## From Basic to Clinical Immunology

Vladimir V. Klimov





From Basic to Clinical Immunology

Vladimir V. Klimov

## From Basic to Clinical Immunology



Vladimir V. Klimov Clinical Immunology and Allergy Department Siberian State Medical University Tomsk, Russia

Additional material to this book can be downloaded from http://extras.springer.com.

ISBN 978-3-030-03322-4 ISBN 978-3-030-03323-1 (eBook) https://doi.org/10.1007/978-3-030-03323-1

Library of Congress Control Number: 2019930292

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Tu se' omai al purgatorio giunto: vedi là il balzo che 'l chiude dintorno: vedi l'entrata là 've par disgiunto.

You have finally arrived in Purgatory: There you can see the cliffs which wraps around it; There is the entrance, where there is a split.

Dante Alighieri. La Divina Commedia. Purgatorio. Canto IX, 49-51

## Preface

Why is immunology so important? The immune system has involvement in almost all fields related to health and disease. Infections continue to confront human health and well-being on a global scale. Inflammation contributes to the lung, heart and joint diseases, and diabetes mellitus; cancers have to evade immune surveillance, and immune dysregulation leads to allergies that are increasingly prevalent across the world. Only improved understanding of the mechanisms by which microbes, allergens, and tumor cells cause disease will result in the development of diagnostic, therapeutic, and preventative strategies to combat this threat.

However, we are only beginning the voyage of immunology, and there is much we still need to research and understand. The study of basic immunology may provide students with an opportunity to relate the findings of fundamental scientific investigations to clinical problems. Since immunology is a very complex science, this manual has been arranged in a simplistic yet logical manner so that students could perceive basic principles of the subject and, at the same time, understand important particularities.

#### Acknowledgments

The author wishes to express his gratitude to Dr. Milan C. Pesic (Institute for Immunology and Thymus Research, Bad Harzburg, Germany).

Vladimir V. Klimov Tomsk, Russia

## Contents

| 1      | Functional Organization of the Immune System        | 1   |
|--------|-----------------------------------------------------|-----|
| 1.1    | Introduction                                        | 3   |
| 1.2    | Antigens and "Patterns"                             | 4   |
| 1.3    | Immunological Mechanisms                            | 9   |
| 1.3.1  | Innate Immunity                                     | 9   |
| 1.3.2  | Adaptive Immunity                                   | 10  |
| 1.4    | Organization of the Immune System at a Glance       | 10  |
| 1.5    | Molecules of the Immune System                      | 16  |
| 1.5.1  | Antigen-Recognizing and Antigen-Binding Molecules   | 16  |
| 1.5.2  | Pattern Recognition Receptors (PRRs)                | 26  |
| 1.5.3  | Cell Adhesion Molecules (CAM)                       | 31  |
| 1.5.4  | Cytokines                                           | 41  |
| 1.5.5  | Chemokines                                          | 49  |
| 1.6    | Organs of the Immune System                         | 54  |
| 1.6.1  | The Thymus                                          | 57  |
| 1.6.2  | The Bone Marrow                                     | 58  |
| 1.6.3  | The Spleen                                          | 59  |
| 1.6.4  | The Lymph Nodes                                     | 60  |
| 1.7    | Cells of the Immune System                          | 62  |
| 1.7.1  | Lymphocytes                                         | 62  |
| 1.7.2  | T Cells and T Lymphopoiesis                         | 64  |
| 1.7.3  | B Cells and B Lymphopoiesis                         | 69  |
| 1.7.4  | Burnet's Clonal Selection Theory                    | 74  |
| 1.7.5  | Innate Lymphoid Cells (ILCs)                        | 75  |
| 1.7.6  | Dendritic Cells                                     | 77  |
| 1.7.7  | Monocytes and Macrophages                           | 83  |
| 1.7.8  | Neutrophils                                         | 88  |
| 1.7.9  | Eosinophils                                         | 90  |
| 1.7.10 | Basophils and Mast Cells                            | 93  |
|        | Bibliography                                        | 98  |
|        |                                                     |     |
| 2      | Skin and Mucosal Immune System                      | 101 |
| 2.1    | Introduction                                        | 102 |
| 2.2    | Compartments of the Skin and Mucosal Immune System  | 102 |
| 2.2.1  | Inductive and Secretory Effector Sites of MALT      | 106 |
| 2.3    | Upper and Lower Respiratory Tract and Conjunctives  | 109 |
| 2.4    | Mouth and Gastrointestinal and Genitourinaty Tracts | 114 |
| 2.4.1  | Mouth                                               | 114 |
| 2.4.2  | Gastrointestinal Tract                              | 114 |
| 2.4.3  | Genitourinary Tract                                 | 116 |
| 2.5    | Skin                                                | 119 |
|        | Bibliography                                        | 124 |

| 3      | Innate Immunity                                                  | 127 |
|--------|------------------------------------------------------------------|-----|
| 3.1    | Introduction                                                     | 128 |
| 3.2    | Pattern Recognition Theory                                       | 129 |
| 3.3    | "Acute Phase" Proteins                                           | 129 |
| 3.3.1  | Pro-inflammatory "Acute Phase" Proteins                          | 130 |
| 3.3.2  | Anti-inflammatory "Acute Phase" Proteins                         | 130 |
| 3.4    | The Complement System                                            | 134 |
| 3.4.1  | Classical Pathway                                                | 135 |
| 3.4.2  | Alternative Pathway                                              | 136 |
| 3.4.3  | Regulatory Proteins of the Complement                            | 137 |
| 3.4.4  | Complement Receptors                                             | 137 |
| 3.5    | Phagocytosis                                                     | 140 |
| 3.6    | NETosis                                                          | 145 |
| 3.7    | Natural Cytotoxicity                                             | 146 |
| 3.7.1  | Interferons (IFNs)                                               | 146 |
| 3.7.2  | NK Cells                                                         | 147 |
| 3.7.3  | NK-Cell Subsets                                                  | 149 |
| 3.8    | Inflammasome, Pyroptosis, and Physiological Inflammation         | 152 |
|        | Bibliography                                                     | 158 |
|        |                                                                  |     |
| 4      | Adaptive Immune Responses                                        |     |
| 4.1    | Introduction                                                     | 163 |
| 4.2    | Pathways and Stages of Adaptive Immune Responses                 | 164 |
| 4.3    | Antigen Processing                                               | 165 |
| 4.4    | "Dual Recognition" and Other Signals                             | 169 |
| 4.4.1  | Type 1 Helper T-Cell-Dependent Pathways                          |     |
| 4.4.2  | Type 2 Helper T Cells/Follicular Helper T-Cell-Dependent Pathway |     |
| 4.5    | Signaling and Lymphocyte Activation                              | 176 |
| 4.6    | Clonal Expansion                                                 | 180 |
| 4.7    | Lymphocyte Differentiation in the Course of Immune Responses     | 184 |
| 4.7.1  | Memory Cells                                                     | 185 |
| 4.8    | Effector Activity                                                |     |
| 4.9    | Regulation of Immune Responses                                   |     |
| 4.9.1  | The Idiotype/Anti-idiotype Network                               |     |
| 4.9.2  | Natural T-Regulatory Cells                                       | 196 |
| 4.9.3  | Adaptive Helper T Cells                                          | 196 |
| 4.9.4  | Hepatic and Metabolic Control                                    | 198 |
| 4.9.5  | Neuroendocrine Regulation                                        | 199 |
| 4.9.6  | Genetic Regulation                                               |     |
| 4.9.7  | Generation of Effector Molecule Diversity                        |     |
| 4.9.8  | Generation of the Power of Immune Responses                      | 206 |
| 4.10   | Immune Tolerance                                                 | 209 |
| 4.10.1 | Oral Tolerance                                                   |     |
|        | Bibliography                                                     | 215 |

| 5     | Immunological and Molecular Biological Methods | 217 |
|-------|------------------------------------------------|-----|
| 5.1   | Introduction                                   | 218 |
| 5.2   | Flow Cytofluorometry                           | 219 |
| 5.3   | Enzyme-Linked Immunosorbent Assay (ELISA)      | 221 |
| 5.4   | Immunoblot (Western Blot)                      | 222 |
| 5.5   | Radioimmunoassay (RIA)                         | 222 |
| 5.6   | Immunohistochemistry Staining                  | 222 |
| 5.7   | Cell Proliferation Assays                      | 223 |
| 5.8   | Cytotoxicity Assays                            |     |
| 5.9   | Tests on Phagocytosis                          |     |
| 5.10  | Molecular Biological Methods                   |     |
| 5.11  | Clinical Assessment of Immunoassays            |     |
|       | Bibliography                                   |     |
| 6     | Immunopathology                                | 237 |
| 6.1   | Introduction                                   | 238 |
| 6.2   | Immunodeficiencies                             | 239 |
| 6.3   | HIV/AIDS                                       |     |
| 6.4   | Allergic Disorders                             | 252 |
| 6.4.1 | Type I                                         |     |
| 6.4.2 | Type II                                        |     |
| 6.4.3 | Type III                                       |     |
| 6.4.4 | Type IV                                        |     |
| 6.5   | Autoimmune and Autoinflammatory Disorders      |     |
| 6.6   | Immunology of Cancer                           |     |
| 6.7   | Immunology of Graft Rejection and Survival     |     |
|       | Bibliography                                   |     |
| 7     | Immunology of Infectious Processes             | 281 |
| 7.1   | Introduction                                   |     |
| /.1   | Bibliography                                   |     |
|       |                                                | 290 |
| 8     | Vaccination                                    | 291 |
| 8.1   | Introduction                                   | 292 |
|       | Bibliography                                   | 303 |
| 9     | Immune Enhancement Therapy                     | 305 |
| 9.1   | Introduction                                   | 307 |
| 9.2   | Products of the Thymus and Spleen              | 308 |
| 9.2.1 | TFX-Thymomodulin <sup>®</sup>                  | 308 |
| 9.2.2 | Thymex-L <sup>®</sup>                          |     |
| 9.2.3 | Splenin <sup>®</sup>                           |     |
| 9.3   | '<br>Immunoglobulin Therapy                    |     |
| 9.3.1 | Octagam <sup>®</sup> (Human Immune Globulin G) |     |

