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  Pref ace   

 After decades of disappointing results resilient to extensive efforts to improve the 
effi cacy of immunotherapy against cancer, patients and scientists are witnessing a 
revolution. A rapid translation of concepts from the bench to the bedside is fi nally 
making a difference in overall survival of patients with different types of cancers, 
including those traditionally considered non-responsive to immunotherapy. Clinical 
studies have proven unequivocally the effectiveness of T cell-based therapies that 
can induce regression of late stage cancers otherwise resistant to standard therapy. 
Regressions are associated with prolonged patients’ survival, achieving, in some 
cases, durable disease-free survival. 

 Many written accounts on large studies that validate the clinical usefulness of 
immunotherapy have appeared monthly in high-impact journals. This is leading to 
a rapid infl ation of the fi eld characterized by the rapid expansion of tumor immuno-
therapy clinical programs and participation of oncologists to meetings focused on 
this discipline. In the last 3 years, for instance, the Society for Immunotherapy of 
Cancer (SITC) has more than doubled participation to its annual meeting with 
nearly 2000 attendees. 

 This long-awaited success is giving both clinicians and scientists new opportuni-
ties. The high frequency of objective responses allows for a more effi cient study of 
mechanisms of responsiveness and identifi cation of biomarkers as a smaller number 
of patients must be accrued to observe a suffi cient number of responding cases. The 
shortened length of time necessary to perform informative clinical studies expedites 
the feedback loop stimulating research based on clinical evidence while simultane-
ously helping the design of second-generation clinical studies. In addition, the 
expansion of clinical protocols to larger patients cohorts in phase three or even post- 
licensing studies allows for a less fragmented approach to the understanding of 
human cancer biology by evaluating more homogenous patient populations in better 
controlled settings. This provides grounds for prospective validation of concepts 
developed during monitoring of early phase trials. 

 The clinical success has led to unprecedented nimbleness of regulatory agencies 
in approving novel therapeutics. This, in turn, has allowed a more fl exible off-label 
use of therapeutics in combination. Combination therapy trials demonstrated that 
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the therapeutic potential of immunotherapy agents is complementary and not over-
lapping. Thus, the tremendous success of combining conceptually similar 
approaches such as anti-CTLA-4 with anti-PD1/PD1L as checkpoint inhibitor 
agents, which have shown synergistic enhancement of unleash T cell activation. 
Considering the central role that checkpoint inhibitors are taking in the treatment of 
several cancers, their relatively limited toxicity, and simplicity of administration, it 
can be anticipated that future combinatorial approaches will be centered around the 
addition of other therapeutics such as pathway inhibitors, anti-cancer vaccines, ago-
nistic antibodies, cytokines, adoptive cellular therapies, anti-angiogenesis agents, 
chemotherapy, epigenetic therapy, and radiotherapy to checkpoint inhibitors. In par-
ticular, radiotherapy is taking a novel role in the treatment of cancer as a facilitator 
of anti-cancer immune effects through the demonstration of its abscopal effects: 
concurrent not-irradiated tumors regress in the presence of checkpoint inhibitor 
therapy after radiation. The abscopal effect is revolutionizing our understanding of 
the role played by radiation in modulating the biology of human cancers. 

 Several new concepts have also emerged throughout the implementation of clini-
cal trials: a salient one is derived by the observation that, contrary to other anti- 
cancer therapies, responses to immunotherapeutic agents are of long duration and 
linked to long-term survival. It has also become clear that immune responses follow 
a distinct dynamic pattern diverging from that of classical responses to standard 
chemotherapy. The latter is characterized, when successful, by immediate although 
often ephemeral reduction in tumor burden. Tumors that respond to immunotherapy 
often increase in size before a reduction can be observed. This phenomenon is 
believed to be due to the infl ammatory process induced by immunotherapy that 
leads to recruitment of immune cells within the tumor microenvironment. Another 
pattern peculiar to immunotherapy is the observation that several patients seem to 
benefi t from long-term stable disease although the biology of this “halting” of tumor 
growth is currently poorly understood. 

 Challenges remain. The cost of immunotherapy treatments is quite signifi cant. 
Therefore, several therapies are not readily available to all potential benefi ciaries. 
Interestingly, a cost-effectiveness analysis of these treatments is not, to our knowl-
edge, reported. Although the price for the individual treatment may be costly, its 
effectiveness, short duration, and limited toxicity may mitigate the overall cost of 
care compared to traditional approaches. 

