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    Abstract     Immune responses to brain injury are more than a simple reaction to tissue 
damage. Brain and immune system are engaging in a tightly orchestrated communi-
cation, which may protect the brain, help recover lost function, or aggravate damage 
and impede repair. The bewildering complexity of these processes is refl ected by the 
fact that for practically any cell type of the immune system evidence for benefi cial 
as well as detrimental functions can be found in the literature. This introduction sets 
the stage for the chapters of this volume, which will summarize our current knowl-
edge on the immunological mechanisms and therapies of brain injuries and stroke.  

        “Autopsies clearly demonstrate that the [apoplectic] brain is subject to infl ammation and 
suppuration”.  

 Translated from Richelmi, [ 1 ] 

      Introduction 

 That acute brain diseases, such as “apoplexy,” can be accompanied by infl ammation 
has been realized by physicians and pathologists already a long time ago. Today, we 
know that immune responses to brain injury are more than a simple reaction to 
tissue damage, at most responsible for clearing debris. We have come to realize that 
brain and immune system are engaging in a tightly orchestrated communication, 
which may protect the brain and even help recover lost function, but may also 
aggravate damage and impede repair. Indeed, not only resident immune cells of the 
brain, such as microglia, are involved in these responses, but also practically all cell 
types of the innate and adaptive immune system, which may home to the lesion, or 
act in the periphery. The bewildering complexity of the interaction of the two 
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“supersystems” [ 2 ] after brain lesion is refl ected by the fact that for practically any 
cell type of the immune system evidence for benefi cial as well as detrimental func-
tions can be found in the literature, and the realization that despite many attempts 
targeting immune mechanisms has not been successful in large, randomized clinical 
trials of acute CNS diseases. With some general refl ections, I would like to prepare 
the ground for the chapters of this volume, which summarize our current knowledge 
on the immunological mechanisms and therapies in brain injuries and stroke.  

    Nervous and Immune System: Precambrian Twins 

 Nervous and immune systems have coevolved over hundreds of millions of years. 
Both are engaged in the communication of the organism with the outside world. 
They share characteristics from a conceptual (memory, synapse, etc.) to a molecular 
level (e.g., identical signaling and guidance molecules). The most ancient and 
possibly most important task of the nervous system is to control movement and 
predation (or evasion from it), while the immune system protects against infection 
of the host by foreign organisms, parasitic, bacterial, or viral. Brain and immune 
system communicate intensely, sensing and controlling each other’s state to maintain 
homeostasis. When things go wrong, however, primary diseases of the nervous system 
may harm the immune system, and vice versa. In fact, disorders of the immune 
system may lead to acute brain injury, as in atherothrombotic stroke, or acute brain 
injury, as in a stroke can cause brain infl ammation, as well as immunodepression.  

    Nervous and Immune System: Friends, Foes, Then Friends 
Again? 