| 9.4   | Recombinant Cytokines                                                    | 313 |
|-------|--------------------------------------------------------------------------|-----|
| 9.4.1 | Proleukin® (Aldesleukin, a Human Recombinant Interleukin-2 Product)      | 314 |
| 9.4.2 | Viferon <sup>®</sup> (A Human Recombinant Interferon α2b Product)        | 315 |
| 9.5   | Synthetic Products                                                       | 317 |
| 9.5.1 | Ampligen <sup>®</sup> (Rintatolimod)                                     | 317 |
| 9.5.2 | Cycloferon <sup>®</sup> (Meglumine Acridonacetate)                       | 318 |
| 9.5.3 | Polyoxidonium <sup>®</sup> (Azoximer Bromide)                            | 319 |
| 9.6   | Mucosal Autovaccines                                                     | 320 |
| 9.6.1 | Ismigen <sup>®</sup> , Immubron <sup>®</sup> (Bacterial Lysates Mixture) | 320 |
| 9.6.2 | Ribomunyl <sup>®</sup> (Bacterial Lysate Mixture)                        | 321 |
| 9.6.3 | Uro-Vaxom <sup>®</sup> (Bacterial Lysates)                               | 322 |
| 9.6.4 | SymbioLact® Compositum                                                   | 323 |
| 9.7   | Immune Enhancement Metabolites                                           | 324 |
| 9.7.1 | Squalene                                                                 | 324 |
|       | Bibliography                                                             | 328 |
| 10    | Anti-allergy Medications                                                 | 331 |
| 10.1  | Introduction                                                             | 332 |
| 10.2  | Antihistamines                                                           | 333 |
| 10.3  | Prescription of Antihistamines in Pregnant Women                         | 337 |
| 10.4  | Membrane Stabilizers                                                     | 337 |
| 10.5  | Topical Corticosteroids                                                  | 338 |
| 10.6  | Calcineurin Inhibitors                                                   | 342 |
| 10.7  | Anti-leukotrienes                                                        | 342 |
| 10.8  | Monoclonal Antibodies                                                    | 342 |
|       | Bibliography                                                             | 346 |
| 11    | Allergen-Specific Immunotherapy (ASIT)                                   | 347 |
| 11.1  | Introduction                                                             |     |
|       | Bibliography                                                             | 357 |
|       | Supplementary Information                                                |     |

| Answers to Quizzes                                       | 360 |
|----------------------------------------------------------|-----|
| Ongoing Individual Life of the Immune System (Afterword) | 377 |

### **About the Author**



#### Vladimir Klimov, MD, PhD, DSc

is the head of Siberian State Medical University's Immunology and Allergy Department. He is the author of the multimedia course "Basic Immunology Overview," which was published online in the late 1990s and became popular among students and physicians throughout the world. For many years, Prof. Klimov contributed to immunology education internationally with great enthusiasm. This manual was written at the interface of fundamental and clinical immunology. "What is clinical immunology? It is a medical science about the commensal germs reactivation, breakdown of natural tolerance, and disorders in cancer containment," says Prof. Klimov. klimov@mail.tomsknet.ru

## List of Abbreviations

|            | Allower erroristed                                                       | DI C             | D luman ha suite shame set                                  |
|------------|--------------------------------------------------------------------------|------------------|-------------------------------------------------------------|
| AAMPs      | Allergen-associated<br>molecular patterns                                | BLC              | B-lymphocyte chemoat-<br>tractant, CXCL13                   |
| AChR       | Acetylcholine receptor                                                   | BRAK             | Breast and kidney-                                          |
| ACTH       | Adrenocorticotropic<br>hormone                                           |                  | expressed chemokine,<br>CXCL14                              |
| ADA        | Adenosine deaminase                                                      | ВТК              | Tyrosine kinase (Bruton's)                                  |
| ADDC       | Antibody-dependent<br>cellular cytotoxicity                              |                  | gene                                                        |
| ADH        | Antidiuretic hormone,                                                    | C1NH             | C1 inhibitor gene                                           |
|            | vasopressin                                                              | <b>C2a,</b> etc. | Complement fragments                                        |
| AFP        | $\alpha$ fetoprotein                                                     | C3bBb            | Alternative pathway                                         |
| AHR        | A signaling molecule                                                     |                  | C3 convertase                                               |
| AIDS       | Acquired immunodefi-<br>ciency syndrome                                  | C3bBb3b          | Alternative pathway<br>C5 convertase                        |
| AIM-2      | "Absent in melanoma 2,"<br>a part of ALR                                 | C4b2b            | Classical pathway<br>C3 convertase                          |
| AIRE       | Autoimmune regulator<br>gene                                             | C4b2b3b          | Classical pathway<br>C5 convertase                          |
| AK2        | Mitochondrial adenylate                                                  | CAMs             | Cell adhesion molecules                                     |
|            | kinase 2                                                                 | cAMP             | Cyclic adenosine mono-<br>phosphate                         |
| ALPS       | Autoimmune lymphoprolif-<br>erative syndrome                             | CARD             | Caspase activation and recruitment domain                   |
| ALR        | AIM-2-like receptor                                                      | CCL              | A chemokine subfamily                                       |
| APC        | Antigen-presenting cell                                                  | ССР              | Cyclic citrullinated peptide                                |
| APECED     | Autoimmune polyendocri-<br>nopathy, candidiasis,<br>ectodermal dystrophy | CCR              | A receptor to CCL and other chemokines                      |
| AR         | Activating receptor                                                      | CD               | Cluster of differentiation, a                               |
| ASC        | An adapter protein                                                       |                  | differentiation marker                                      |
| ASIT       | Allergen-specific immuno-<br>therapy                                     | cDC              | Classical (conventional)<br>dendritic cell, mDC             |
| ATM        | Ataxia-telangiectasia                                                    | CEA              | Carcinoembryonic antigen                                    |
|            | mutated gene                                                             | CFS              | Chronic fatigue syndrome                                    |
| ATP        | Adenosine triphosphate                                                   | CFSE             | Carboxyfluorescein<br>succinimidyl ester, a<br>fluorochrome |
| B2M        | $\beta_2$ microglobulin                                                  | CgA              | Chromogranin A                                              |
| B7-1, B7-2 | Costimulatory molecules,                                                 | CGD              | Chronic granulomatous                                       |
|            | counterreceptors for CD28<br>and CTLA-4                                  | COD              | disease                                                     |
| BAFF       | B-cell activation factor                                                 | cGMP             | Cyclic guanosine mono-<br>phosphate                         |
| BALT       | Bronchus-associated<br>lymphoid tissue                                   | СН               | Constant heavy domain                                       |
| BAU        | Bioequivalent allergen                                                   | CL               | Constant light domain                                       |
| 2/10       | unit                                                                     | CLA              | Cutaneous lymphocyte-                                       |
| BCR        | B-cell receptor                                                          |                  | associated antigen                                          |

| CLIP        | A component of li chain                                                                                   | DC            | Dendritic cell                                                                              |
|-------------|-----------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------|
| CLR         | C-type lectin receptor                                                                                    | DGP           | Deamidated gliadin                                                                          |
| CLS         | Capillary leak syndrome                                                                                   | Dar           | peptide                                                                                     |
| CMV         | Cytomegalovirus                                                                                           | DHEA          | Dehydroepiandros-<br>terone                                                                 |
| CNS         | Central nervous system                                                                                    | DN            | Double-negative                                                                             |
| ConA        | Concanavalin A<br>(mitogen)                                                                               |               | (thymocytes)                                                                                |
| СОР         | CARD-only protein                                                                                         | DOCK8         | A signaling molecule                                                                        |
| COPD        | Chronic obstructive<br>pulmonary disease                                                                  | DP            | Double-positive<br>(thymocytes)                                                             |
| CpG         | Motif in a PAMP                                                                                           | DPI           | Dry powder inhaler                                                                          |
| ·           | molecule                                                                                                  | dsDNA         | Double-stranded DNA                                                                         |
| CR          | Complement receptor                                                                                       | dsRNA         | Double-stranded RNA                                                                         |
| CRD         | Carbohydrate recogni-<br>tion domain                                                                      | DTaP-HepB-IPV | Vaccine against<br>diphtheria, tetanus,                                                     |
| CREST       | Syndrome composed of                                                                                      |               | pertussis, hepatitis B,<br>polio                                                            |
|             | calcinosis, Raynaud's<br>phenomenon, esopha-<br>geal dysmotility,<br>sclerodactyly, and<br>telangiectasia | DTaP-IPV/Hib  | Vaccine against<br>diphtheria, tetanus,<br>pertussis, polio,<br><i>H. influenzae</i> type b |
| CRISPR/Cas9 |                                                                                                           |               | infection                                                                                   |
| technique   | A novel gene editing                                                                                      | EBV           | Epstein-Barr Virus                                                                          |
|             | technology (e.g., for<br>vaccine development)                                                             | ECA           | Endothelial cell                                                                            |
| CSF         | Colony-stimulating                                                                                        |               | antigen                                                                                     |
|             | factor                                                                                                    | ECM           | Extracellular matrix                                                                        |
| СТАСК       | Cutaneous T-cell-attract-<br>ing chemokine, CCL27                                                         | ELC           | EBI1 ligand chemo-<br>kine, exodus-3, CCL19                                                 |
| CTLA-4      | Cytotoxic T lymphocyte-<br>associated protein-4,                                                          | ELISA         | Enzyme-linked<br>immunosorbent assay                                                        |
|             | CD152                                                                                                     | ELISPOT       | A modification of                                                                           |
| CVID        | Common variable<br>immunodeficiency                                                                       | ENA-78        | ELISA<br>Epithelial-derived                                                                 |
| CX3CL       | A chemokine subfamily                                                                                     |               | neutrophil-activating                                                                       |
| CX3CR       | A receptor to CX3CL and<br>other chemokines                                                               |               | peptide 78, CXCL5                                                                           |
| CXCL        | A chemokine subfamily                                                                                     | Fab           | Fragment antigen                                                                            |
| CXCR        | A receptor to CXCL and other chemokines                                                                   | Fas           | binding<br>An apoptosis receptor,                                                           |
| СҮВВ        | Gene encoding                                                                                             |               | CD95                                                                                        |
|             | phagocyte NADPH                                                                                           | FasL          | Ligand for Fas, CD178                                                                       |
|             | oxidase (phox) complex                                                                                    | Fc            | Fragment crystallizable                                                                     |
| DAF         | Decay-accelerating                                                                                        | FCFM          | Flow cytofluorometry                                                                        |
|             | factor, CD55                                                                                              | FCGR3A        | CD16 gene                                                                                   |
| DAMPs       | Damage-associated                                                                                         | FcR           | Fc receptor                                                                                 |
|             | molecular patterns                                                                                        | fDC           | Follicular dendritic cell                                                                   |

