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Preface

The skin is one of the largest organs of our body and is continuously exposed to a

variety of external stimuli, such as bacteria, viruses, fungi, ultraviolet light,

chemicals, dryness, haptens, and protein antigens. Thus, the skin is an important

barrier between the living organism and its environment to maintain our homeo-

stasis. Defending physically against external stimuli, the skin is also an immuno-

logical defense.

The immune capacity of the skin involves several cell types: Langerhans cells,

dermal dendritic cells, T cells, endothelial cells, keratinocytes, mast cells, baso-

phils, and other cells, all of which participate under certain circumstances in a

harmonious manner. Thus, the concept of skin-associated lymphoid tissue (SALT)

was proposed in the early 1980s. As a result of immune responses to external

stimuli, several inflammatory skin diseases are induced. Therefore, understanding

the skin immune responses is essential not only to basic scientists including

immunologists but also to clinicians, such as allergologists and dermatologists.

For this book, I prepared two major parts: I. Components of Skin Immune Cells,

and II. Immune Systems in the Skin. This thematic division will make the book

easily understood by readers. In addition, I have tried to cover each topic in full

detail, which will lead to a better, comprehensive understanding of the skin and skin

diseases.

To provide a readable and informative presentation, I chose world-renowned

authors in each field. I am very glad that they agreed to write their chapters despite

their crowded schedules. I hope that this book will be useful to understand the

subject of immunology of the skin.

Kyoto, Japan Kenji Kabashima

Autumn 2015
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Chapter 1

Overview: Immunology of the Skin

Kenji Kabashima

Abstract Skin is a barrier between the living organism and its environment. In

addition to defending physically against external stimuli, it also defends immuno-

logically. The immune capacity of the skin involves several cell types: Langerhans

cells, dermal dendritic cells, T cells, endothelial cells, keratinocytes, mast cells,

basophils, and other cells all participate under certain circumstances in a harmoni-

ous manner. Thus, the concept of skin-associated lymphoid tissue (SALT) was

proposed in the early 1980s. As a result of immune responses to external stimuli,

several inflammatory skin diseases are induced. In this process, different types of

topical antigens can induce different types of cutaneous immune responses, and that

the duration of antigen exposure modulates the cutaneous Th1/Th2 milieu dynam-

ically. Since the recent immunological findings has lead to the development of new

therapeutics, including biologics. To understand the skin immune responses is

essential not only to basic scientists, including immunologists but also clinicians,

such as allergologists and dermatologists.

Keywords Skin • Immunology • SALT • Dendritic cells • T cells •

Photoconversion • Langerhans cells

1.1 Skin as an Immune Organ

The skin is a barrier between the living organism and its environment; as such, it defends

against external stimuli, including physical and chemical stresses, dryness, ultraviolet

light exposure, bacteria, fungi, viruses, parasites, haptens, and protein antigens. Some

of this defensive activity occurs through the immune system. In the skin, Langerhans

cells (LCs), dermal dendritic cells (DCs), endothelial cells, keratinocytes, mast cells,

basophils, and other cells all participate under certain circumstances (Fig. 1.1).

It was recently demonstrated that there are about 20 billion T cells in the skin of

an adult human, bearing markers that identify them as skin homing memory T cells

(CD45RO/CLA/CCR4) [1]. Not only are there twice as many T cells in skin as in
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blood, but the number of memory T cells with a skin homing phenotype is more

than 20 times the number of those in the blood. In addition, LCs localize in the

epidermis as antigen presenting cells at a density of 1000 per mm2, suggesting that

the skin is an important immune organ.

As a result of immune responses to external antigens, inflammatory skin diseases

can be induced: urticaria by oral intake of allergens, including egg and fish; contact

dermatitis by haptens, including metals and urushiol; and atopic dermatitis by

proteins, including mites, house dust, and pollen (Fig. 1.2) [2–5].

Fig. 1.1 Immunohistochemistry of the skin with S100. The skin consists of the corneum,

epidermis, and dermis. The epidermis contains Langerhans cells, and the dermis contains dermal

dendritic cells, which serve as antigen presenting cells

Fig. 1.2 Clinical manifestations of inflammatory skin diseases

2 K. Kabashima



1.2 Concept of SALT (Skin Associated Lymphoid Tissue)

Immune function is not limited to the skin. In submucosal areas, for example,

specific sentinel lymphoid tissues called mucosa-associated lymphoid tissues

(MALT) serve as peripheral antigen presentation sites [6]. By analogy, the concept

of skin-associated lymphoid tissue (SALT) was proposed in the early 1980s based

on the discovery that (1) the cutaneous microenvironment can accept, process, and

present antigens, (2) the peripheral lymph nodes (LNs) can accept immunogenic

signals derived from the skin, (3) subsets of T cells exhibit a differential affinity for

skin, and (4) the acquisition of this affinity by T cells is determined by resident

cutaneous cells [7].

On the other hand, there are distinct functional differences between MALT and

SALT. MALT contains significant numbers of B cells and forms lymphoid follicles,

whereas virtually all lymphocytes within the skin are T cells. MALT lymphoid

follicles are surrounded by T-cell–rich areas in which high endothelial venules

(HEVs) are embedded and serve as entry points for naı̈ve T cells. Therefore, MALT

provides a field for antigen presentation to naı̈ve T cells as well as other secondary

lymphoid organs. SALT, in contrast, contains no HEVs, and the T cells in skin are

memory T cells rather than naı̈ve T cells. Therefore, skin-draining LNs are neces-

sary for the priming of naı̈ve T cells to foreign antigens that have invaded through

the skin.

The T-cell homing system is tightly regulated by the expression of adhesion

molecules and the chemokine receptors called addressins. Certain T cell subsets

have a high affinity for the skin and the gut as well as for secondary lymphoid

organs (Table 1.1, Fig. 1.3). Thus it is clear that defending the outermost mem-

branes, namely, the skin and the gut, is a high priority for the immune system.

Table 1.1 Receptors involved in tissue-specific homing

Cell type Receptor Ligand

Peripheral LNs Naive T, TCM CCR7 CCL19, CCL21

Naive T, TCM CD62L sLex

Gut TEM CCR9 CCL25

TEM α4β7-Integrin MAdCAM-1

Skin TEM CLA E-selectin

TEM (Th1) CXCR3 CXCL9, CXCL10

TEM (Th2) CCR4 CCL17, CCL21

TEM (Th2) CCR10 CCL27, CCL28

TEM (Th2) CCR8 CCL8

Notes: CLA cutaneous lymphocyte-associated antigen, LNs lymph nodes, MAdCAM-1 mucosal

vascular addressin cell adhesion molecule-1, sLex sialylated Lewis x, TCM central memory T cell,

TEM effector memory T cell, Th1 T helper 1, Th2 T helper 2, Th17 T helper 17
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1.3 Immune Reactions to Foreign Antigens

Antigen presentation to T cells is essential for the induction of adaptive immunity.

This event takes place not solely in the LNs where naı̈ve T cells are primed but also

in the skin where memory T cells are activated.

Upon protein antigen exposure, DCs acquire antigens and stimulate the prolif-

eration of T cells to induce distinct T helper cell responses to external pathogens

[3]. In mouse skin, there are at least three subsets of DCs [8–10]: LCs in the

epidermis and Langerin-positive and Langerin-negative DCs in the dermis

(Langerin+ dermal DCs and Langerin� dermal DCs, respectively).

It has been reported that, when epicutaneously applied, large molecules such as

protein antigens are above the size-selective barrier known as the tight junction

(Fig. 1.4), and that activated LCs extend their dendrites through the tight junction to

take up antigens [11]. Topically applied haptens, on the other hand, penetrate into

the dermis.

1.3.1 Immune Reactions to Haptens

Haptens are external antigens that easily penetrate into the dermis (Fig. 1.4). As is

well known, a single hapten application induces a classic delayed-type hypersen-

sitivity called the contact hypersensitivity (CHS) response, which is mediated by

IFN-γ�producing CD8+ (Tc1) and CD4+ T (Th1) cells (Fig. 1.5) [3].