 For many decades, research into the pathophysiology of acute brain injury after 
ischemia or trauma was almost exclusively focused on the central nervous system. 
Involvement of the immune system was only considered insofar injury may lead to 
local infl ammation, which involves not only brain cells, such as microglia and astro-
cytes, but also cells of the innate immune system which have homed to the lesion, 
such as granulocytes and monocytes. Early anti-infl ammatory treatment in experi-
mental models of stroke or brain trauma appears to be protective, although clinical 
trials were unable to confi rm this effect in stroke patients. The interaction of adaptive 
immunity and the brain has traditionally been the domain of multiple sclerosis 
research, which has demonstrated that even the healthy brain is patrolled by T cells. 
Only recently, it was realized that cells of the adaptive immune system are players 
when the brain is acutely lesioned. Not only may the brain downregulate the periph-
eral immune system (innate and adaptive) after stroke [ 3 ], brain trauma [ 4 ], or spinal 
cord injury [ 5 ], cells of the adaptive immune system enter the brain where they may 
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aggravate or contain damage, or potentially even partake in repair. These fi ndings, 
as well as the notion that infl ammation is intrinsically linked to wound healing in 
the periphery, have promoted the concept of the Janus-facedness of infl ammation 
after brain injury; in its most simplistic version, acute cell death in the brain within 
hours leads to the activation of brain parenchymal and blood-borne immune cells 
and consequently the generation of toxic metabolites, such as free radicals, stressing 
the brain on top of the initial insult. After the acute phase, however, some proin-
fl ammatory cells shift their phenotype towards anti-infl ammation (e.g., M1 → M2 
polarization of macrophages), and other, primary anti-infl ammatory and pro-regen-
erative cells (e.g., regulatory T cells, Tregs) take over, helping the brain to repair 
damage and recover function. This dichotomous concept is highly attractive, as it 
suggests that ill and benefi cial effects of immune responses can be separated on a 
temporal scale. Anti-infl ammation early on and modulation of infl ammation towards 
“wound healing” later suggest itself as straightforward and promising therapeutic 
approaches. Various therapeutic agents (pharmacological and cellular) are ready to 
be tested, the only remaining challenge appears to develop and deploy noninvasive 
strategies (i.e., molecular imaging, such as TSPO-PET) to stratify patients to the 
right type of immune therapy.  

    Of Concepts and Misconceptions 

 But is it that simple? Can the outcome of an interaction between the two super-
systems of the organism be either good or bad, can they be sometimes foes, and 
shortly thereafter friends again? There is nothing wrong in formulating reductionist 
biological concepts—they help to generate testable hypotheses in the face of over-
whelming complexity. However, there is a risk that fl awed concepts stick and may 
turn into dogmas. This has happened with several concepts which are relevant to our 
understanding of brain–immune interactions after injury. I will therefore briefl y 
touch upon them. 

    The Immune Privilege of the Brain 

 The unique structure and function of the brain, the risk of erratic rewiring after 
damage and thus restricted capacity to regenerate, as well as its tight embedding 
into a bony structure limiting volume expansion necessitate protection against 
damage from infl ammation. The organ has therefore developed tolerance against 
the introduction of antigens—the so-called immunological privilege [ 6 ]. However, 
this privilege is not absolute, and it is compartmentalized. An excellent treatment of 
this concept and misunderstandings associated with it can be found in Galea et al. [ 7 ]. 
In short, only the brain parenchyma has a tightly regulated immunosuppressive 
environment without an adaptive efferent arm of immunity. The ventricles (including 

1 Old Dogmas, Surprising Complexities, and Novel Therapeutic Targets
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choroid plexus and circumventricular organs), perivascular spaces, and meninges of 
the brain demonstrate responses of innate and adaptive immunity and antigen 
presentation very similar to peripheral sites. It should also be noted that the environ-
ment of the brain parenchyma rapidly loses its immunosuppressive capacity once 
infl ammation has established itself after brain tissue damage. This is the result of 
blood–brain barrier breakdown, local production of chemoattractants and immuno-
stimulants, and the appearance of dendritic or other antigen-presenting cells. Finally, 
although blood–brain barrier and relative immune privilege are linked, the one is 
not the primary consequence of the other. The immune privilege of the brain paren-
chyma results from a tightly regulated microenvironment and the lack of an efferent 
arm of adaptive immunity, rather than tight capillary endothelia.  