 The optimal way to simultaneously avoid unnecessary exposure of patients to 
ineffective therapies while relieving the society from wasteful spending would be to 
predict a priori likelihood of response. The identifi cation of predictive biomarkers 
will, therefore, take a leading role in the next future. We and others have shown that 
the functional orientation of immune cells toward a Th1 polarization is a harbinger 
of likelihood or response. Interestingly, the same functional orientation has been 
associated with good prognostic connotation in most cancers. Lack of immune acti-
vation is likely to correspond to resistance to immunotherapy, while the presence of 
a Th1-polarized immune phenotype may indicate a microenvironment pre- 
conditioned to respond. Immunotherapy further enhances the otherwise lingering 
immune response leading to a full-blown activation of an acute infl ammatory 
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 process similar to that observed during acute fl ares of autoimmunity or during acute 
transplant rejection. We referred to this phenomenon as “the Immunologic Constant 
of Rejection.” An intermediate condition occurs when the same Th1 polarization is 
observed in association with improved prognosis. In that case, the immune response 
is not suffi cient to completely eradicate the growth of cancer but can slow its pro-
gression. These observations will need further validation in the future before such 
signatures could be used for patient selection. A comprehensive discussion about 
the revolutionary role played by signatures of Th1 polarization in reshaping cancer 
staging or prediction of its responsiveness to therapy is beyond the scope of this 
volume. However, these fi ndings clearly emphasize the central role played by T 
cells in controlling tumor growth. 

 Another limitation to the broad utilization of immunotherapy is the resistance to 
treatment peculiar to some cancer types. While novel immune therapeutics have 
greatly increased the range of immunotherapy expanding its proven effi cacy to can-
cers previously judged to be immune-resistant, several cancers such as breast cancer 
remain quite unresponsive. Further work will need to be done to understand how 
ontogeny, together with genetic background of the host and somatic alterations, 
may affect immune responsiveness. 

 Thus, in conclusion, the progress of immunotherapy has been exponential and the 
unprecedented clinical outcomes are promising for the years to come. However, sev-
eral challenges remain. Moreover, as the mechanism leading to tumor rejection has 
not been fully investigated nor completely understood using integrated system biology 
approaches, a better understanding will likely lead to further outcomes improvement. 

 This volume illustrates salient aspects of cancer biology relevant to the successful 
implementation of immunotherapy. Coverage includes the enhancement of antigen- 
specifi c immune responses by anti-cancer vaccines, modulation of the function of T 
cells within the tumor microenvironment, and the effect of genetic, epigenetic, 
developmental, and environmental determinants on T cell function. Also covered is 
the ex vivo expansion of T or other immune cells and their genetic modifi cation or 
reprogramming to increase their ability to survive and expand when adoptively 
transferred back to the patients. Specifi c attention is devoted to the genetic manipu-
lation of T cells through the introduction of re-directed T cell receptors, chimeric 
antibody receptors, and other genetic manipulation aimed at improving the effec-
tiveness of anti-cancer agents. Furthermore, the revolutionary role of checkpoint 
inhibitors and their potential in combination with other immunotherapeutic 
approaches or with standard chemo and radiation therapy is extensively discussed. 

 We hope that the readers will fi nd this volume useful and we would like to con-
clude with the famous quote from Winston Churchill: “This is not the end, it is not 
even the beginning of the end but, perhaps it is the end of the beginning”.  

  Bethesda, MD, USA      Ena     Wang      
Doha, Qatar    Francesco     M.     Marincola     
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    Chapter 1   
 Insights on Peptide Vaccines in Cancer 
Immunotherapy       

       Kwong     Y.     Tsang      ,     Caroline     Jochems      , and     Jeffrey     Schlom     

    Abstract     Human tumor-associated antigens are generally weakly immunogenic 
and therefore able to escape detection by the immune system. Numerous studies 
have shown, however, that immune cells infi ltrate many tumors, and that these cells 
are vital for keeping tumor burden in check. Immunotherapy can enhance this pro-
cess by further stimulating tumor-recognizing cells while decreasing the function of 
immunosuppressive cells, such as regulatory T cells and myeloid-derived suppres-
sor cells, thereby creating a more immune-activating tumor microenvironment. 

 Peptide vaccines can stimulate and activate T cells specifi c to tumor-associated 
antigens. Because peptides endogenously expressed by tumor cells are often weak 
immunogens, researchers are investigating various strategies for making them more 
immunogenic and more potent as vaccines. Here we review multiple strategies for 
enhancing peptide immunogenicity, including (a) peptides with amino acid substitu-
tions at anchor residues and heteroclitic analogs, (b) multiple variance long peptides, 
(c) whole protein and 15-mer overlapping peptides, (d) multiple peptides recogniz-
ing different tumor-associated antigens, (e) class I and II epitope hybrid vaccines, (f) 
peptide-pulsed dendritic cells, and (g) combining peptide vaccines with other thera-
pies. While it is unlikely that peptide vaccines alone could signifi cantly affect pro-
gressive disease, the combination of these vaccines with the right adjuvants and/or 
immunomodulatory agents has shown promising results in clinical trials.  