LCs have long been regarded as essential antigen-presenting cells for the

establishment of sensitization in hapten-induced CHS, but this concept is now

being challenged by recent analyses using LC ablation murine models [12]. In the

development of CHS to haptens, Langerin-negative dermal DCs play a major role,

whereas LCs and Langerin-positive dermal DCs play a compensatory role [13].

Fig. 1.3 Tissue-specific homing ability of T cells. Three distinct homing systems to the secondary

lymphoid organs, skin, and gut. Solid black and brown circles denote T cells and lymph nodes,

respectively
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On the other hand, repeated applications of haptens (2,4,6-

trinitrochlorobenzene; TNCB) induce atopic dermatitis-like skin lesions [14] by

causing a shift from Th1- to Th2-mediated cutaneous inflammation with elevated

IL-4 expression, eosinophil infiltration in the skin, and elevated hapten-specific

serum IgE levels [14]. At present, which class of cells mediates the shift from Th1

to Th2 remains a topic of debate. One of the candidate classes appears to be

basophils, which express MHC class II and IL-4 in the draining LNs [15] (Fig. 1.6).

It has also been reported that regulatory T cells (Treg) accumulate in the skin

during CHS [16] and that Treg suppress both the sensitization and the elicitation of

the CHS response [17–19]. In addition, IL-10 is induced in the repeat hapten

application-induced chronic CHS model [20]. These findings demonstrate that

chronic antigen exposure induces Treg accumulation in the skin (Fig. 1.6). Clini-

cally, topical immunotherapy with squaric acid dibutylester (SADBE) is effective

for the treatment of alopecia areata [21]. It remains unclear how SADBE controls

this autoimmune disease, but the accumulation of Treg in chronically hapten-

exposed skin may play an important role (Fig. 1.5).

1.3.2 Immune Reactions to Protein Antigens

Unlike haptens, the conventional allergens responsible for atopic dermatitis are

rather large (Fig. 1.4). Therefore, LCs are thought to be the subset of DCs that is

responsible for acquiring cutaneous allergens, such as house dust mites, in the

development of atopic dermatitis [22].

Epidermis

Dermis

Dermis

FITC-OVA
Claudin-1
DAPITight junction

Epidermis

<1000MW
Metals Ni, Cr, Co)
Urushiol, preservatives
Most drugs

5,000-150,000MW
Mites, house dust, pollen, animal hair

Corneum

（

Fig. 1.4 Distribution of haptens and protein antigens upon epicutaneous application. After the

epicutaneous application of green-fluorescent hapten (FITC) as a hapten and FITC-ovalbumin

(FITC-OVA) as a protein antigen, FITC penetrates into the dermis whereas FITC-OVA is retained

at the corneum
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Fig. 1.5 T cell subsets. CD4+ helper T (Th) cells have at least three subtypes, Th1, Th2, and Th17,

that are involved in the pathogenesis of contact dermatitis, AD/urticaria, and psoriasis, respec-

tively. These Th subtypes are induced by specific cytokine conditions. Regulatory T cells (Treg),

on the other hand, are localized in the skin where they play an important role in maintaining

homeostasis and terminating a variety of skin immune responses

Fig. 1.6 Dynamics of cutaneous immune responses. A single hapten elicitation induces

Th1-mediated delayed-type hypersensitivity (DTH), also known as contact dermatitis/contact

hypersensitivity. Even during the contact dermatitis response, Treg accumulate in the skin and

suppress DTH responses. Repeated hapten elicitation induces Th2 conditions in the skin, which are

characteristic of atopic dermatitis
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It is known that the epicutaneous application of the protein antigen ovalbumin

(OVA) induces a rise in OVA-specific serum IgE and IgG1, both of which are

induced in a Th2-dependent manner, as well as the development of dermatitis

characterized by the infiltration of CD3+ T cells, eosinophils, and neutrophils and

the local expression of mRNA for the cytokines IL-4, IL-5, and, intriguingly, IFN-γ
[23]. Consistently, chronic exposure to protein antigens, especially those with

protease activities (e.g., house dust mite allergens), induces TSLP expression in

the epidermis. The above findings suggest that different types of topical antigens

can induce different types of cutaneous immune responses, and that the duration of

antigen exposure modulates the cutaneous Th1/Th2 milieu dynamically (Fig. 1.6).

1.4 Interplay Between Skin Barrier Functions and Skin

Immunology

It has been suggested that acute removal of the stratum corneum modulates the

production of cytokines and chemokines by epidermal cells. Tape stripping

upregulates TSLP levels in the skin, which polarizes skin DCs to elicit a Th2

response [24]. Therefore, barrier disruption seems to bias the skin environment

towards Th2. In addition, Th2 chemokine (CCL17 and CCL22) and eosinophil

chemoattractant (CCL5) mRNA levels were markedly elevated in mice as a result

of barrier disruption, more markedly by tape stripping than by acetone rubbing

[25]. In addition, tape stripping induced dermal infiltration of eosinophils in mice

[25]. These findings suggest that acute barrier removal induces a Th2 milieu and the

production of eosinophil chemokines by epidermal cells and easily evokes the late-

phase reaction in response to an antigen challenge. Thus barrier dysfunction pre-

disposes the skin environment to Th2 skewing conditions and makes exposure of

the internal skin to antigens more feasible.

In an intriguing contrast, human keratinocytes differentiated in the presence of

IL-4 and IL-13 exhibited significantly reduced FLG gene expression [26]. In

addition, IL-17A downregulates the expression of filaggrin and genes that are

important for cellular adhesion, which leads to impairment of epidermal barrier

formation [27]. Consistently, the level of FLG expression in atopic dermatitis

patients even without FLG mutations was decreased. These findings indicate that

the Th2-type skin immune responses induce an acquired barrier defect and create a

positive feedback loop through a highly complex interplay.

1 Overview: Immunology of the Skin 7



1.5 Communication Between the Skin and Draining LNs

The fate of skin-directed memory T cells is, at this point in time, largely unknown,

and the majority of these cells progress to apoptosis after termination of skin

inflammation. Recently, the trafficking of memory T cells between the skin and

draining LNs has been examined in vivo using Kaede protein. Kaede protein is a

newly developed photoconvertible fluorescent protein that can change emission

spectra in response to light exposure (Fig. 1.7) [16]. In Kaede-transgenic (Tg) mice,

all cell types constitutively exhibit Kaede-green fluorescent signals. Immediately

after the skin is exposed to violet light, however, cells in the exposed area begin to

emit Kaede-red fluorescent signals. Thus skin T cells can be easily identified and

labeled under physiological conditions in vivo (Fig. 1.7).

In Kaede-Tg mice, it has been reported that approximately 5 % of CD11c+ cells

and 0.5–1 % of CD4+ T cells in the skin-draining LNs are skin-derived cells,

suggesting that memory T cells as well as cutaneous DCs can constantly migrate

from the skin to draining LNs, even under steady-state conditions [16]. It is

important to note that all skin-derived Kaede-red T cells express not only CD44,

Fig. 1.7 Kaede transgenic mice and interplay among the skin, skin-draining LNs, and other

organs. Kaede transgenic mice were photoconverted on the clipped abdominal skin (upper and
lower left panels) and observed with a fluorescence stereoscopic microscope (upper panel).
Nonphotoconverted clipped skin is shown as a control (lower middle) (Note: The nonclipped

area shows up as black because the light cannot reach it)
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a marker of memory T cells in mice, but also CCR7 and CD62L, suggesting that

they exhibit a unique homing receptor expression profile which resembles that of

central memory T cells (TCM).

The trafficking of skin-associated memory T cells was also evaluated in the

inflammatory state. Kaede-Tg mice were sensitized with hapten on a dorsal area of

skin and challenged with the same hapten on abdominal skin. The antigen-

challenged site was then exposed to violet light. After the photoconversion, the

number of Kaede-red cells in the draining LNs increased to approximately ten times

the number present in steady state, reflecting the accumulation of memory T cells

into the abdominal skin. Intriguingly, when another site (the ear skin) was

rechallenged, Kaede-red CD4+ T cells were detected both in the blood and in the

ear skin. These findings suggest that a portion of skin-directed effector memory T

cells (TEM) recover LN homing ability, CCR7 and CD62L expression, and return to

skin-draining LNs, especially in the inflammatory state. Moreover, these cells

re-enter the blood circulation system, and recover skin-homing addressins or

produce skin-homing TCM upon antigen rechallenge. The above findings provide

evidence that T cells migrate between the skin and draining LNs efficiently

(Fig. 1.7).