    The Blood–Brain Barrier and Leukocyte Traffi cking 

 A “barrier” made of capillary tight junctions restricts the diffusion of molecules 
potentially disruptive for neurotransmission from the blood into the brain extracel-
lular fl uid and thus neuropil. However, this barrier is mostly restricted to the capil-
lary bed, where no extravascular (“Virchow–Robin”) space exists, as the basement 
membrane between endothelial cells and astrocytic endfeet of the glia limitans are 
fused—the so-called gliovascular or composite basement membrane. For an excel-
lent treatment of the blood–brain barrier and a clarifi cation of some prevalent mis-
conceptions, the reader is referred to Bechmann et al. [ 8 ]. Importantly, leukocyte 
recruitment is a highly regulated process and does not normally involve the blood–
brain barrier, as it occurs in postcapillary venules, where the cells fi rst enter the 
Virchow–Robin space. Only a second step involving different molecular programs 
can take them into the neuropil, as they need to cross the basement membrane of the 
glia limitans. In other words, while solute movement in and out of the CNS is lim-
ited by properties of the endothelium, leukocyte migration is in addition hampered 
by extracellular matrix and membranes, which need to be actively degraded for 
passage [ 9 ,  10 ]. The lack of discrimination of the different barriers encountered by 
leukocytes in brain infl ammation has confounded the literature. To understand the 
role of leukocytes in brain infl ammation, we need to carefully locate and dis-
criminate specifi c leukocyte subsets, such as neutrophils, monocytes, NK cells, 
T-cell subtypes, and B cells. A case in point is the dogma that polymorphonuclear 
leukocytes (PMNs) invade the brain parenchyma early after stroke, where their 
toxic products harm neurons. A recent study in experimental stroke and human 
neuropathological samples demonstrates, however, that after stroke the large majority 
of extravasated PMNs stay within the confi nes of the perivenular space and the 
meninges and do not gain access to the neuropil [ 11 ]. PMNs, therefore, appear to act 
at different sites than previously thought, which may at least partially explain the 
clinical failure of agents that block PMN infi ltration and suggests alternative thera-
peutics targeting infl ammation within the neurovascular unit.  
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    Infl ammation and Wound Healing 

 Tissue responses after brain lesions include resorption of debris, scar formation, 
and possibly attempted repair, and because of clear analogies have been compared 
to the tightly regulated process of wound healing in peripheral tissues, for example 
the skin. There the orchestrated response to injury includes elements of infl amma-
tion, such as leukocyte homing, in particular macrophage activity. Macrophages 
have been implicated in wound closure, reepithelialization, and angiogenesis. It 
should be noted, however, that even for wound healing in the periphery, the role of 
infl ammation is still not clear. While some studies demonstrate disturbed wound 
healing by anti-infl ammatory treatment or specifi c ablation of macrophages [ 12 ], 
others found normal wound healing (including angiogenesis) in the absence of 
infl ammation [ 13 ]. It should be noted in this context that embryos demonstrate 
almost perfect wound healing without scarring, in the complete absence of infl am-
mation [ 14 ]. Herz et al. [ 15 ] demonstrate that brain plasticity and repair after stroke 
can be fostered by anti-infl ammatory therapy. Interestingly, however, Gliem et al. 
[ 16 ] found that bone marrow derived macrophages are critical for preventing 
hemorrhagic transformation of brain infarcts. Thored et al. [ 17 ] linked microglia 
accumulation to neurogenesis and repair after stroke. However, the same group 
went on to demonstrate that elimination of the microglia does not affect the neuro-
genic response [ 18 ]. This presents a nice illustration of the truism that correlation 
does not imply causation, which is unfortunately often overlooked, in particular 
regarding research on the relationship between brain and immune system (see 
below). The controversy surrounding the role of infl ammation and repair or wound 
healing remains unresolved, and the reader is referred to the interesting debate in 
Crutcher et al. [ 19 ].  

    Correlation Versus Causation 

 Many experimental studies report pharmacologic manipulations, which lead to 
smaller infarcts via “anti-infl ammatory” mechanisms. Claiming “anti-infl ammatory 
action” quite often rests on the fi nding that giving the drug not only reduces damage 
but also many markers of infl ammation, such as cytokines, infl ux of leukocytes, etc. 
Unfortunately, this conclusion is confounded by the problem that smaller infarcts 
(by whatever treatment) lead to a reduction of practically all mechanisms related to 
primary and secondary ischemic damage. For example, reducing infarct sizes by 
blocking the  N -methyl- d -aspartate (NMDA) receptor (which is not found on cells of 
the immune system) via a reduction of tissue damage also leads to a reduction in 
secondary release of infl ammatory cytokines or an infl ux of leukocytes into the 
affected hemisphere [ 20 ].  