  Keywords     Peptide  cancer    vaccines     •    Immunotherapy     •   Combination therapy   • 
  Cytokines   •   Prime-boost regimen   •   Checkpoint inhibitors  

        K.  Y.   Tsang ,  Ph.D.      
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        Introduction 

 Immune editing is an extrinsic mechanism of  cancer   suppression that initiates only 
after cellular transformation has occurred and intrinsic mechanisms of cancer sup-
pression have failed [ 1 ]. The process of immune editing occurs in three phases: 
elimination, equilibrium, and escape. In the elimination phase, innate and adaptive 
immunity join forces to eliminate cancer cells before they become clinically appar-
ent, rendering the host virtually cancer-free. In the equilibrium phase, cancer cells 
not eliminated in the elimination phase are prevented from proliferating by host 
immunity, which maintains the cancer cells in a state of functional dormancy. 
Equilibrium is a function of adaptive immunity, which may restrain cancer cell 
growth in the host for a lifetime. In the escape phase, cancer cells once held in equi-
librium may escape recognition by adaptive immunity due to insensitivity to 
immune effector mechanisms and induction of immune suppression in the tumor 
microenvironment. Cancer cells that escape immune recognition proliferate and 
become clinically apparent. Therapies such as peptide vaccines have the potential to 
keep cancer cells in the elimination and/or equilibrium phase. 

 This review describes studies employing peptide-based  cancer    vaccines   and pros-
pects for improving their effi cacy through the use of peptides with amino acid substi-
tutions at anchor residues and heteroclitic analogs, multiple variance long peptides, 
whole protein and 15-mer overlapping peptides, multiple peptide epitopes from dif-
ferent tumor-associated antigens (TAAs), class I and II hybrid peptide vaccines, pep-
tide-pulsed dendritic cells (DCs), adjuvants including toll-like receptor (TLR) agonists 
and  cytokines  , and combinations of peptide vaccines with various other therapies. 

 Peptide vaccines have several advantages over other  cancer   vaccine approaches. 
Short peptides (9 or 10 amino acid residues) that bind to major histocompatibility 
complex (MHC) class I molecules can induce specifi c  CD8   +  T-cell responses that can 
lyse tumor cells expressing the cognate MHC class I and peptide [ 2 ,  3 ]. The quality 
of the immune response depends on the peptides and adjuvants used in the vaccine. 
Immune response rates approaching 100 % have been reported in some cases using 
multipeptide  melanoma   vaccines [ 4 – 6 ]. A mixture of a dozen peptides restricted to 
human leukocyte antigen (HLA)-A1, -A2, -A3, -A11, and -A24 can be a stable plat-
form for a vaccine that can be used in 85 % of cancer patients, thus overcoming the 
limitation of peptide restriction. It has been demonstrated that this type of peptide 
mixture can induce immune responses in vaccinated patients with no negative effects 
from antigenic competition among the peptides in the mixture [ 4 ,  7 ,  8 ]. Other advan-
tages of peptide vaccines include low production costs, stability, safety, their use as 
an off-the-shelf reagent, and their effectiveness as booster vaccines. On the other 
hand, peptide vaccines have some considerable limitations. In vivo, when a peptide 
vaccine is delivered into subcutaneous (s.c.) tissue, short peptides may bind to MHC 
on nonprofessional antigen-presenting cells (APCs) without optimal  costimulation  , 
which may induce tolerance. In addition, peptides in human plasma are rapidly 
degraded by exopeptidases and endopeptidases, and have a short half-life. In vacci-
nated patients, short peptides have no tertiary structure and thus may rapidly degrade 
before they can reach APCs. For example, the estimated half- life of MelanA/MART-1 
peptide in fresh human plasma is about 22 s [ 9 ]. These issues can be overcome by 
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combining the peptide with the proper adjuvant, which may not only emulsify it for 
better delivery, but also increase the half-life and stimulate the immune system more 
effi ciently to avoid possible induction of tolerance. 

 There are numerous TAAs being used as vaccine targets. Below is a description 
of TAAs employed in vaccines developed at the National Cancer Institute.  

     Tumor  -Associated Antigens 

    Carcinoembryonic Antigen 

 Carcinoembryonic antigen (CEA; CD66) is a 180-kDa immunoglobulin-like 
oncofetal glycoprotein that is expressed on the cell surface of normal colonic 
mucosa and primarily functions in cellular adhesion [ 10 ]. CEA is also commonly 
overexpressed on adenocarcinomas arising from the breast, cervix, lung, and 
 gastrointestinal tract [ 11 ,  12 ].  