Patients with AD often have other allergic diseases, including food allergies,

asthma, and allergic rhinitis [28]; these often begin early in life and progress in a

typical fashion; this is called the allergic (or atopic) march [29]. The skin is an

active immune system organ that influences systemic immunity [30]. The next

question is whether skin-derived immune cells can circulate into other organs, such

as the lungs and the gut; this question can be addressed in future studies using

Kaede-Tg mice (Fig. 1.7).
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Chapter 2

Stratum Corneum

Yoshikazu Uchida and Kyungho Park

Abstract The stratum corneum, consisting of denucleated keratinocytes,

corneocytes that are eventually shed from skin, is a highly-functional outer layer

of skin tissue. The structure of the stratum corneum is well-organized, and its

formation is tightly regulated to insure its ability to perform competent epidermal

barrier functions. An incompetent barrier cannot prevent harmful external microbes

and stress (perturbation) from affecting internal tissues, leading to deleterious

effects in cutaneous and extracutaneous cells/tissues. An abnormal permeability

barrier increases the ingress of allergens that trigger inflammatory responses. These

inflammatory responses then affect normal keratinocyte proliferation, differentia-

tion, and barrier formation, keeping the formation of an incompetent barrier that

sustains inflammatory responses. The stratum corneum is also responsible for

innate immunity and modulation of adaptive immunity responses.
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2.1 Introduction

The outer skin (the epidermis) consists of four layers: the stratum basale, stratum

spinosum, stratum granulosum, and stratum corneum. Inasmuch as it was under-

stood to be constructed of denucleated dead tissues with no significant function,

very little attention was paid to the stratum corneum until fairly recently (Fig. 2.1).

Yet the elucidation of unique structures, requirements for terrestrial mammalian

survival, and association of the stratum corneum’s structural and functional alter-

ations with several cutaneous diseases have helped foster a great interest in this

epidermal layer in the last decade. In particular, the finding of gene mutations in a

constitutional protein, filaggrin, in the stratum corneum, and filaggrin’s deficiency
occurring in ichthyosis vulgaris and atopic dermatitis, has further stimulated

research into the stratum corneum. The stratum corneum directly faces the external

environment; therefore it functions as a barrier against this external environment,

protecting internal cells and tissues from external insults while maintaining normal

cellular functions. In addition to having protective barrier functions, the stratum

corneum serves as a sensor of external conditions [1]. However, this function has

not yet been well-characterized.

Stratum 
corneum

Stratum 
basale

Stratum 
spinosum

Stratum 
granulosum

Corneocyte
(enuleated

keratincoyte)

Nucleated 
keratincoyte Lammellar membrane structures

(extra cellular domains)
Lammellar body

D
iff

er
en

tia
tio

n

Fig. 2.1 Epidermal structures. Insert, electron micrograph: Murine skin was fixed in Karnovsky’s
fixative overnight, and postfixed with 0.25 % ruthenium tetroxide. Ultrathin sections were

examined using an electron microscope
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2.2 Stratum Corneum Structure

The stratum corneum is composed of two compartments, corneocytes and lipid-

dominant extracellular lamellar membrane structures (Fig. 2.1). The architecture of

the stratum corneum is referred to as “brick (corneocyte) and mortar (lamellar

membranes).” Approximately 15 layers (20 μm) of corneocytes, denucleated forms

of keratinocytes, are present in the normal human stratum corneum (with �
200 layers on the sole and palm). In corneocytes, the plasma membranes are

replaced by protein cross-linked cornified envelopes, which differs from nucleated

cells surrounded by plasma membranes that comprise a lipid bilayer. Although de

novo syntheses of proteins, lipids, and nucleotides do not occur in the stratum

corneum, these existing cellular components and likely exogenous compounds are

catabolized in the stratum corneum.

2.2.1 Corneocyte

During the transition from granular layers to stratum corneum, nuclei of

keratinocytes are degraded. Denucleated keratinocytes, i.e., corneocytes, exhibit a

flat shape and are filled with keratin fibers and degraded products of proteins, lipids,

and nuclei. Endogenous humectant’s natural moisturizing factor (NMF) is gener-

ated in the stratum corneum by degradation of histidine-rich proteins, primarily

filaggrin [2]. Filaggrin deficiencies are due to mutations of the filaggrin gene

associated with ichthyosis vulgaris and atopic dermatitis [3]. The filaggrin defi-

ciencies cause decreased NMF and therefore declining hydration in the stratum

corneum [4].

Corneodesmosomes comprised of desmoglein-1 and desmocollin-1 attach to

other corneocytes [5]. Corneodesmosomes are degraded by an acidic pH optimum

aspartyl protease, cathepsin D, in the stratum corneum [6] and neutral pH optimum

chymotriptic- and tryptic-serine proteases [7–9], including kallikrein-related pep-

tidases, which results in shedding corneocytes from the epidermis, i.e., desquama-

tion. The kazal-type family (SPINK) is endogenous trypsin-like and chymotrypsin-

like serine protease inhibitors that are present in the stratum corneum and are

involved in the regulation of desquamation [10–12]. Netherton syndrome, a severe

autosomal recessive ichthyosis, showing abnormal desquamation, is caused by a

loss-of-function mutation in SPINK5, which encodes the lymphoepithelial kazal-

type trypsin inhibitor (LEKT1) [13].
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2.2.2 Cornified Envelope

Nucleated cells are surrounded by a plasma membrane consisting of lipid bilayer

structures, and plasma membranes are replaced by a cornified envelope that is

formed by cross-linked proteins [14]. The synthesis of constituted proteins of the

cornified envelope, i.e., loricrin, involucrin, small proline-rich proteins (SPRs),

envoplakin, and other minor protein components, increase at late stages of epider-

mal differentiation. Protein cross-linkages are due mainly to the ε-(γ-glutamyl)

lysine isopeptide bond generated by transglutaminases (TG) [15]. Seven isoforms

of transglutaminases are characterized in mammals. Five isoforms, TG1, TG2,

TG3, TG5, and TG6 are expressed in keratinocytes [15–17]. In particular, TG1,

which is a major isoform in keratinocytes [15], is critical for cornified envelope

formation [18]. The cornified envelope exhibits a stable rigid property to resist

mechanical barrier stress [19]. Mutations of the TG1 gene have been shown in

lamellar ichthyosis [20], bathing suit ichthyosis [21], and congenital ichthyosiform

erythroderma [22], and a TGM5 mutation is associated with peeling skin

syndrome [23].

2.2.3 Corneocyte Lipid Envelope

The outer leaflet of the cornified envelope is covered by a monolayer of corneocyte

lipid envelope (CLE), which consists of omega (ω)-hydroxy-ceramides and its

catabolites, ω-hydroxy free fatty acid generated by ceramidase [24–26] (Fig. 2.2).

CLE is formed as follows: (1) ω-O-acyl residue is released from ω-O-acyl (pre-
dominantly an essential fatty acid, linoleate) glucosylceramides; (2) ω-hydroxyl
residue of ω-hydroxy-glucosylceramides is covalently bound to cornified envelope

proteins (primarily to glutamate residues in cornified envelope protein [mainly

involucrin]) [27]; (3) ω-hydroxy-glucosylceramides are deglucosylated by

ß-glucocerbrosidase to cornified envelope-ω-hydroxy-ceramides; (4) some

CE-ω-hydroxy-ceramides are hydrolyzed to cornified envelope-ω-hydroxy free

fatty acid by ceramidase(s) [26, 28]. Releasing of linolate residue of ω-O-linoleoyl
glucosylceramides is required by 12R lipoxygenase (12R-LOX) or epidermal

lipoxygenase 3 enzymes, which oxidize the linoleate moiety of ω-O-linoleoyl
glucosylceramides, generating an oxidized species that subsequently attach to

cornified envelope proteins [29]. Mutation of these lipoxygenases is associated

with nonbullous congenital ichthyosiform erythroderma [30]. TG1 is involved in

lipid and protein binding. Yet, CLE is evident in the stratum corneum of lamellar

ichthyosis patients that show trace levels of TG1 activities [25]. Hence, other

transglutaminase(s), other enzyme(s), or nonenzymatic transterification might

also serve in CLE formation [25]. A role for CLE has been proposed as a scaffold

to form lamellar membrane structures (see below, Sect. 2.4) [24, 25]. It is also
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possible that CLE regulates egress of hydrophilic substances from corneocytes.