| FERMT3         | Gene encoding an                                                         | HepA               | Vaccine against hepatitis A                                                                                               |
|----------------|--------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------|
|                | intracellular protein, which interacts with $\beta$ integrins            | НерВ               | Vaccine against<br>hepatitis B                                                                                            |
| FEV1           | Forced expiratory volume<br>in 1 second                                  | HEV                | High endothelial<br>venules                                                                                               |
| FGF            | Fibroblast growth factor                                                 | HHV-8              | Human Herpes Virus 8                                                                                                      |
| FITC<br>FoxP3  | Fluorescein isothiocyanate,<br>a fluorochrome                            | Hib                | Vaccine against<br><i>H. influenzae type b</i><br>infection                                                               |
|                | A transcription factor                                                   |                    |                                                                                                                           |
| FVC<br>G6PD    | Full (forced) vital capacity<br>of lungs<br>Glucose-6-phosphate          | HIN200             | Domain, which consists<br>of hematopoietic<br>expression, IFN-inducible<br>and nuclear localization<br>of 200 amino acids |
|                | dehydrogenase                                                            | ніх                |                                                                                                                           |
| GABA           | γ aminobutyric acid                                                      |                    | Human Immunodeficiency<br>Virus                                                                                           |
| GAD            | Glutamate decarboxylase                                                  | HLA                | Human leukocyte                                                                                                           |
| GALT<br>GATA-3 | Gut-associated lymphoid<br>tissue                                        |                    | antigens, human<br>histocompatibility                                                                                     |
|                | A signaling molecule                                                     |                    | complex                                                                                                                   |
| GBM            | Glomerular basement<br>membrane                                          | НРА                | Hypothalamus–pitu-<br>itary–adrenal (axis)                                                                                |
| GCP-2          | Granulocyte chemotactic<br>protein-2, CXCL6                              | HPV<br>HPV2, HPV4, | Human Papilloma Virus                                                                                                     |
| G-CSF          | Granulocyte colony-stimu-<br>lating factor                               | HPV9               | Vaccines against <i>Human</i><br>Papilloma Virus infection                                                                |
| GI             | Gastrointestinal tract                                                   | HSV                | Herpes Simplex Virus                                                                                                      |
| GLYCAM-1       | Glycosylation-dependent<br>cell adhesion molecule-1,<br>a mucin-type CAM | 5-HT               | 5-hydroxytryptamine,<br>serotonin                                                                                         |
| GM-CSF         | Granulocyte-macrophage                                                   | hTM5               | Human tropomyosin<br>isoform 5                                                                                            |
| CDDD           | colony-stimulating factor                                                | HZV                | Herpes Zoster Virus                                                                                                       |
| GRB2           | An adaptor protein                                                       |                    |                                                                                                                           |
| GROα           | Growth-regulated<br>protein-α, CXCL1                                     | ICAM-1,-2,-3       | Intercellular adhesion<br>molecules                                                                                       |
| GROβ           | Growth-regulated protein- $\beta$ , MIP-2 $\alpha$ , CXCL2               | ICOS               | A costimulatory molecule                                                                                                  |
| GROγ           | Growth-regulated<br>protein-γ, MIP-2β, CXCL3                             | IEL                | Intraepithelial lympho-<br>cytes, γδT cells                                                                               |
| GVHD           | Graft-versus-host disease                                                | IFNα,-β,-γ         | Interferons                                                                                                               |
| GVIID          | Giait versus nost disease                                                | IFNGR1             | IFNγRI gene                                                                                                               |
| н              | Heavy (chain)                                                            | IGAD-1             | IgA deficiency locus-1                                                                                                    |
| H1-H4          | Histamine receptors                                                      | IGF-1              | Insulin-like growth<br>factor 1                                                                                           |
| HCC-1          | Hemofiltrate CC chemo-<br>kine-1, CCL14                                  | IGH                | Locus of immunoglobu-<br>lin H chain genes                                                                                |
| HE4            | Human epididymis<br>protein 4                                            | IGK                | Locus of immunoglobu-<br>lin κ chain genes                                                                                |
| HEP            | Histamine equivalent prick<br>test (unit of allergen<br>activity)        | IGL                | Locus of immunoglobu-<br>lin $\lambda$ chain genes                                                                        |

| IIV            | Vaccine against seasonal<br>influenza (flu)                  | LILR         | Leukocyte immunoglob-<br>ulin-like receptor               |
|----------------|--------------------------------------------------------------|--------------|-----------------------------------------------------------|
| IL             | Interleukin                                                  | LKM          | Liver/kidney microsomes                                   |
| IL1ra<br>ILC   | IL1 receptor antagonist<br>Innate lymphoid cell              | LMP-2, LMP-7 | Components of the proteasome                              |
| IgM, IgG, IgA, | innate ijinpriota cen                                        | LPS          | Lipopolysaccharide                                        |
| lgE, lgD       | Immunoglobulins or                                           | LRR          | Leucine-rich domain                                       |
|                | antibodies                                                   | LTB4         | Leukotriene B4                                            |
| IP-10          | lFNγ-induced protein-10,<br>CXCL10                           | LTC4         | Leukotriene C4                                            |
| IPEX           | X-linked immunodys-                                          | LTH          | Lactotropic hormone,<br>prolactin                         |
|                | regulation, polyendocri-<br>nopathy, enteropathy<br>syndrome | LTi          | Lymphoid tissue inducer cell                              |
| IR             | Inhibitory receptor                                          | LTT          | Lymphoblast transfor-                                     |
| I-TAC          | IFN-inducible T-cell $\alpha$                                | L            | mation test                                               |
|                | chemoattractant,<br>CXCL11                                   | Lyn          | A tyrosine kinase                                         |
| ITAM           | Immunoreceptor                                               | M1           | Type 1 macrophage                                         |
|                | tyrosine-based                                               | M2           | Type 2 macrophage                                         |
| ITGB2          | activation motif<br>CD18 gene                                | MAC          | Membrane attack<br>complex, C5b67899                      |
| ΙΤΙΜ           | Immunoreceptor<br>tyrosine-based inhibitory<br>motif         | MadCAM-1     | Mucosal vascular<br>addressin cell adhesion<br>molecule-1 |
| iTreg          | Induced T-regulatory cell                                    | MALT         | Mucosa-associated                                         |
| IVIG           | Intravenous immuno-                                          |              | lymphoid tissue                                           |
|                | globulin (administration)                                    | MBL          | Mannose-binding lectin                                    |
|                |                                                              | MBP          | Myelin basic protein                                      |
| JAK            | Janus (tyrosine) kinase                                      | MCP-1        | Macrophage chemoat-<br>tractant protein-1, CCL2           |
| Ki-67          | A nuclear protein, a marker of the cell                      | MCP-2        | Macrophage chemoat-<br>tractant protein-2, CCL8           |
|                | proliferation assay                                          | MCP-3        | Macrophage chemoat-                                       |
| KIR            | Killer immunoglobulin-                                       |              | tractant protein-3, CCL7                                  |
| KLRG1          | like receptor<br>Killer lectin-like                          | M-CSF        | Macrophage colony-<br>stimulating factor                  |
|                | receptor G1                                                  | mDC          | Myeloid (classical,                                       |
| L              | Light (chain)                                                |              | conventional) dendritic cell, cDC                         |
| LAD            | Leukocyte adhesion                                           | MDI          | Meter-dose inhaler                                        |
|                | deficiency                                                   | MDSC         | Myeloid-derived                                           |
| LAT            | An adaptor protein                                           |              | suppressor cell                                           |
| LC-1           | Liver cytosol antigen 1                                      | MECL         | A component of the                                        |
| Lck            | A tyrosine kinase                                            |              | proteasome                                                |
| LFA-1          | Lymphocyte function-<br>associated antigen-1,<br>an integrin | MEC          | Mucosa-associated<br>Epithelial Chemokine,<br>CCL28       |

