction and advice of a skilled fl ow 
cytometrist with an appreciation for the complexity of sorting from 
dissociated tissue. The gating strategy depicted in Fig.  3  is one 
approach to sorting liver NPCs.   

   Quality control analysis of enriched and sorted liver cell popula-
tions can be conducted by in vitro culture of the cells to confi rm 
morphology and/or function [ 7 ]. In addition, enriched cells can 
be analyzed for expression of genes known to be relatively specifi c 
to cell types. The basic protocol and representative results are pre-
sented below. 

3.11  Staining NPCs 
for Flow Cytometry

3.12  Identifying 
and Sorting Liver NPC 
by Flow Cytometry

3.13  Quality Control 
Analysis of Enriched 
Liver Cell Populations

Liver Cell Isolation



  Fig. 3    NPC sort strategy. Representative NPC sorting strategy from a C57BL/6J mouse 68 h following injection 
of 50,000  Plasmodium yoelii  sporozoites. Labeled gates are sorted populations. Exclude doublets by FSC-H vs. 
FSC-W and SSC-H vs. SSC-W, but if quiescent hepatic stellate (qHSC) are desired, be sure to include the SSC-H 
events. From a standard FSC-A vs. SSC-A scatter plot, separate lymphocyte-sized cells from cells with high 
granularity (SSC) and larger size (FSC). Hepatic stellate cells contain highly refractive retinol droplets and are 
autofl uorescent when excited with 405 nm and emitting at 450 nm. Lymphocytes can be separated into many 
populations. Here, CD8+ T cells are collected against CD8a vs. CD4. CD4+ T cells and NK(T) cells are collected 
against NK1.1 vs. CD4. A signifi cant population of NK-T cells are CD4+ in the mouse. The best identifi er of 
NK-T cells is CD1d (stained by tetramer, not conducted here). NK(T) cells induce CD11b expression when 
activated. From the larger cells, LSEC, Kupffer cells (KC), and infi ltrating myeloid cells (including monocytes 
and granulocytes) can be collected. LSEC are selected against CD11b vs. Tie2. From the CD11b int/hi  Tie2 int/lo  
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