Yet, the roles of CLE in the stratum corneum are still largely unknown.

2.2.4 Lamellar Membrane Structure

In contrast to dermis in which extracellular matrix is filled with collagen, elastin,

glycosaminoglycans, and glycoproteins, lipid-enriched lamellar membrane struc-

tures fill the extracellular domain in the stratum corneum. Lamellar membranes

extend in a horizontal direction (Figs. 2.1 and 2.2). Corneodesmosomes disengage

from the lamellar membrane structure to bind to other corneocytes.

Corneodesmosomes increase integrity and also regulate desquamation by their

degradation.

Ceramide, cholesterol, and free fatty acid are major constituents (95>% of total

lipid) [31] of lamellar membrane structures. Ceramide metabolites, sphingosine

[31], and ceramide-1-phosphate [32] are present as minor components. Ceramides

in the stratum corneum comprise at least 12 molecular groups of heterogeneous

molecular species, including epidermal unique ultralong chain (up to 34 carbon

chain lengths) fatty acid, ultralong chain omega-hydroxylated fatty acid, and

ultralong chain omega-O-acylated molecular species [33, 34]. These ceramides

are produced from their immediate precursors, glucosylceramides and

sphingomyelins, by ß-glucoceramidase and sphingomyelinase, respectively, at the

transition from granular layer to stratum corneum [35, 36] (Fig. 2.1). Most of these

precursor lipids are sequestrated in the epidermal lamellar body in the stratum

granulosum [37, 38]. Incorporation of glucosylaceramide into lamellar bodies

requires ABCA12 (ATP binding cassette transporter, family 12). A devastating

ichthyosis, Harlequin ichthyosis, due to ABCA12 mutations, leads to abnormalities

Cornified envelope

0.01 μm

Corneodesmosome

0.04 μm

Corneocyte Lamellar membrane structures 

Corneocyte lipid envelope (CLE)

Fig. 2.2 Stratum corneum structure. Cornified envelope, Green; Corneocyte lipid envelope

(CLE), Blue; Corneodesmosom, Brown. Insert, electron micrograph: Murine skin was fixed in

Karnovsky’s fixative, and post-fixed with 1 % aqueous osmium tetroxide, containing 1.5 %

potassium ferrocyanide
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in lamellar body formation, lamellar membrane structures in the stratum corneum,

and in permeability barrier function [39].

Similar to ceramide, most free fatty acids are generated from their immediate

precursor lipids, i.e., glycerophospholipid and triacylglycerol, by phospholipase

(s) and triglyceride lipase, respectively. In addition, a pool of cholesterol is also

produced from cholesterol sulfate and cholesterol esters by cholesterol sulfatase

and cholesterol esterase, respectively. Cholesterol sulfatase deficiency is the path-

ogenesis for X-linked ichthyosis [40].

Electron microscopic analysis characterizes lamellar membrane structures,

whereas X-ray diffraction, neutron diffraction, FT-IR (Fourier transform infrared

spectroscopy), and DSC (Differential scanning calorimetry) analyses reveal further

details of lamellar membrane structures in the stratum corneum. Two lamellar

phases with periodicities of approximately 6 nm (short-periodicity phase) and

13 nm (long-periodicity phase) are present [41]. Intracorneocyte soft keratin is a

major reservoir of water in the stratum corneum [42]. In addition, a small angle

neutron scattering analysis demonstrated the swallowing of the lipid lamellar

structures following increased humidity, indicating the presence of water in lamel-

lar membrane structures [43], and a recent small-angle diffraction study elucidated

that the short-periodicity phase is a slightly altered periodicity phase following

incorporation of water [42]. In addition to two-dimensional structures of lamellar

membrane structures, three-dimensional structures representing lamellar packing

(hydrocarbon packing) have been characterized. Both hexagonal and tightly packed

orthorhombic structures are present in the stratum corneum. Moreover, a recent

study using low flux electron diffraction analysis indicated the presence of a

different type of orthorhombic structure showing a different distance of packing

space, in the lamellar membrane structures in the stratum corneum [44]. The

alteration of the lamellar organization has been shown in skin diseases associated

with compromised permeability barrier function (e.g. atopic dermatitis) [45].

2.3 pH in the Stratum Corneum

The pH of nucleated cellular layers is neutral, whereas the stratum corneum is

acidified.

The acidification is due to four major groups of acidic components derived from

keratinocytes. First, free fatty acid generated from both de novo synthesis and

hydrolysis of esterified lipids such as triacylglycerol, glycerophospholipids, and

cholesterol esters. Second, cholesterol sulfate and sulfate following hydrolysis by

cholesterol sulfatase contribute to acidification [46]. Ceramides are hydrolyzed to

free fatty acid and sphingoid base by ceramidases, which are present in the stratum

corneum [47–49]. However, because sphingoid bases are alkaline, ceramide hydro-

lysis is unlikely to contribute to acidification. Third, urocanic acid is produced from

histidine (mainly from NMF) by histidase (See below, Sect. 2.5.2). And finally,

proton (H+) is discharged from keratinocytes through Na+/H+ antiporter [50]. In
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addition to keratinocyte-derived components, sweat-derived lactate, metabolites of

microorganisms, and chemicals from air also contribute acidification to the stratum

corneum. Acidification contributes to form the antimicrobial barrier and also

regulates enzyme activity in the stratum corneum.

Most prior studies measured skin surface pH or a different layer following tape

stripping using a flat pH electrode, although recent technologies, confocal fluores-

cence microscopy, and fluorescence life-time imaging (FLIM) with a development

of pH sensitive florescence dye allow us to observe major pH distribution in the

stratum corneum, and also in intracellular and extracellular domains [51]. The pH

gradient appears to be present across the stratum corneum; i.e., decreasing pH

toward skin surface [51, 52], and recent studies show an opposite trend of pH

gradient [53]. Hence, the presence of pH gradient and whether continuous acidifi-

cation occurs in the stratum corneum still remains to be resolved.

2.4 Barrier Function

Stratum corneum deploys multiple barrier functions to protect internal cells and

tissues from external perturbations while maintaining the internal environment and

normal cellular functions (Table 2.1).

Table 2.1 Barrier roles of stratum corneum in maintaining epidermal homeostasis

Barrier Roles Effectors

Permeability Prevents excess water loss Primarily extracellular

lamellar membrane

structures
Maintains body temperature

Prevents ingress of xenotoxic chemicals and

allergens

Prevents invasion of microbes

Antimicrobial Protects against diverse microbes (gram-positive

and gram-negative bacteria, fungi, and viruses)

Antimicrobial peptides

Acidic pH

Sphingoid bases

Antioxidant Protects epidermis from oxidative stress α-/γ-tocophenol
Ascorbic acid

Glutathione

Mechanical Protects epidermis from mechanical stress Primarily cornified

envelopes

UV Protects epidermis from cell death, DNA damage,

and oxidative stress

Urocanic acid

Structural components

(proteins, lipid,

nucleotides)
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2.4.1 Epidermal Permeability Barrier

The epidermal permeability barrier prevents both egress and ingress of substances.

Blocking excess water evaporation from nucleated layers of epidermis is critical for

not only dehydration, but also maintaining body temperatures. Prevention of

ingress of xenotoxic chemicals, allergens, and microbial pathogens is also an

essential function of the epidermal permeability barrier. Substances of larger than

500 kDa are unable to penetrate into the stratum corneum [54]. Recent studies using

liposome and nanoparticles demonstrate the penetration of larger sizes of molecules

into the nucleated layer of cells. Penetration of nanoparticles into the stratum

corneum is not completely understood.