| MEFV gene<br>MenACWY, | Gene for pyrin                                          | NET                | Neutrophil extracellular<br>trap during NETosis                   |
|-----------------------|---------------------------------------------------------|--------------------|-------------------------------------------------------------------|
| MenB, MPSV4           | Meningococcal vaccines                                  | NFAT               | A transcription factor                                            |
| MenCY-Hib             | Vaccine against                                         | NF-ĸB              | A transcription factor                                            |
|                       | meningococcal and                                       | NK                 | Nature killer cell                                                |
|                       | <i>H. influenzae</i> type b infections                  | NKG2/CD94          | Natural killer (lectin-like)<br>receptor G2/CD94                  |
| MIG                   | Monokine induced by<br>IFNγ, CXCL9                      | NKT                | Nature killer T cell                                              |
| MIP-1a                | Macrophage inflamma-                                    | NLR                | NOD-like receptor                                                 |
|                       | tory protein-1α, CCL3                                   | NLRP3              | An inflammasome                                                   |
| MIP-1β                | Macrophage inflamma-                                    | NLRP3 gene         | Gene for cryopyrin                                                |
|                       | tory protein-1 $\beta$ , CCL4                           | NOD                | Nucleotide-binding                                                |
| MIP-2a                | Macrophage inflamma-<br>tory protein-2α, GROβ,<br>CXCL2 | NSAIDs             | oligomerization domain<br>Nonsteroid anti-inflam-<br>matory drugs |
| ΜΙΡ-2β                | Macrophage inflamma-                                    | NSE                | Neuron-specific enolase                                           |
|                       | tory protein-2β, GROγ,<br>CXCL3                         | nTreg              | Natural T-regulatory cell                                         |
| MMR                   | Vaccine against measles,                                | NU-ELISA           | A modification of ELISA                                           |
|                       | mumps, rubella                                          |                    |                                                                   |
| MMRV                  | Vaccine against measles,<br>mumps, rubella, varicella   | OAS                | 2',5'-oligoadenylate-<br>synthetase                               |
| mRNA                  | Messenger RNA                                           | p56 <sup>lck</sup> | A tyrosine kinase                                                 |
| MSH                   | Melanocyte-stimulatory                                  | PAF                | Platelet-activating factor                                        |
| MTC MTT               | hormone                                                 | PALS               | Periarteriolar lymphoid                                           |
| MTS, MTT              | Dyes for the colorimetric<br>proliferation assays       |                    | sheaths (in the spleen)                                           |
| MuSK                  | Muscle-specific receptor tyrosine kinase                | PAMPs              | Pathogen-associated molecular patterns                            |
| MyD88                 | An adapter protein for                                  | PCV13, PPSV23      | Pneumococcal vaccines                                             |
|                       | TLR signaling                                           | pDC                | Plasmacytoid dendritic cell                                       |
| MZ                    | Marginal zone (in the spleen)                           | PDGF               | Platelet-derived growth<br>factor                                 |
| NACUT                 |                                                         | PE                 | Phycoerythrin, a<br>fluorochrome                                  |
| NACHT<br>NALT         | A central domain in NLRs                                | PECAM-1            | Platelet-endothelial cell                                         |
|                       | Nasal-associated<br>lymphoid tissue                     |                    | adhesion molecule-1,<br>CD31                                      |
| NAP-2                 | Neutrophil-activating<br>peptide-2, CXCL7               | PGD2               | Prostaglandin D2                                                  |
| NBN                   | Nibrin gene important<br>for cell cycle                 | РНА                | Phytohaemagglutinin<br>(mitogen)                                  |
| nBreg                 | Natural B-regulatory cell                               | plgR               | Polymeric Ig receptor                                             |
| NBT                   | Nitroblue tetrazolium                                   | PKR                | Protein kinase R                                                  |
| NCA                   | Neutrophilic cytoplasmic                                | <b>PLCγ1,</b> -2   | Phospholipase Cy                                                  |
|                       | antigens                                                | PMN                | Polymorphonuclear                                                 |
| NCK                   | An adaptor protein                                      | PNU                | leukocytes<br>Protein nitrogen unit (of                           |
| NCR                   | Natural cytotoxicity<br>receptor                        | FNU                | Protein nitrogen unit (of<br>allergen)                            |

| POP                  | PYD-only protein                                     | SLC             | Secondary lymphoid                                     |
|----------------------|------------------------------------------------------|-----------------|--------------------------------------------------------|
| PRRs                 | Pattern recognition<br>receptors                     | SEC             | tissue chemokine,<br>Exodus-2, CCL21                   |
| PSA<br>PSGL-1        | Prostate-specific antigen<br>P-selectin glycoprotein | SLC35C1         | Gene encoding a<br>GDP-fucose transmem-                |
|                      | ligand-1, a mucin-type<br>CAM                        | SLE             | brane transporter<br>Systemic lupus erythema-<br>tosus |
| PWM                  | Pokeweed mitogen                                     | SLP76           | An adaptor protein                                     |
| PYD                  | Pyrin domain                                         | SLP/BLNK        | An adaptor protein                                     |
| qPCR                 | Quantitative polymerase chain reaction               | SP              | Single-positive<br>(thymocytes)                        |
|                      |                                                      | SP-A, SP-D      | Surfactant proteins                                    |
| RAAS                 | Renin-angiotensin-                                   | ssRNA           | Single-stranded RNA                                    |
|                      | aldosterone system                                   | STAT3           | A transcription factor                                 |
| RAG-1, RAG-2         | Recombination-activat-<br>ing genes                  | Syk             | A tyrosine kinase                                      |
| RANTES               | Regulation on activa-                                | Т3              | Triiodothyronine                                       |
|                      | tion, normal T-cell<br>expressed and secreted,       | T4              | Thyroxine                                              |
| RIA                  | CCL5<br>Radioimmunoassay                             | TALT            | Tube-associated lymphoid<br>tissue                     |
| RIG-1                | Retinoid acid-inducible<br>gene-1 for a part of RLP  | ТАМ             | Tumor-associated<br>macrophage                         |
| RLP                  | RIG-1-like receptor                                  | TAN             | Tumor-associated<br>neutrophil                         |
| ROR-α, ROR-γt<br>ROS | Signaling molecules<br>Reactive oxygen species,      | TAMPs           | Tumor-associated molecu-<br>lar patterns               |
| RT-PCR               | oxygen radicals<br>Reverse transcription             | TAP-1, TAP-2    | Transporters associated                                |
| ni i ch              | polymerase chain<br>reaction                         | T-bet           | with antigen processing<br>A signaling molecule        |
| RV1, RV5             | Vaccine against rotavirus                            | Т <sub>см</sub> | Central memory T cell                                  |
|                      | infection                                            | TCR             | T-cell receptor                                        |
| SAA                  | Serum amyloid A                                      | TECK            | Thymus-expressed<br>chemokine, CCL25                   |
| SALT                 | Skin-associated                                      | T <sub>EM</sub> | Effector memory T cell                                 |
| 5/121                | lymphoid tissue                                      | Tfh             | Follicular helper T cell                               |
| SC                   | Secretory component of<br>secretory IgA              | Tfr             | Follicular regulatory T cell                           |
| SCDF-1               | Stromal cell-derived                                 | TGFβ            | Transforming growth factor- $\beta$                    |
|                      | factor-1, CXCL12<br>Severe combined                  | Th              | Helper T cell                                          |
| SCID                 | immunodeficiency                                     | TIR             | Toll/IL1 receptor, a part of<br>TLR                    |
| SDS                  | Sodium dodecyl sulfate                               | TLR             | Toll-like receptor                                     |
| SIRS                 | Systemic inflammatory                                | ΤΝFα, ΤΝFβ      | Tumor necrosis factors                                 |
| SLA                  | response syndrome<br>Soluble liver antigen           | TRAD            | Locus of TCR $\alpha$ and $\delta$ chain genes         |

| TRB<br>TRG<br>Tr1<br>TRIF | Locus of TCR β chain genes<br>Locus of TCR γ chain genes<br>Type 1 regulatory T cell<br>An adaptor protein for TLR<br>signaling | VL<br>VLA-4<br>VLP | Variable light domain<br>Very late activation antigen-4,<br>an integrin<br>Viruslike particle, a principle<br>of the vaccine formation |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| TSH                       | Thyroid-stimulating hormone,<br>thyrotropin                                                                                     | WASP               | Wiskott-Aldrich syndrome                                                                                                               |
| tTG                       | Tissue transglutaminase                                                                                                         | WBC<br>WHO         | protein<br>White blood cells                                                                                                           |
| uNK                       | Uterine NK cell                                                                                                                 | WHO                | World Health Organization                                                                                                              |
| VAR                       | Vaccine against varicella                                                                                                       | XCL                | A chemokine subfamily                                                                                                                  |
| Vav                       | A signaling molecule                                                                                                            | XCR                | A receptor to XCL and other                                                                                                            |
| VCAM-1                    | Vascular cell adhesion                                                                                                          |                    | chemokines                                                                                                                             |
| <b>DIDA</b>               | molecule-1, CD106                                                                                                               | Y                  | A CLR's domain                                                                                                                         |
| VDJC                      | Immunoglobulin and TCR<br>gene clusters                                                                                         |                    |                                                                                                                                        |
| VH                        | Variable heavy domain                                                                                                           | Zap70              | A tyrosine kinase                                                                                                                      |