    Mucin 1 

 Mucin 1 (MUC1; CD227) is a large transmembrane glycoprotein normally expressed 
at the apical surface of glandular epithelial cells [ 13 ]. In adenocarcinomas (i.e., 
breast, prostate, colorectal, ovarian, lung, bladder, and pancreatic) it is overex-
pressed and aberrantly glycosylated [ 14 ,  15 ]. Loss of epithelial-cell polarization 
also results in MUC1 expression throughout the cell surface. These characteristics 
make MUC1 a potential target for  immunotherapy   [ 16 ]. MUC1 is also expressed in 
hematologic malignancies such as B-cell lymphoma, chronic myelogenous leuke-
mia, and multiple myeloma [ 17 – 19 ]. The N-terminal (MUC1-N) is the large extra-
cellular domain that consists of a variable number of tandem repeats (VNTR) region 
and a non-VNTR region. MUC1-N is shed from cells, is present in the circulation 
of patients with advanced  cancer  , and is used as a tumor marker (CA15.3) in breast 
cancer patients [ 20 ]. The C-terminal of MUC1 (MUC1-C) has been shown by sev-
eral groups to be extremely important in the initiation and progression of a range of 
human neoplasms [ 21 – 23 ]. Overexpression of MUC1-C makes it possible for 
malignant cells of epithelial or hematopoietic origin to exploit the physiologic stress 
response, and thus stimulate their expansion and survival [ 24 ].  

    Prostate-Specifi c Antigen 

 Prostate-specifi c antigen (PSA) is a 34-kDa glycoprotein that is expressed in normal 
prostate tissue and prostate  cancer   [ 25 ]. PSA is also expressed at very low levels in 
the paraurethral and perianal glands, placenta, breast (including breast cancer), and 
thyroid. However, except for breast cancer, these tissues do not secrete a signifi cant 
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amount of PSA into the serum. Normally, PSA is secreted into the prostatic ducts. 
However, in prostate cancer the disordered glandular architecture causes increased 
amounts of PSA to diffuse into the serum, allowing PSA measurements to serve 
as screening and prognostic markers for prostate cancer. The immunogenicity of 
PSA has been demonstrated in multiple studies. Because PSA is secreted, it is not 
a good target for an antibody response. However,  T cell  s can recognize any pro-
teins made by cells once fragments of these proteins (peptides) are processed and 
presented on MHC molecules. It has been demonstrated that human cytotoxic T 
lymphocytes (CTLs) specifi c for PSA can be generated in vitro [ 26 ], and that 
some patients with advanced prostate cancer have naturally occurring PSA-
specifi c T-cell responses [ 27 ]. Furthermore, Gulley et al. demonstrated that in 
patients with prostate cancer, a PSA vaccine could generate PSA-specifi c T cells 
that secrete interferon gamma (IFN-γ) and lyse PSA-expressing tumor cells in an 
MHC-restricted manner [ 28 ].  

    Brachyury 

 The  transcription factor   brachyury was initially identifi ed as a molecule relevant to 
the formation of the mesoderm during murine embryonic development, which 
involves conversion of epithelial cells into mesenchymal cells [ 29 ]. Brachyury is 
thus a mediator of normal physiologic epithelial-mesenchymal transition (EMT) 
and metastasis. Subsequent studies revealed brachyury to be expressed in a range 
of human tumors, with limited levels in human adult testes and thyroid, and little 
or no expression in other normal adult tissues [ 30 – 33 ], making it an ideal target for 
 cancer    immunotherapy  . Transcription factors such as brachyury, however, are gen-
erally believed to be diffi cult to target with small molecule targeted therapies due 
to their nuclear location and lack of a specifi c groove for the tight binding of a 
small molecule inhibitor [ 34 ]. An alternative approach to targeting  transcription 
factors   is vaccine-mediated T-cell therapy. Recent studies have identifi ed an HLA-
A2 class I brachyury peptide that is capable of inducing human  CD8   +  CTLs in vitro 
[ 30 ]; these  T cell  s were shown to be capable of selectively lysing a range of 
brachyury- expressing human carcinoma cell lines [ 30 ]. Two  clinical trial   s   are 
ongoing employing recombinant vectors expressing brachyury (NCT01519817 
and NCT02179515).   

    Peptides/Proteins as TAAs 

 Many different TAAs have been used in  cancer    vaccines  , either as the whole native 
protein, 9-mer peptide epitopes, 15-mer peptide epitopes, or after making changes 
in the endogenously expressed proteins in order to make them more immunogenic. 
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