2.4.2 Antimicrobial Barrier

Acidification of the stratum corneum increases antimicrobial defense. For instance,

with pH below 5.5, the growth of Pseudomonas acne, Staphyrococcus epidermidis,
and a virulent microbial pathogen, Staphylococcus aureus, are suppressed [55]. In

addition, sphingoid bases generated from ceramide by ceramidases show antimi-

crobial activities in vitro [56–58]. Moreover, an innate immune component, anti-

microbial peptides, is present in the stratum corneum to combat broad ranges of

microbes (see Sect. 2.5).

2.4.3 Antioxidant Barrier

Antioxidant chemicals, α- and γ-tocophenol, ascorbic acid, and glutathione are

present in the stratum corneum [59]. These antioxidants maintain stratum corneum

homeostasis, i.e., enzyme activity, protection proteins/lipids, from oxidation [59].

2.4.4 UV Barrier

Longer wavelengths of UV, i.e., UVA (315–340 nm), reach to the dermis, whereas

most lower UV wavelengths, i.e., UVB (280–315 nm), are absorbed in the epider-

mis. Urocanic acid, which is generated from histidine, has been shown to be

an epidermal major chromophor, i.e., a potent endogenous UV absor-

bent (See Table 2.1) [60]. In addition, because the bulk amounts of proteins, lipids,

and nucleotides, which are not potent chromophors, are abundant in the stratum

corneum, these components could contribute to forming the UV barrier.
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2.5 Roles of Stratum Corneum in Immunity

2.5.1 Innate Immunity

Antimicrobial peptides, small, cationic (some of them are anionic, e.g., dermcidin),

amphipathic molecules, are a part of the host innate immunity forming the antimi-

crobial barrier [61, 62]. Antimicrobial peptides display potent antimicrobial activ-

ities against a broad range of microbes, including gram-negative and gram-positive

bacteria, fungi, and some viruses [63, 64]. Antimicrobial peptides are synthesized

in nucleated layers of keratinocytes, infiltrate immune cells in the skin, and are

retained in the stratum corneum.

2.5.1.1 Cathelicidin

Cathelicidin antimicrobial peptide (CAMP) is synthesized as the inactive precursor

protein CAP18, followed by proteolytic digestion yielding an active antimicrobial

peptide, 37-amino-acid peptide (LL-37), i.e., 37 amino sequences of C-terminal of

CAMP [64]. CAMP/LL-37 is inducible with infection, injury or inflammatory

response [64–66]. CAMP expression is regulated by 1,25 dihydroxy vitamin

D3-mediated vitamin D receptor (VDR) activation [65, 66]. In addition, subtoxic

external perturbations such as UV-B irradiation and acute barrier disruption trigger

endoplasmic reticulum (ER) stress to stimulate the production of a signal lipid,

sphingosine-1-phosphate (S1P) that induces CAMP production via NF-κB-C/EBPα
activation, independent of the 1,25 dihydroxy vitamin D3-mediated mechanism

[67]. Note that S1P!NF-κB-dependent mechanisms are primarily operated under

stressed conditions, which suppress VDR-dependent transcriptional activity

[68]. Hence, both S1P!NF-κB- and VDR-dependent pathways could complemen-

tarily regulate CAMP expression to maintain antimicrobial defense.

CAMP is a multifunctional AMP. CAMP modulates epidermal immune func-

tion, i.e., stimulating cytokine production/secretion including inflammatory and

cellular migration [69–72]. Excess CAMP/LL-37 expression as well as hydrolytic

peptides of LL-37 are involved in inflammatory responses in rosacea [73, 74].

2.5.1.2 Defensins

The defensins are categorized in three subfamilies, α-, β-, and θ-defensin
[75, 76]. Four human β-defensins (hBD1, hBD2, hBD3, and hBD4) are expressed

in KC, and β- and θ-defensins are mainly produced by neutrophils and bone

marrow, respectively. hBD1 is constitutively expressed in epithelial cells, including

KC, whereas hBD2, hBD3, and hBD4 are inducible peptides in epidermis in

response to microbial infection, inflammation, and differentiation [75, 77,

78]. hBD2 expression is increased in inflamed skin and is induced by IL-1α and
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IL-1β, whereas hBD3 is induced by IL-6 and epidermal growth factors. hBD4

expression is stimulated in response to phobol 12-myristate 13-acetate (PMA) or

calcium [75, 78]. Activation of toll-like receptor (TLR) 4 also induces expression of

hBD2, but not hBD3, in KC [79].

2.5.1.3 Other Epidermal Antimicrobial Peptides

In addition to major epidermal AMP, CAMP, and hBDs, other AMPs, such as

dermcidin [80], RNase7 [81], and S100A7/psoriasin [82] are present in the stratum

corneum.

2.5.2 Adaptive Immunity

The trans form of urocanic acid is produced from histidine (mainly from NMF) by

histidase. The trans form converts to cis form by UV irradiation. Because urocanic

acid is a potent chromophor, topical urocanic acid was used as a natural-occurring,

apparently safe UV absorbent in skin care products. However, immunosuppression

effects of cis urocanic acid were found [83], and topical cis urocanic acid was found
to increase skin cancer risk in murine skin [84]. Thus, urocanic acid is no longer

formulated in skin care products. Cis urocanic acid binds to the serotonin

[5-hydroxytryptamine (5-HT)] receptor to suppress immune function [85]. More-

over, recent studies show that cis urocanic acid activates T-regulatory cells

[86, 87]. However, it is unclear if urocanic acid generated in the stratum corneum

is transferred to the nucleated cellular layer of epidermis to suppress immunity.

Increased DNA damage following UV irradiation was evident in histidase-

deficient mice compared with wild-type mice [88], and it has been proposed that

trans-urocanic acid decreases DNA damage by thymidine dimer formation. How-

ever, it is unclear what the different roles of both trans- and cis-urocanic acid in

skin are.

2.6 Conclusion and Perspective

The stratum corneum is located at the interface of the external and internal

environment, two environments that have different features, e.g., humidity, tem-

perature, and osmolarity. The stratum corneum deploys protective barrier mecha-

nisms to minimize the impact of the external environment on internal cell/tissue, so

their normal functions can be maintained. Most stratum corneum structures and

their constituents are unique in forming this competent barrier. Necessary redun-

dancies of constituents in the stratum corneum contribute to the maintenance of

cutaneous and extracutaneous homeostasis. Most cellular components in the
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stratum corneum are well-designed and their syntheses are well-regulated. The

denucleation of keratinocytes to become corneocytes should be a strategy to

prevent DNA damage, inasmuch as the repairing of DNA damage attenuates efforts

devoted to high-priority tasks, i.e., the barrier function, in the stratum corneum.

Utilization of saturated fatty acyl species to synthesize ceramide in the stratum

corneum should also be a strategy to increase the stability of lamellar membrane

structure against oxidative stress. The stratum corneum likely has another function:

to act as a sensor of the external environment. This function needs to be further

characterized. Compromised barriers influence living layers of epidermis leading to

pathogenic effects, such as cell death and inflammatory responses. Inflammation

alters normal keratinocyte proliferation and differentiation, resulting in attenuation

of barrier formation to further decrease barrier functions. This spiral leads to

chronic inflammation, delayed wound healing, infections, xerosis, and accelerated

skin aging. Intervention in this spiral provides a therapeutic approach to these

conditions. A barrier repair approach has been used for treatment of atopic derma-

titis, in combination with anti-inflammatory medication. Characterization of the

structures and their constituents in the stratum corneum, as well as their regulatory

system, is a basis for developing therapeutic approaches. The importance of three

stratum corneum lipids (ceramide, cholesterol, and free fatty acid) has been widely

acknowledged. Yet, a recent study illuminates a minor ceramide catabolite,

sphingoid base, which also contributes to and influences lamellar membrane struc-

tures in the stratum corneum, suggesting that further studies of previously

uncharacterized/undefined structures, constituents, and their metabolism and roles

in the stratum corneum will allow us to develop more potent therapeutic approaches

for cutaneous diseases.
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27. Nemes Z, Marekov LN, Fésüs L, Steinert PM (1999) A novel function for transglutaminase 1:

attachment of long-chain omega-hydroxyceramides to involucrin by ester bond formation.