## **List of Videos**

- Video 1.1 Hybridoma technology
- Video 1.2 Immunoglobulins
- Video 4.1 Simple B-cell-mediated response
- Video 4.2 Advanced B-cell-mediated response
- Video 4.3 CD4+ T-cell-mediated response
- Video 4.4 CD8+ T-cell-mediated response
- Video 4.5 Antigen processing



# Functional Organization of the Immune System

| 1.1                          | Introduction – 3                                                                     |
|------------------------------|--------------------------------------------------------------------------------------|
| 1.2                          | Antigens and "Patterns" – 4                                                          |
| <b>1.3</b><br>1.3.1<br>1.3.2 | <b>Immunological Mechanisms – 9</b><br>Innate Immunity – 9<br>Adaptive Immunity – 10 |
| 1.4                          | Organization of the Immune System<br>at a Glance – 10                                |
| 1.5                          | Molecules of the Immune System – 16                                                  |
| 1.5.1                        | Antigen-Recognizing and Antigen-Binding<br>Molecules – 16                            |
| 1.5.2                        | Pattern Recognition Receptors (PRRs) – 26                                            |
| 1.5.3                        | Cell Adhesion Molecules (CAM) – 31                                                   |
| 1.5.4                        | Cytokines – 41                                                                       |
| 1.5.5                        | Chemokines – 49                                                                      |
| 1.6                          | Organs of the Immune System – 54                                                     |
| 1.6.1                        | The Thymus – 57                                                                      |
| 1.6.2                        | The Bone Marrow – 58                                                                 |
| 1.6.3                        | The Spleen – 59                                                                      |
| 1.6.4                        | The Lymph Nodes – 60                                                                 |

**Electronic Supplementary Material** The online version of this chapter (https://doi.org/10.1007/978-3-030-03323-1\_1) contains supplementary material, which is available to authorized users.

© Springer Nature Switzerland AG 2019

V. V. Klimov, From Basic to Clinical Immunology, https://doi.org/10.1007/978-3-030-03323-1\_1

1

#### 1.7 Cells of the Immune System – 62

- 1.7.1 Lymphocytes 62
- 1.7.2 T Cells and T Lymphopoiesis 64
- 1.7.3 B Cells and B Lymphopoiesis 69
- 1.7.4 Burnet's Clonal Selection Theory 74
- 1.7.5 Innate Lymphoid Cells (ILCs) 75
- 1.7.6 Dendritic Cells 77
- 1.7.7 Monocytes and Macrophages 83
- 1.7.8 Neutrophils 88
- 1.7.9 Eosinophils 90
- 1.7.10 Basophils and Mast Cells 93

Bibliography – 98

#### Learning Objectives

Knowledge. Upon successful completion of the chapter, students should be able to:

- 1. Draw the functional organization of immune system.
- 2. Distinguish between antigens and "molecular patterns."
- 3. Name and describe two main mechanisms of the immune system.
- 4. List the molecules of immune system and their functions.
- 5. Know the structure and functions of antibodies, B-cell receptors (BCRs), T-cell receptors (TCRs), and human leukocyte antigens (HLA).
- 6. Briefly summarize the basic facts about pattern recognition receptors (PRRs).
- 7. Be familiar with the cell adhesion molecules (CAMs).
- 8. Compare and contrast the functions of different cytokines and chemokines.
- 9. Outline the primary, secondary, and tertiary organs of the immune system.
- 10. Describe the cells of the immune system including T cells and B cells.
- 11. Explain the postulates of clonal selection theory.

Acquired Skills. Upon successful completion of the chapter, students should demonstrate following skills, including:

- 1. Interpret the knowledge related to the functional organization of the immune system.
- 2. Critically evaluate the scientific literature about structure and functions of the immune system.
- 3. Discuss the scientific articles from the current research literature to criticize experimental data and formulation of new hypotheses in basic immunology.
- 4. Attain a clear perception of the presented immunology definitions expressed orally and in written form.
- 5. Formulate the presented immunology terms.
- 6. Correctly answer quiz questions.

Attitude and Professional Behaviors. Students should be able to:

- 1. Have the readiness to be hardworking.
- 2. Behave professionally at all times.
- 3. Recognize the importance of studying and demonstrate a commitment.

#### 1.1 Introduction

There is the explanation of such terms as "non-self," "self," and "former self" and what they matter in the immunology context. The reader can find a new idea related to the division of molecular patterns into PAMPs, AAMPs, DAMPs, and TAMPs. There is also the up-to-date description of structural features and functions of primary, secondary, and tertiary organs, cells, and molecules of the immune system. Clinical comments are accompanying almost evert unit.

#### 1.2 Antigens and "Patterns"

#### Definitions

Antigen is a substance triggering the immune responses to constitute memory to this antigen. Antigens may be originated from "non-self," "former self," and even "self." Antigens are categorized as *complete* and *incomplete* (*haptens*), *T dependent* and *T independent*, and specified forms like *antigens of pathogens*, *allergens*, *tumor antigens*, *autoantigens*, etc.

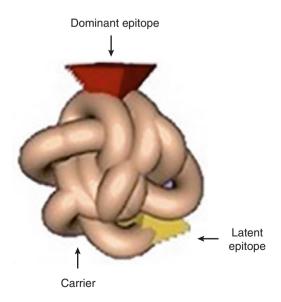
Molecular patterns are low-molecular substances evoking the reactions of innate immunity with no memory. There are pathogen-associated molecular patterns (PAMPs), allergen-associated molecular patterns (AAMPs), damage-associated molecular patterns (DAMPs), and tumor-associated molecular patterns (TAMPs).

Any human body ("self") exists within a hostile environment including microbes ("nonself") and multicellular organisms ("non-self"). The external microbial environment and internal opportunistic germs, as well as even benign tumors, are not those places where any human body can know who to trust out here to survive. Fortunately, we have our immune system, which has evolutionarily known how to recognize "non-self," "self," and even "former self." To understand, it is necessary to define the "non-self" and "self" at the molecular level in detail.

An antigen is a substance containing such information about "non-self," "self," and/ or "former self," which can trigger immune responses in the body to induce a very long and even lifelong memory to the event if it occurs. T-cell receptor (TCR) and B-cell receptor (BCR) can recognize antigens. Antigens of "self" are named autoantigens (or self-antigens), whereas tumor antigens present in fact "former self." In the enlarged sense, it is currently estimated that the "universe of antigens" make up about 10<sup>18</sup> molecules in the environment. The antigens may be divided into complete and incomplete antigens (see **T** Table 1.1).

Any antigen as an *immunogen* may trigger an immune response, i.e., the interaction of many cell types of the immune system, which leads to the formation of new cell types destroying the antigen-containing pathogen and commonly keeping a memory about this event for a long time. Naturally, vaccines contain only immunogens. An antigen as a *tolerogen* triggers *immune tolerance*, another type of interaction of cells of the immune system. Alternatively, it results in the "specific immunological silence" when none is killed and no tissues are damaged.

Antigenicity, specificity, and immunogenicity structurally and functionally characterize antigens.


*Antigenicity* is the quality of an antigen to serve *ligand* for a *receptor*. The receptors for antigens are TCR and BCR.

*Specificity* is the antigen quality to be a unique molecule for only one receptor. An *epitope* or *antigenic determinant* is an informational unit of the antigen specificity. In the antigen molecule, an epitope may be dominant or latent (see **F**ig. 1.1). A carrier, the noninformation part of the antigen molecule, is required for any antigen to be complete.

1

| <b>Table 1.1</b> Antigens and haptens |                                                                                                 |                                                        |                                                                |                                      |  |  |  |
|---------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|--------------------------------------|--|--|--|
| Antigen<br>type                       | Biochemical<br>characterization<br>of antigens                                                  | Immunogenicity<br>(the power of<br>immune<br>response) | Formation of a precipitate with the specific antibody          | Valence (a<br>number of<br>epitopes) |  |  |  |
| Complete<br>antigens                  | Proteins, polysaccha-<br>rides, lipopolysac-<br>charides, and<br>phospholipids                  | +                                                      | +                                                              | Polyvalent                           |  |  |  |
| Haptens (inco                         | Haptens (incomplete antigens):                                                                  |                                                        |                                                                |                                      |  |  |  |
| Complex<br>haptens                    | Short peptides and<br>saccharides, lipids,<br>nucleic acids, and<br>some medications            | -                                                      | +                                                              | Divalent                             |  |  |  |
| Antigen<br>type                       | Biochemical<br>characterization of<br>antigens                                                  | Immunogenicity<br>(the power of<br>immune<br>response) | Formation of a<br>precipitate with<br>the specific<br>antibody | Valence (a<br>number of<br>epitopes) |  |  |  |
| Simple<br>haptens                     | Chemical radicals,<br>amino acids, simple<br>sugars, and other<br>simple chemical<br>substances | -                                                      | -                                                              | Monovalent                           |  |  |  |

**Fig. 1.1** Antigen structure



*Immunogenicity* is the quality to induce the adaptive immune responses of different power.

The majority of antigens are *T* dependent since they require the participation of helper T cells to constitute memory cells. *T-independent* antigens are capable of activating B cells on their own. In the past, there was a division of T-independent antigens into two types: type 1 (currently they all refer to PAMPs – see below) and type 2, which comprised highly repetitive surface epitopes, e.g., polysaccharides of encapsulated bacteria. Type 2 T-independent antigens can interact with many BCRs in a cross-linking manner and activate only mature B cells, whereas immature B cells remain anergized.

**From a clinical point of view**, children up to 4–6 years who have most immature B cells cannot produce antibodies at the high level required for defense against encapsulated bacteria, which may often be reactivated.