1 Old Dogmas, Surprising Complexities, and Novel Therapeutic Targets



6

    Resolution of Infl ammation 

 Research on infl ammation after brain lesion is highly focused on the mechanisms 
which induce and maintain infl ammation, as well as its effects on tissue damage, 
protection, and repair. Surprisingly, little attention is devoted to the question how 
infl ammation is terminated, and homeostasis is reestablished. This is achieved by an 
active, highly regulated process: resolution. In peripheral tissues, this process is well 
studied, and chemical mediators of resolution have been identifi ed [ 21 ]. Resolution 
failure leads to chronic infl ammation, with increased tissue injury and scarring. In 
the partially immune privileged CNS, resolution after injury may differ from other 
organs, and infl ammation may in part be nonself-limiting [ 22 ]. Very little is known 
about resolution of infl ammation after stroke and brain trauma, a fi eld which 
deserves further inquiry as resolution agonists may be attractive therapeutics.   

    Open Issues and Future Challenges 

 Research of the last decades has clearly demonstrated that immunological responses 
to acute injury of the brain play an important role for tissue damage, protection, and 
repair. This research has also unraveled striking complexities in the interaction of 
brain and immune system: simple dichotomies, categorizing specifi c cells or 
responses as “good” or “bad” are no longer helpful [ 23 ]. We are beginning to under-
stand the functional diversity of immune responses, which are highly context depen-
dent. Numerous open issues remain (Table  1.1 ). The chapters of this volume explore 
these complex responses and the biological contexts in which they occur. They will 
also highlight a number of novel targets to inhibit secondary damage after stroke, 
brain trauma, or spinal cord injury. These targets include the induction or blockade 
of cytokines, subsets of cells of the innate and adaptive immune system, or path-
ways of communication between brain and immune system, such as the sympathetic 
and parasympathetic nervous systems.

   Table 1.1    Exemplary open issues regarding immune responses to brain injuries   

 Can benefi cial and detrimental effects of infl ammation be disentangled? How can we noninvasively 
stratify patients to immunomodulatory therapies? 

 What is the role of specifi c types of T cells after brain injury? What is the role of antigen? If 
antigen presentation is needed, where does it occur? How can T cells damage neurons or 
regenerate neuronal function? 

 Does anti-infl ammatory therapy affect the glial scar? 
 What are the sources of specifi c cytokines measured after brain injury in the blood? 
 Is immunodepression after brain injury an adaptive response? If so, does blocking it potentially 

exacerbate autoimmunity after brain injury? 
 Can adaptive immunity selectively be manipulated to protect or regenerate the brain? 
 How do comorbidities and aging affect immune responses after brain injury? 
 How do immune responses after stroke affect angio-, vasculo-, and neurogenesis? 
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    Abstract     Acute brain injuries elicit prompt and robust immune responses characterized 
by the activation of local glial cells and mobilization of peripheral leukocytes. 
The activation of immune cells originally aims to clear the brain of cellular debris 
and promote brain repair; however, the immune system can also propel and propa-
gate neuronal cell death when overactivated. Understanding the function of each 
type of immune cells in the acute brain injuries and their mechanisms of action 
promises to unveil effective immunomodulatory therapies that benefi cially regulate 
post-injury immune responses. In this chapter, we discuss in detail how immune 
cells are recruited and/or activated in the injured brain and how they contribute to 
the evolvement of brain damage.  

        Introduction 

 A pivotal role of immune responses in the pathogenesis of acute brain injuries has 
emerged in recent years. Once an injury occurs, the brain and the immune system 
infl uence each other in specifi c and profound ways. Bidirectional or reciprocal neuro-
immune communication presumably evolved to clear the brain of infections and dead 
cellular debris. However, in addition to its essential role in protecting the organism 
from harmful microbes and the necrotic spillage of intracellular contents, the immune 
system can also propel and propagate neuronal cell death when overactivated. 
In order to elicit activation of the immune system, injured neurons and other central 
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