Proc Natl Acad Sci U S A 96:8402–8407

28. Doering T, Holleran WM, Potratz A, Vielhaber G, Elias PM, Suzuki K, Sandhoff K (1999)

Sphingolipid activator proteins are required for epidermal permeability barrier formation. J

Biol Chem 274:11038–11045

29. Zheng Y, Yin H, Boeglin WE, Elias PM, Crumrine D, Beier DR, Brash AR (2011)

Lipoxygenases mediate the effect of essential fatty acid in skin barrier formation: a proposed

role in releasing omega-hydroxyceramide for construction of the corneocyte lipid envelope. J

Biol Chem 286:24046–24056. doi:10.1074/jbc.M111.251496

30. Yu Z, Schneider C, Boeglin WE, Brash AR (2005) Mutations associated with a congenital

form of ichthyosis (NCIE) inactivate the epidermal lipoxygenases 12R-LOX and eLOX3.

Biochim Biophys Acta 1686:238–247. doi:10.1016/j.bbalip.2004.10.007

31. Loiseau N, Obata Y, Moradian SH, Yoshino S, Aburai K, Takayama K, Sakamoto K, Holleran

WM, Elias PM, Uchida Y (2013) Altered sphingoid base profiles predict compromised

membrane structure and permeability in atopic dermatitis. J Dermatol Sci 72:296–303

32. Goto-Inoue N, Hayasaka T, Zaima N, Nakajima K, Holleran WM, Sano S, Uchida Y, Setou M

(2012) Imaging mass spectrometry visualizes ceramides and the pathogenesis of dorfman-

chanarin syndrome due to ceramide metabolic abnormality in the skin. PLoS One 7:e49519.

doi:10.1371/journal.pone.0049519

33. Stewart ME, Downing DT (1999) A new 6-hydroxy-4-sphingenine-containing ceramide in

human skin. J Lipid Res 40:1434–1439

34. Ponec M, Weerheim A, Lankhorst P, Wertz P (2003) New acylceramide in native and

reconstructed epidermis. J Invest Dermatol 120:581–588

35. Uchida Y, Hara M, Nishio H, Sidransky E, Inoue S, Otsuka F, Suzuki A, Elias PM, Holleran

WM, Hamanaka S (2000) Epidermal sphingomyelins are precursors for selected stratum

corneum ceramides. J Lipid Res 41:2071–2082

2 Stratum Corneum 27

http://dx.doi.org/10.1371/journal.pone.0049519
http://dx.doi.org/10.1016/j.bbalip.2004.10.007
http://dx.doi.org/10.1074/jbc.M111.251496
http://dx.doi.org/10.1086/497707
http://dx.doi.org/10.1038/sj.ejhg.5200224
http://dx.doi.org/10.1038/sj.ejhg.5200224
http://dx.doi.org/10.1093/hmg/ddl249
http://dx.doi.org/10.1038/ng0395-279


36. Hamanaka S, Hara M, Nishio H, Otsuka F, Suzuki A, Uchida Y (2002) Human epidermal

glucosylceramides are major precursors of stratum corneum ceramides. J Invest Dermatol

119:416–423. doi:1836 [pii] 10.1046/j.1523-1747.2002.01836.x

37. Grayson S, Johnson-Winegar AG, Wintroub BU, Isseroff RR, Epstein EH Jr, Elias PM (1985)

Lamellar body-enriched fractions from neonatal mice: preparative techniques and partial

characterization. J Investig Dermatol 85:289–294

38. Hamanaka S, Nakazawa S, Yamanaka M, Uchida Y, Otsuka F (2005) Glucosylceramide

accumulates preferentially in lamellar bodies in differentiated keratinocytes. Br J Dermatol

152:426–434. doi:BJD6333 [pii] 10.1111/j.1365-2133.2004.06333.x

39. Akiyama M, Sugiyama-Nakagiri Y, Sakai K, McMillan JR, Goto M, Arita K, Tsuji-Abe Y,

Tabata N, Matsuoka K, Sasaki R, Sawamura D, Shimizu H (2005) Mutations in lipid trans-

porter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer. J

Clin Invest 115:1777–1784

40. Williams ML, Elias PM (1981) Stratum corneum lipids in disorders of cornification: increased

cholesterol sulfate content of stratum corneum in recessive x-linked ichthyosis. J Clin Investig

68:1404–1410

41. Bouwstra JA, Gooris GS, Cheng K, Weerheim A, Bras W, Ponec M (1996) Phase behavior of

isolated skin lipids. J Lipid Res 37:999–1011

42. Nakazawa H, Ohta N, Hatta I (2012) A possible regulation mechanism of water content in

human stratum corneum via intercellular lipid matrix. Chem Phys Lipids 165:238–243. doi:10.

1016/j.chemphyslip.2012.01.002

43. Charalambopoulou GC, Steriotis TA, Mitropoulos AC, Stefanopoulos KL, Kanellopoulos NK,

Ioffe A (1998) Investigation of water sorption on porcine stratum corneum by very small angle

neutron scattering. J Invest Dermatol 110:988–990. doi:10.1046/j.1523-1747.1998.00215.x

44. Nakazawa H, Imai T, Hatta I, Sakai S, Inoue S, Kato S (2013) Low-flux electron diffraction

study for the intercellular lipid organization on a human corneocyte. Biochim Biophys Acta

1828:1424–1431. doi:10.1016/j.bbamem.2013.02.001

45. Janssens M, van Smeden J, Gooris GS, Bras W, Portale G, Caspers PJ, Vreeken RJ,

Hankemeier T, Kezic S, Wolterbeek R, Lavrijsen AP, Bouwstra JA (2012) Increase in short-

chain ceramides correlates with an altered lipid organization and decreased barrier function in

atopic eczema patients. J Lipid Res 53:2755–2766. doi:10.1194/jlr.P030338

46. Ohman H, Vahlquist A (1998) The pH gradient over the stratum corneum differs in X-linked

recessive and autosomal dominant ichthyosis: a clue to the molecular origin of the “acid skin

mantle”? J Invest Dermatol 111:674–677. doi:10.1046/j.1523-1747.1998.00356.x

47. Houben E, Uchida Y, Nieuwenhuizen WF, De Paepe K, Vanhaecke T, Holleran WM, Rogiers

V (2007) Kinetic characteristics of acidic and alkaline ceramidase in human epidermis. Skin

Pharmacol Physiol 20:187–194

48. Houben E, Holleran WM, Yaginuma T, Mao C, Obeid LM, Rogiers V, Takagi Y, Elias PM,

Uchida Y (2006) Differentiation-associated expression of ceramidase isoforms in cultured

keratinocytes and epidermis. J Lipid Res 47:1063–1070

49. Lin TK, Crumrine D, Ackerman LD, Santiago JL, Roelandt T, Uchida Y, Hupe M, Fabrias G,

Abad JL, Rice RH, Elias PM (2012) Cellular changes that accompany shedding of human

corneocytes. J Invest Dermatol 132:2430–2439. doi:10.1038/jid.2012.173

50. Behne MJ, Meyer JW, Hanson KM, Barry NP, Murata S, Crumrine D, Clegg RW, Gratton E,

Holleran WM, Elias PM, Mauro TM (2002) NHE1 regulates the stratum corneum permeability

barrier homeostasis. Microenvironment acidification assessed with fluorescence lifetime imag-

ing. J Biol Chem 277:47399–47406. doi:10.1074/jbc.M204759200

51. Hanson KM, Behne MJ, Barry NP, Mauro TM, Gratton E, Clegg RM (2002) Two-photon

fluorescence lifetime imaging of the skin stratum corneum pH gradient. Biophys J

83:1682–1690. doi:10.1016/S0006-3495(02)73936-2

52. Ohman H, Vahlquist A (1994) In vivo studies concerning a pH gradient in human stratum

corneum and upper epidermis. Acta Derm Venereol 74:375–379

53. Man M, Lin TK, Santiago JL, Celli A, Zhong L, Huang ZM, Roelandt T, Hupe M, Sundberg

JP, Silva KA, Crumrine D, Martin-Ezquerra G, Trullas C, Sun R, Wakefield JS, Wei ML,