Small exogenous molecules which contain a conserved motif, *pathogen-associated molecular patterns* (*PAMPs*), are linked to a certain component of microbes. There are bacterial flagellin, peptidoglycan, lipopolysaccharide (endotoxin, LPS), viral dsRNA, and unmethylated CpG motifs of DNA. They may initiate different reactions of the *innate immunity* and do not induce immune memory. Other exogenous molecules, oligomeric components of allergen molecules, are *allergen-associated molecular patterns* (*AAMPs*), which may promote cross-reactivity of IgE allergy. Some endogenous molecules, *damage-associated molecular patterns* (*DAMPs*), are released outside the cell because of its injury. There are heat-shock proteins, extracellular matrix's (ECM's) proteins, S100, hyaluronan fragments, and nonprotein substances such as DNA, ATP, uric acid, and heparin. In physiological conditions, DAMPs serve structural and metabolic functions, being inaccessible to the immune system.

**From a clinical point of view**, in case of severe damage to own tissue, they may trigger peracute inflammation and toxification and promote toxic shock syndrome.

*Tumor-associated molecular patterns* (*TAMPs*) are low-molecular conserved components of tumor cells. On the one hand, they can upregulate innate defense against tumors, but, on the other hand, TAMP may, like a "double-edged sword," promote cancer growth and metastasis through weakening immune surveillance, the formation of chemoresistance, and the chronic inflammation favoring tumor progression.

All the "patterns" evoke similar reactions of the innate immunity. They are recognized by Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs), which are currently an actively growing area of research.

#### Quiz

Reading a question, please choose only one right answer.

Question 1

Antigens trigger:

- 1. NETosis.
- 2. Reactions of the innate immunity.
- 3. Adaptive immune responses.
- 4. Phagocytosis.

1

Complete antigens are:

- 1. Short peptides, and saccharides, lipids, nucleic acids.
- 2. Immunoglobulins.
- 3. Proteins, polysaccharides, lipopolysaccharides, and phospholipids.
- 4. Chemical radicals, amino acids, simple sugars.



Question 3

Any epitope is:

- 1. An informational unit of the antigen specificity.
- 2. A pathogen-associated molecular pattern.
- 3. T-cell receptor.
- 4. B-cell receptor.



Question 4

**Tolerogen triggers:** 

- 1. Immune responses.
- 2. Innate immunity.
- 3. Phagocytosis.
- 4. Immune tolerance.

#### **Question 5**

A complete antigen contains:

- 1. A carrier only.
- 2. Epitopes and a carrier.
- 3. Only antigenic determinants.
- 4. Damage-associated molecular patterns.

#### Question 6

Haptens are:

- 1. Complete antigens.
- 2. A carrier for epitopes.
- 3. Incomplete antigens.
- 4. Pathogen-associated molecular patterns.

#### Question 7

What TCR stands for?

- 1. T-cell receptor.
- 2. T cellular reaction.
- 3. T-cell-mediated response.
- 4. T-cell resistance.

#### Question 8

Estimated number of "universe of antigens" is about:

- 1. 10<sup>18</sup>.
- 2. 10<sup>13</sup>.
- 3. 10<sup>10</sup>.
- 4. 10<sup>8</sup>.



Complex haptens are:

- 1. Polyvalent.
- 2. Ambivalent.
- 3. Monovalent.
- 4. Divalent.

#### Question 10

B-cell receptor (BCR) can:

- 1. Trigger T-cell-mediated responses.
- 2. Recognize antigens.
- 3. Activate phagocytosis.
- 4. Activate complement.

#### Question 11

Damage-associated molecular patterns (DAMPs) are:

- 1. Low-molecular conserved components of tumor cells.
- 2. Oligomeric components of allergens.
- 3. Bacterial flagellin, peptidoglycan, and lipopolysaccharide, viral dsRNA, etc.
- 4. Heat-shock proteins, ECM's proteins, S100, hyaluronan fragments, etc.

#### Question 12

Pathogen-associated molecular patterns (PAMPs) are:

- 1. Complex haptens.
- 2. Low-molecular conserved components of tumor cells.
- 3. Bacterial flagellin, peptidoglycan, and lipopolysaccharide, viral dsRNA, etc.
- 4. Oligomeric components of allergens.

#### **Question 13**

Allergen-associated molecular patterns (AAMPs) are:

- 1. Oligomeric components of allergens.
- 2. Heat-shock proteins.
- 3. Bacterial flagellin, peptidoglycan, and lipopolysaccharide.
- 4. Unmethylated CpG motifs of DNA.

#### Question 14

All the "patterns" trigger:

- 1. Immune tolerance.
- 2. T lymphopoiesis.
- 3. Thymus involution.
- 4. Reactions of the innate immunity.

#### Question 15

Toll-like receptors (TLRs) are related to:

- 1. Hormone receptors.
- 2. Pattern recognition receptors (PRRs).
- 3. Cytokine receptors.
- 4. Chemokine receptors.

Antigens may be derived from:

- 1. "Former self" only.
- 2. "Non-self" only.
- 3. "Non-self," "former self," and "self."
- 4. "Self" only.

#### 1.3 Immunological Mechanisms

#### - Definitions

*Immunity* (*Latin "immunitas"*) is a universal biological phenomenon that develops many programs based on the unique genotype of the body ("self") in foreign surroundings, from the birth of the body to its death. There are two major types of immunity, *innate immunity*, which is phylogenetic and polyspecific, and *adaptive immunity*, which is acquired during an ongoing individual life.

*Immunology* is a life science that studies the immune system, immunological mechanisms, and immunopathology in humans, animals, and other living beings.

In contrast to other systems, the *immune system* is responsible for support of the balance or homeostasis between "non-self," "self," and "former self." The end effects of two major types of immunological mechanisms, innate immunity and adaptive immunity, may be:

- 1. Immune containment of infection and tumors
- 2. *Immune clearance* of the infection and tumors.

#### 1.3.1 Innate Immunity

The innate immune subsystem upon activation has a wide array of recruited molecules and cells, which may destroy invading pathogens very quickly but not very effectively.

- 1. Physical and chemical barriers:
  - Keratinization in the skin
  - Mucus formation on the mucosal epithelium and ciliary clearance in the respiratory tract
  - Production of various antimicrobial factors such as lysozyme, lactic and fatty acids, etc. in secretions
  - Deactivation of dangerous microbes by digestive enzymes and peristalsis in the GI tract
- 2. *Microbial antagonism* to pathogenic microbes due to the body's own mutualistic and commensal microorganisms
- 3. The *liver* due to oxidation of xenobiotics, detoxification, and synthesis of many defense factors
- 4. Cytotoxicity by complement
- 5. Phagocytosis and NETosis

- 1
- 6. *Acute phase reaction* (C-reactive protein, serum amyloid A, mannose-binding lectin, etc.)
- 7. Natural antibodies produced by CD5+B cells
- 8. Antimicrobial peptides such as  $\alpha$  defensins, cathelicidins, lactoferrin, dermicidin, etc.
- 9. *Natural cytotoxicity* due to innate lymphoid cells (ILCs) including NK cells, NKT cells, and γōT cells plus *natural cytostasis* induced by interferons (IFNs)

#### 1.3.2 Adaptive Immunity

The adaptive immune responses take some days and weeks to be finished. However, they are more effective in eliminating invading pathogens than the innate immunity. Furthermore, they develop the immune memory to the invading pathogens.

#### B-Cell-Mediated (Humoral) Responses

- 1. *Simple B-cell response* formation of only one class of immunoglobulins, IgM, but no long-term memory. This type of response may be triggered by "patterns" too.
- 2. *Advanced B-cell response* switching antibodies after each other: IgM, IgG, IgA, and even IgE, and inducing the formation of long-lived memory plasma cells and lifelong memory B cells.

#### T-Cell-Mediated Responses

- 3. *Inflammatory CD4+T-cell response* that leads to the production of effector CD4+T cells and the lifelong memory CD4+T cells.
- 4. *Cytotoxic CD8+T-cell response*, which results in the formation of cytotoxic CD8+T cells capable of apoptosis in target cells and lifelong memory CD8+T cells.

#### 1.4 Organization of the Immune System at a Glance

The immune system of the body consists of organs, cells, and molecules, and a complex interplay of them all governs immune processes at two major levels. They may be defined as the following:

- 1. *Systemic level*, which includes the bloodstream, thymus, bone marrow, and spleen and is responsible for defense against pathogens if they invade the internal space of the body
- 2. *Skin and mucosal level* that includes the surface and mucosal barriers, tonsils, adenoids, Peyer's patches, solitary or isolated follicles, appendix, lymph nodes, lymphatic vessels, etc. at which the immune system functions if the pathogens enter the body locally or the barrier's opportunistic microbes are being reactivated

The primary or central organs of the immune system are the *thymus* and *bone marrow*. All cells related to the immune system originate from the bone marrow, and even some lymphocytes, B cells, are differentiated there, whereas other lymphocytes, T cells, are matured in the thymus. Furthermore, the thymus governs the whole immune system.

The secondary or peripheral organs of the immune system include the *spleen*, *lymph* nodes, numerous disseminated lymphoid elements, appendix, lymphatics, skin, and even liver. An essential part of the secondary organs is organized in mucosae-associated lymphoid tissue (MALT), which may become a place where many immune processes of the innate and adaptive immunity proceed to protect the body against numerous pathogens.