28 Y. Uchida and K. Park

http://dx.doi.org/10.1016/S0006-3495(02)73936-2
http://dx.doi.org/10.1074/jbc.M204759200
http://dx.doi.org/10.1038/jid.2012.173
http://dx.doi.org/10.1046/j.1523-1747.1998.00356.x
http://dx.doi.org/10.1194/jlr.P030338
http://dx.doi.org/10.1016/j.bbamem.2013.02.001
http://dx.doi.org/10.1046/j.1523-1747.1998.00215.x
http://dx.doi.org/10.1016/j.chemphyslip.2012.01.002
http://dx.doi.org/10.1016/j.chemphyslip.2012.01.002


Feingold KR, Mauro TM, Elias PM (2014) Basis for enhanced barrier function of pigmented

skin. J Invest Dermatol 134:2399–2407

54. Bos JD, Meinardi MM (2000) The 500 Dalton rule for the skin penetration of chemical

compounds and drugs. Exp Dermatol 9:165–169

55. Ushijima T, Takahashi M, Ozaki Y (1984) Acetic, propionic, and oleic acid as the possible

factors influencing the predominant residence of some species of Propionibacterium and

coagulase-negative Staphylococcus on normal human skin. Can J Microbiol 30:647–652

56. Law SL, Squier CA, Wertz PW (1995) Free sphingosines in oral epithelium. Comp Biochem

Physiol B Biochem Mol Biol 110:511–513

57. Bibel DJ, Aly R, Shah S, Shinefield HR (1993) Sphingosines: antimicrobial barriers of the

skin. Acta Derm Venereol 73:407–411

58. Bibel DJ, Aly R, Shinefield HR (1992) Antimicrobial activity of sphingosines. J Invest

Dermatol 98:269–273

59. Thiele JJ, Schroeter C, Hsieh SN, Podda M, Packer L (2001) The antioxidant network of the

stratum corneum. Curr Probl Dermatol 29:26–42

60. Tabachnick J (1957) Urocanic acid, the major acid-soluble, ultraviolet-absorbing compound in

guinea pig epidermis. Arch Biochem Biophys 70:295–298

61. Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles

in immune defense. Trends Immunol 30:131–141. doi:10.1016/j.it.2008.12.003

62. Kopfnagel V, Harder J, Werfel T (2013) Expression of antimicrobial peptides in atopic

dermatitis and possible immunoregulatory functions. Curr Opin Allergy Clin Immunol

13:531–536. doi:10.1097/ACI.0b013e328364ddfd

63. Schroder JM (2010) The role of keratinocytes in defense against infection. Curr Opin Infect

Dis 23:106–110. doi:10.1097/QCO.0b013e328335b004

64. Yamasaki K, Gallo RL (2008) Antimicrobial peptides in human skin disease. Eur J Dermatol

18:11–21. doi:10.1684/ejd.2008.0304

65. Gombart AF, Borregaard N, Koeffler HP (2005) Human cathelicidin antimicrobial peptide

(CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in

myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J 19:1067–1077. doi:10.1096/fj.04-

3284com

66. Schauber J, Dorschner RA, Coda AB, Buchau AS, Liu PT, Kiken D, Helfrich YR, Kang S,

Elalieh HZ, Steinmeyer A, Zugel U, Bikle DD, Modlin RL, Gallo RL (2007) Injury enhances

TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mecha-

nism. J Clin Invest 117:803–811. doi:10.1172/JCI30142

67. Park K, Elias PM, Shin KO, Lee YM, Hupe M, Borkowski AW, Gallo RL, Saba J, Holleran

WM, Uchida Y (2013) A novel role of a lipid species, sphingosine-1-phosphate, in epithelial

innate immunity. Mol Cell Biol 33:752–762. doi:10.1128/MCB.01103-12

68. Park K, Elias PM, Oda Y, Mackenzie D, Mauro T, Holleran WM, Uchida Y (2011) Regulation

of cathelicidin antimicrobial peptide expression by an endoplasmic reticulum (ER) stress

signaling, Vitamin D receptor-independent pathway. J Biol Chem 286:34121–34130. doi:

M111.250431 [pii] 10.1074/jbc.M111.250431

69. Tokumaru S, Sayama K, Shirakata Y, Komatsuzawa H, Ouhara K, Hanakawa Y, Yahata Y,

Dai X, Tohyama M, Nagai H, Yang L, Higashiyama S, Yoshimura A, Sugai M, Hashimoto K

(2005) Induction of keratinocyte migration via transactivation of the epidermal growth factor

receptor by the antimicrobial peptide LL-37. J Immunol 175:4662–4668

70. Braff MH, Hawkins MA, Di Nardo A, Lopez-Garcia B, Howell MD, Wong C, Lin K, Streib

JE, Dorschner R, Leung DY, Gallo RL (2005) Structure-function relationships among human

cathelicidin peptides: dissociation of antimicrobial properties from host immunostimulatory

activities. J Immunol 174:4271–4278

71. Elssner A, Duncan M, Gavrilin M, Wewers MD (2004) A novel P2X7 receptor activator, the

human cathelicidin-derived peptide LL37, induces IL-1 beta processing and release. J

Immunol 172:4987–4994

72. Niyonsaba F, Ushio H, Nagaoka I, Okumura K, Ogawa H (2005) The human beta-defensins

(-1, -2, -3, -4) and cathelicidin LL-37 induce IL-18 secretion through p38 and ERK MAPK

activation in primary human keratinocytes. J Immunol 175:1776–1784

2 Stratum Corneum 29

http://dx.doi.org/10.1128/MCB.01103-12
http://dx.doi.org/10.1172/JCI30142
http://dx.doi.org/10.1096/fj.04-3284com
http://dx.doi.org/10.1096/fj.04-3284com
http://dx.doi.org/10.1684/ejd.2008.0304
http://dx.doi.org/10.1097/QCO.0b013e328335b004
http://dx.doi.org/10.1097/ACI.0b013e328364ddfd
http://dx.doi.org/10.1016/j.it.2008.12.003


73. Yamasaki K, Di Nardo A, Bardan A, Murakami M, Ohtake T, Coda A, Dorschner RA,

Bonnart C, Descargues P, Hovnanian A, Morhenn VB, Gallo RL (2007) Increased serine

protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med

13:975–980. doi:nm1616 [pii] 10.1038/nm1616

74. Yamasaki K, Kanada K, Macleod DT, Borkowski AW, Morizane S, Nakatsuji T, Cogen AL,

Gallo RL (2011) TLR2 expression is increased in rosacea and stimulates enhanced serine

protease production by keratinocytes. J Invest Dermatol 131:688–697. doi:jid2010351 [pii]

10.1038/jid.2010.351

75. Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of

human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem

276:5707–5713. doi:10.1074/jbc.M008557200

76. Harder J, Bartels J, Christophers E, Schroder JM (1997) A peptide antibiotic from human skin.

Nature 387:861. doi:10.1038/43088

77. Ali RS, Falconer A, IkramM, Bissett CE, Cerio R, Quinn AG (2001) Expression of the peptide

antibiotics human beta defensin-1 and human beta defensin-2 in normal human skin. J Invest

Dermatol 117:106–111. doi:10.1046/j.0022-202x.2001.01401.x

78. Harder J, Meyer-Hoffert U, Wehkamp K, Schwichtenberg L, Schroder JM (2004) Differential

gene induction of human beta-defensins (hBD-1, -2, -3, and -4) in keratinocytes is inhibited by

retinoic acid. J Invest Dermatol 123:522–529. doi:10.1111/j.0022-202X.2004.23234.x