If the participation in the immune processes to take into consideration cells of the immune system may be classified by their functional activity and divided into four groups:

- 1. Antigen-Presenting Cells (APCs): Dendritic cells (DCs), macrophages, and B cells
- Immunoregulatory cells: Natural T regulatory cells (nTreg) and their induced subsets, natural B regulatory cells (nBreg) Adaptive helper T-cell subsets: type 1 helper T cells (Th1), type 2 helper T cells (Th2), follicular helper T cells (Tfh), follicular regulatory T cells (Tfr), type 9 helper T cells (Th9), type 17 helper T cells (Th17), and type 22 helper T cells (Th22)
  Effector cells:
- Inflammatory CD4+T cells, cytotoxic CD8+T cells, plasma cells as antibodyproducing cells, γōT cells, NKT cells, innate lymphoid cells (ILCs) including NK cells, monocytes, macrophages, neutrophils, eosinophils, mast cells, etc.
- Memory cells: Memory CD4+T cells, memory CD8+T cells, memory B cells, long-lived plasma cells

Molecules of the immune system may be divided into some groups:

- 1. Antigen-recognizing and antigen-binding molecules:
  - Immunoglobulins or antibodies: IgM, IgG, IgA, IgE, and IgD
  - B-cell receptor (BCR)
  - T-cell receptor (TCR)
  - Transfer factors (soluble TCR's fragments)
  - Human histocompatibility antigens (HLA)
- 2. Pattern recognition receptors (PRRs):
  - Toll-like receptors (TLRs)
  - C-type lectin receptors (CLRs)
  - NOD-like receptors (NLRs)
  - RIG-1-like receptors (RLRs)
  - AIM-2-like receptors (ALRs)

11

- 3. Cell adhesion molecules (CAMs):
  - Immunoglobulin superfamily
  - Integrins
  - Selectins
  - Mucosal vascular addressins or mucin-type glycoproteins
  - Tumor necrosis factor (TNF) receptor superfamily
  - Cadherin superfamily
  - Extracellular matrix (ECM) proteins or Link family
- 4. Cytokines and chemokines:
  - Interleukins (ILs)
  - Colony-stimulating factors (CSFs)
  - Interferons (IFNs)
  - Tumor necrosis factors (TNFs)
  - Chemokines
  - Others
- 5. Various mediators of immune inflammation

#### Definitions

A *ligand* is a soluble molecule, which is bound to a complementary or specific *receptor* expressed on a cell. The receptor may also be bound to a *counter-receptor* on another cell.

*Signaling* is a series of reactions from the ligand/receptor complex toward the genome of the target cell, which results in a particular action or functional activity of the cell.

*CD Nomenclature*. *CD* means *cluster of differentiation*. Due to the hybridoma technology developed by the Nobel Laureates G.J.F. Köhler and C. Milstein (1984), it has become possible to define certain molecules, which are expressed at the different stages of cell differentiation. CD molecules may be signaling molecules, receptors, counterreceptors, cell adhesion molecules, etc. The use of the monoclonal antibodies enabled the identification of cell surface molecules providing targets for immunophenotyping of cells. Currently, it is a conventional rule to utilize them as cell markers in immunology (see **T** Table 1.2). These markers are also applied to link cells of the immune system with certain immune functions. To date, the CD molecules for humans are numbered up to 371.

To summarize the general vision of the immune system at a glance, see **Table 1.3**.

1

| Table 1.2 Some CD markers           |                                                                                                               |  |  |  |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|
| Cluster<br>designation              | Cells                                                                                                         |  |  |  |
| CD34+                               | Lymphoid and myeloid progenitors                                                                              |  |  |  |
| CD3+                                | T cell                                                                                                        |  |  |  |
| CD4+                                | Helper T cell                                                                                                 |  |  |  |
| CD8+                                | Cytotoxic T cell                                                                                              |  |  |  |
| CD19+                               | B cell                                                                                                        |  |  |  |
| CD16 <sup>hi</sup> 56 <sup>lo</sup> | NK cell                                                                                                       |  |  |  |
| CD68+                               | Macrophage                                                                                                    |  |  |  |
| CDw199+                             | CC chemokine receptor type 9, encoded by CCR9 gene; a $\beta$ chemokine receptor involved in mucosal immunity |  |  |  |

<sup>*hi*</sup> denotes *high* expression, <sup>*lo*</sup> means *low* expression, *w* means *workshop* (not well-characterized to use this molecule as a conventional marker)

| <b>Table 1.3</b> "Formula" of immunity |                                                                                                                             |                                                                                                                                        |  |  |  |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Feature                                | Innate immunity                                                                                                             | Adaptive immunity                                                                                                                      |  |  |  |  |
| Trigger                                | "Patterns"                                                                                                                  | Antigens                                                                                                                               |  |  |  |  |
| Development                            | Rapid                                                                                                                       | Slow                                                                                                                                   |  |  |  |  |
| The fate of a pathogen                 | Immune containment                                                                                                          | Immune clearance                                                                                                                       |  |  |  |  |
| Memory                                 | Phylogenetic polyspecific memory<br>to pathogens; no formation of<br>monoclonal memory after a<br>primary infection         | Formation of long-term monoclo-<br>nal memory after a primary<br>infection                                                             |  |  |  |  |
| Crucial cells                          | Phagocytes, NK cells, mast cells, etc.                                                                                      | T cells and B cells                                                                                                                    |  |  |  |  |
| Effector events                        | "Acute phase" reaction, comple-<br>ment activation, phagocytosis,<br>NETosis, pyroptosis, simple<br>inflammation, apoptosis | Antigen neutralization by<br>antibodies, CD4+T-cell-initiated<br>immune inflammation, CD8+T-cell-<br>induced apoptosis in target cells |  |  |  |  |
| Paradigm                               | Pattern recognition theory                                                                                                  | Clonal selection theory                                                                                                                |  |  |  |  |
| Immunopathology                        | Immunodeficiency, autoinflamma-<br>tory disorders                                                                           | Immunodeficiency, autoimmune<br>diseases, allergic disorders                                                                           |  |  |  |  |

#### ■ Table 1.3 "Formula" of immunity

#### Quiz

Reading a question, please choose only one right answer.

#### Question 1

Systemic level's organs are:

- 1. Mucosal barriers.
- 2. Thymus, bone marrow, and spleen.
- 3. Peyer's patches and isolated follicles.
- 4. Lymph nodes and lymphatic vessels.

#### Question 2

The primary organs of the immune system are:

- 1. The skin.
- 2. Mucosal barriers, tonsils, and adenoids.
- 3. Thymus and bone marrow.
- 4. Peyer's patches, isolated follicles, and appendix.

#### Question 3

The skin and mucosal level includes:

- 1. Mucosal barriers, tonsils, and adenoids.
- 2. The thymus, bone marrow, and spleen.
- 3. The central nervous system.
- 4. Endocrine glands.

#### Question 4

Adaptive immunity is:

- 1. Immune responses.
- 2. Reactions of innate immunity.
- 3. Phagocytosis.
- 4. Complement.

#### Question 5

Pathogen-associated molecular patterns (PAMPs) are:

- 1. Complex haptens.
- 2. Low-molecular conserved components of tumor cells.
- 3. Bacterial flagellin, peptidoglycan, and lipopolysaccharide, viral dsRNA, etc.
- 4. Oligomeric components of allergens.

#### Question 6

Antigen-presenting cells (APCs) are:

- 1. T cells.
- 2. Natural T regulatory cells (nTreg).
- 3. Dendritic cells (DCs), macrophages, and B cells.
- 4. NK cells.

1

The clonal selection theory explains:

- 1. Adaptive immunity.
- 2. Formation of inflammasomes.
- 3. NFTosis.
- 4. Innate immunity.



#### Question 8

What BCR stands for?

- 1. B-cell receptor.
- 2. B cellular reaction.
- 3. B-cell-mediated response.
- 4. B-cell resistance.



Neutrophils are related to:

- 1. Antigen-presenting cells (APCs).
- 2. Memory cells.
- 3. Follicular regulatory T (Tfr) cells.
- 4. Effector cells.

#### Question 10

Selectins are:

- 1. Immunoalobulins.
- 2. Cell adhesion molecules (CAM).
- 3. Cytokines.
- 4. Antigen-recognizing and antigen-binding molecules.

#### Question 11

T-cell receptor (TCR) can:

- 1. Trigger B-cell-mediated responses.
- 2. Recognize antigens.
- 3. Activate phagocytosis.
- 4. Activate complement.

#### **Question 12**

Damage-associated molecular patterns (DAMPs) are:

- 1. Low-molecular conserved components of tumor cells.
- 2. Oligomeric components of allergens.
- 3. Heat-shock proteins, ECM's proteins, S100, hyaluronan fragments, etc.
- 4. Bacterial flagellin, peptidoglycan, and lipopolysaccharide, viral dsRNA, etc.

#### **Question 13**

Interleukins (ILs) are related to:

- 1. Cytokines.
- 2. Cell adhesion molecules (CAM).
- 3. Pattern recognition receptors (PRRs).
- 4. Human histocompatibility antigens (HLA).

All the "patterns" trigger:

- 1. B cells.
- 2. T cells.
- 3. Thymus involution.
- 4. Reactions of the innate immunity.

#### Question 15

CD3 molecules are expressed by:

- 1. B cells.
- 2. T cells.
- 3. Macrophages.
- 4. Eosinophils.

#### Question 16

Antigens may be derived from:

- 1. "Former self" only.
- 2. "Non-self" only.
- 3. "Self" only.
- 4. "Non-self," "former self," and "self."

#### 1.5 Molecules of the Immune System

Methodically, molecules of the immune system will be presented in detail before organs and cells of the system are considered.