79. Seo SJ, Ahn SW, Hong CK, Ro BI (2001) Expressions of beta-defensins in human keratinocyte

cell lines. J Dermatol Sci 27:183–191

80. Baechle D, Flad T, Cansier A, Steffen H, Schittek B, Tolson J, Herrmann T, Dihazi H, Beck A,

Mueller GA, Mueller M, Stevanovic S, Garbe C, Mueller CA, Kalbacher H (2006) Cathepsin

D is present in human eccrine sweat and involved in the postsecretory processing of the

antimicrobial peptide DCD-1L. J Biol Chem 281:5406–5415. doi:10.1074/jbc.M504670200

81. Harder J, Schroder JM (2002) RNase 7, a novel innate immune defense antimicrobial protein

of healthy human skin. J Biol Chem 277:46779–46784. doi:10.1074/jbc.M207587200

82. Madsen P, Rasmussen HH, Leffers H, Honore B, Dejgaard K, Olsen E, Kiil J, Walbum E,

Andersen AH, Basse B et al (1991) Molecular cloning, occurrence, and expression of a novel

partially secreted protein “psoriasin” that is highly up-regulated in psoriatic skin. J Invest

Dermatol 97:701–712

83. De Fabo EC, Noonan FP (1983) Mechanism of immune suppression by ultraviolet irradiation

in vivo. I. Evidence for the existence of a unique photoreceptor in skin and its role in

photoimmunology. J Exp Med 158:84–98

84. Reeve VE, Greenoak GE, Canfield PJ, Boehm-Wilcox C, Gallagher CH (1989) Topical

urocanic acid enhances UV-induced tumour yield and malignancy in the hairless mouse.

Photochem Photobiol 49:459–464

85. Walterscheid JP, Nghiem DX, Kazimi N, Nutt LK, McConkey DJ, Norval M, Ullrich SE

(2006) Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune

suppression via the 5-HT2A receptor. Proc Natl Acad Sci U S A 103:17420–17425. doi:10.

1073/pnas.0603119103

86. Albert E, Walker J, Thiesen A, Churchill T, Madsen K (2010) cis-Urocanic acid attenuates

acute dextran sodium sulphate-induced intestinal inflammation. PLoS One 5:e13676. doi:10.

1371/journal.pone.0013676

87. Correale J, Farez MF (2013) Modulation of multiple sclerosis by sunlight exposure: role of

cis-urocanic acid. J Neuroimmunol 261:134–140. doi:10.1016/j.jneuroim.2013.05.014

88. Barresi C, Stremnitzer C, Mlitz V, Kezic S, Kammeyer A, Ghannadan M, Posa-Markaryan K,

Selden C, Tschachler E, Eckhart L (2011) Increased sensitivity of histidinemic mice to UVB

radiation suggests a crucial role of endogenous urocanic acid in photoprotection. J Invest

Dermatol 131:188–194. doi:10.1038/jid.2010.231

30 Y. Uchida and K. Park

http://dx.doi.org/10.1038/jid.2010.231
http://dx.doi.org/10.1016/j.jneuroim.2013.05.014
http://dx.doi.org/10.1371/journal.pone.0013676
http://dx.doi.org/10.1371/journal.pone.0013676
http://dx.doi.org/10.1073/pnas.0603119103
http://dx.doi.org/10.1073/pnas.0603119103
http://dx.doi.org/10.1074/jbc.M207587200
http://dx.doi.org/10.1074/jbc.M504670200
http://dx.doi.org/10.1111/j.0022-202X.2004.23234.x
http://dx.doi.org/10.1046/j.0022-202x.2001.01401.x
http://dx.doi.org/10.1038/43088
http://dx.doi.org/10.1074/jbc.M008557200


Chapter 3

Keratinocytes

Koji Sayama

Abstract Keratinocytes form a multilayered epidermis that separates the inner

body from the outer environment. The outermost epidermal layer of the body is

constantly exposed to external pathogens, and keratinocytes are the first line of

defense against invading pathogens. Keratinocytes sense pathogens through innate

immune receptors and produce various cytokines, chemokines, and antimicrobial

proteins, which have antimicrobial activity against diverse pathogens including

gram-positive and -negative bacteria, fungi, and viruses. The epidermal barrier

function is disrupted in atopic dermatitis or can be disrupted by environmental

proteases. Barrier disruption increases the accessibility of the allergens to the

keratinocytes, facilitating keratinocyte activation by pathogens or allergens.

Among the environmental allergens, house dust mite allergens are important for

the development of allergic diseases and activate the NLRP3 inflammasome of

keratinocytes. Activated keratinocytes produce cytokines that can promote a cas-

cade of antigen recognition and allergic inflammation. Thus, in addition to their role

in innate immunity, epidermal keratinocytes initiate the onset or exacerbation of

allergic reactions.

Keywords Keratinocyte • Innate immunity • Toll-like receptor • NLRP3

inflammasome • House dust mite allergen • Atopic dermatitis

3.1 Pathogen Recognition by Keratinocytes

The innate immune system is the first line of defense against microbial pathogens

and is essential for efficient activation of adaptive immunity. Evolutionarily con-

served pattern recognition receptors (PRRs) recognize pathogens by detecting

pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharides

(LPS) or peptideglycans [1]. The Toll-like receptor (TLR), nucleotide-binding

oligomerization domain (NOD)-like receptor (NLR), and C-type lectin receptor

(CLR) serve as PRRs that recognize different PAMPs. TLR1, 2, 4, 5, 6, and 11 are
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expressed on the cell surface where they detect mainly membrane components,

such as LPS or peptideglycans (PGN). On the other hand, TLR3, 7, 8, and 9 are

expressed on the intracellular vesicles (such as endosomes) where they sense

nucleic acids. NLR family members detect PAMPs in the cytosol. Because patho-

gens express many PAMPs, they can be detected by several PRRs.

On the body surface, the epidermal keratinocyte is the first cell type that contacts

and detects pathogens (Fig. 3.1). TLR2 forms a heterodimer with TLR1 or TLR6,

and this heterodimer recognizes various PAMPs including PGN and lipopeptides

[1]. Keratinocytes detect Gram-positive bacteria through TLR2 [2–4]. NOD1/2 are

intracellular sensors that are members of the NLR family. Keratinocytes express

NOD1/2 and recognize distinct motifs of PGN: g-D-glutamyl-meso-dianopimelic

acid (iE-DAP) and muramyl dipeptide (MDP) [5, 6]. During viral infection, the

keratinocytes recognize double-stranded RNA via TLR3 and produce INF-β [7, 8],
which is essential for the antivirus immune reaction. β-glucan on pathogens such as
fungi can be detected by a member of CLR dectin-1 on keratinocytes [9]. After

pathogen recognition, keratinocytes produce antimicrobial proteins (AMPs), cyto-

kines, and chemokines to initiate the primary immune response against the

pathogens.

Although the epidermal keratinocytes are in constant contact with the

pathogens on the skin surface, they do not induce inflammation. This lack of

inflammation can be explained partially by the presence of Staphylococcus

TLRs

hBD1-4
LL-37

Anti-microbial activity

NOD1/2

Cytokines, chemokines 

Dectin-1

Lipopeptide
ds-RNA

MDP/iE-DAP
β-glucan

Keratinocyte
migration

Wound healing

Angiogenesis

HDM
allergens

NLRP3
inflammasome

Inflammation

Fig. 3.1 Overview of epidermal keratinocytes in innate immunity. The keratinocyte is the first

cell to come in contact with and sense pathogens. Keratinocytes detect gram-positive bacteria and

virus-associated double-stranded RNA (ds-RNA) through Toll-like receptor (TLR) 2 and TLR3,

respectively. Keratinocytes express the intracellular sensors NOD1/2 and recognize g-D-glutamyl-

meso-dianopimelic acid (iE-DAP) and muramyl dipeptide (MDP). β-glucan can be detected by

dectin-1. After pathogen recognition, keratinocytes produce various cytokines, chemokines, and

antimicrobial proteins (AMPs). Group 1 house dust mite (HDM) allergens activate the NLRP3

inflammasome of keratinocytes
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