#### 1.5.1 Antigen-Recognizing and Antigen-Binding Molecules

#### Definitions

*Immunoglobulin* or *antibody* is an effector molecule of the B-cell-mediated responses, which is secreted by plasma cells and interacts to appropriate antigen specific to this antibody. In *Homo sapiens*, there are *IgM*, *IgG*, *IgA*, *IgE*, and *IgD* classes of the immunoglobulins.

Antigen-recognizing receptors themselves sense antigens. However, each antigen-recognizing complex of B cells and T cells consists of:

- 1. An antigen-recognizing receptor itself, which recognizes "non-self" and "former self"
- 2. An *accessory* antigen receptor's *molecule*, which is required for signaling and reexpressing antigen-recognizing receptors
- 3. A coreceptor, which recognizes HLA molecules ("self")

Human leukocyte antigen (HLA) molecule is a major histocompatibility complex in Homo sapiens. Class I HLA molecules are expressed on cell surfaces throughout the body, whereas Class II HLA molecules are displayed on cells of the immune system only.

#### Ouiz

Reading a question, please choose only one right answer.



The coreceptor, which senses HLA II molecules, is:

- 1. CD8.
- 2. CD16.
- 3. CD4.
- 4. CD22.



**Question 2** 

What the immunoglobulin molecule is pentameric?

- 1. IgM.
- 2. IaG.
- 3. IgA.
- 4. IgE.



**Question 3** 

These molecules inform cells of the immune system about the autologous state of cells on which they are expressed:

- 1. LFA-1.
- 2. CD3.
- 3. CD4.
- 4. HLA I.

**Question 4** 

HLA genes are located on chromosome:

- 1. 6.
- 2. 14.
- 3. 7.
- 4. 22.

#### **Question 5**

A groove in the HLA molecule is required:

- 1. For HLA expression.
- 2. For antigen loading.
- 3. For HLA splitting.
- 4. For HLA polymorphism.

#### Question 6

This immunoglobulin is divided into subclasses:

- 1. IgM.
- 2. IgD.
- 3. IgG.
- 4. IgE.

This immunoglobulin exerts a quality to placental transfer:

- 1. IgM.
- 2. lgE.
- 3. IgG.
- 4. IgA.

Question 8

Molecule, non coreceptor, associated to TCR is:

- 1. CD3.
- 2. CD4.
- 3. CD8.
- 4. CD79a/CD79b.

#### Question 9

Molecules are associated to BCR are:

- 1. CD3 chains.
- 2. CD79a/CD79b.
- 3. CD4 and CD8.
- 4. Cytokines.

#### Question 10

IgG is synthesized at low concentration:

- 1. In senescence.
- 2. In babies at the age of 3–6 months.
- 3. In teenagers.
- 4. In pregnant women.

#### Question 11

By which part does an immunoglobulin bound an antigen?

- 1. By Fc fragment.
- 2. By hinge area.
- 3. By Fab fragment.
- 4. By constant domains.

#### **Question 12**

Immunoglobulins are synthesized by:

- 1. Plasma cells.
- 2. T cells.
- 3. Mast cells.
- 4. Macrophages.

#### Question 13

The coreceptor, which recognizes HLA I molecules, is:

- 1. CD4.
- 2. CD21.
- 3. CD8.
- 4. CD19.



Diversity of antibodies inside a species is:

- 1. Allotypy.
- 2. Isotypy.
- 3. Affinity.
- 4. Idiotypy.



#### Question 15

IgE is responsible for:

- 1. Type I hypersensitivity.
- 2. Type II hypersensitivity.
- 3. Type III hypersensitivity.
- 4. Type IV hypersensitivity.



#### Question 16

Antibody, which indicates either any recent pathogenic infection or a reactivation of opportunistic microbes:

- 1. IgA.
- 2. IaE.
- 3. IgG.
- 4. IgM.

#### 1.5.1.1 Immunoglobulins

Immunoglobulins or antibodies are effector molecules of the B-cell-mediated responses, which are secreted by plasma cells. Any antibody is a glycoprotein composed of many amino acid residues, and that is its primary structure. The carbohydrate content of the immunoglobulin molecules varies between 2% and 12%. A monomeric IgG molecule consists of two identical *light* (*L*) and two identical *heavy* (*H*) *chains* (see Fig. 1.2). They are attached to each other by disulfide (S-S) and hydrogen (H+...O–) bonds forming the secondary structure of the immunoglobulin molecule. Both the chains contain a series of repeating, homologous units, which fold in separation into a domain in a globular manner, and that is the tertiary structure of the immunoglobulin molecule. In addition, there are constant (CL, CH1, CH2, and CH3) and variable (VL and VH) domains. The molecule can be divided into Fc fragment ("fragment crystallizable"), responsible for nonspecific effector activity, and two identical Fab fragments or antigenbinding sites, which bind antigens. Finally, the whole molecule is conformed as the functionally active compound. That is the quaternary structure of the immunoglobulin molecule.

The cleavage of a monomeric antibody with papain enables the obtaining of two different fragments, two Fab and one Fc. Each Fab fragment can bind a single antigen molecule with no precipitation, whereas an Fc fragment can constitute crystals. The cleavage of a monomeric antibody with pepsin enables the obtaining of one fragment composed of two Fc fragments and capable of binding two antigen molecules with precipitation. Finally, the cleavage of a monomeric antibody with disulfide enables the obtaining of separated H chains and L chains.



**Fig. 1.2** Structure of the immunoglobulin molecule

Antibodies are characterized by some qualities as follows.

- Affinity is the quality of an immunoglobulin molecule to be bound to antigen, one to one, firmly on the base of close agreement of their specificities.
- Avidity is the same quality based on polyvalence of the antigen-binding sites.
- Cross-reactivity is the ability of one antibody to bind to different antigenic epitopes.
- *Isotypy* is a diversity of antibodies inside a species. In humans, there are IgM, IgD, IgG, IgA, and IgE isotypes or classes.
- Allotypy is an individual antibody diversity based on the inheritance of different alleles.
- Idiotypy is a clonal antibody diversity.

Antibody isotypes differ from each other in some qualities (see **Table 1.4**).

The Nobel Prize in 1972 was awarded jointly to G.M. Edelman and R.R. Porter for their research on the chemical structure of antibodies.

Genes for different chains are located on different chromosomes. Genes on chromosome 2 encode  $\kappa$ -type L chains, genes on chromosome 22 are related to  $\lambda$ -type L chains, and genes on chromosome 14 encode H chains.

*IgM* is the sizeable pentameric antibody secreted into the blood during a simple B-cell-mediated response and at the beginning of an advanced B-cell-mediated response. As a rule, IgM has low affinity and high avidity for the antigen.

**From a clinical viewpoint**, IgM may indicate either any recent pathogenic infection or a reactivation of opportunistic microbes. IgM can mobilize the 1st component of complement and opsonize bacteria and fungi during phagocytosis. In healthy adults, it makes up 0.6–2.0 g/L. As a monomer, IgM is a part of BCR on immature B cells.

| <b>Table 1.4</b> Physicochemical qualities of immunoglobulin isotypes |            |                                                                                                 |                                                           |                                                       |           |  |
|-----------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|-----------|--|
| Feature                                                               | IgM        | IgG                                                                                             | IgA                                                       | IgE                                                   | lgD       |  |
| Form                                                                  | Pentameric | Monomeric                                                                                       | Monomeric<br>(serum IgA) or<br>dimeric<br>(secretory IgA) | Monomeric                                             | Monomeric |  |
| Heavy chain                                                           | μ          | γ                                                                                               | α                                                         | ε                                                     | δ         |  |
| Accessory chain                                                       | ſ          |                                                                                                 | Secretory<br>component<br>(SC) including<br>plgR          |                                                       |           |  |
| Subisotypes<br>(subclasses)                                           |            | 1 (65%)<br>2 (20%)<br>3 (10%)<br>4 (5%)                                                         | 1<br>2                                                    |                                                       |           |  |
| Number of<br>constant<br>domains                                      | 40H, 10 L  | 6H, 2 L                                                                                         | 6H, 2 L<br>(12H, 4 L)                                     | 8H, 2 L                                               | 6H, 2 L   |  |
| Molecular mass<br>(kDa)                                               | 950        | 150                                                                                             | 160<br>(385)                                              | 190                                                   | 180       |  |
| Half-life (days)                                                      | 5          | 23                                                                                              | 6                                                         | 2.5                                                   | 3         |  |
| Serum<br>concentration<br>in healthy<br>adults (g/L)                  | 0.6–2.0    | 8–16                                                                                            | 0.7–3.0                                                   | 0.003                                                 | 0.04      |  |
| Placental<br>transfer                                                 |            | +                                                                                               |                                                           |                                                       |           |  |
| Fc receptors                                                          |            | Fc <sub>γ</sub> RI<br>(CD64)<br>Fc <sub>γ</sub> RII<br>(CD32)<br>Fc <sub>γ</sub> RIII<br>(CD16) | Fc <sub>a</sub> R<br>(CD89)                               | Fc RI <sup>hi</sup><br>Fc RII <sup>lo</sup><br>(CD23) |           |  |

IgD is another part of the BCR, which appears on mature B cells. Soluble IgD is present in the bloodstream in a small concentration but may participate in some immune processes such as defense, tolerance, and allergic reactions. Also, IgD is expressed by anergic B cells.

IgG is the most common isotype of antibody found in the bloodstream. In healthy adult humans, IgG accounts for 6.0-16.0 g/L. IgG is characterized by high affinity for antigen having only two antigen-binding sites though. There are four IgG subisotypes (IgG1, IgG2, IgG3, and IgG4) in humans, named in order of their abundance in the bloodstream. The immunoglobulins of almost all subisotypes provide the most effective