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Preface

 Punch’s almanac for 1882: ‘Man is but a worm’, published in Punch Magazine on 6 December 
1881. The satirical cartoon shows how Darwin has evolved from chaos, over earthworms to 
respectable gentleman.
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The first version of Comparative Immunology (1976) was an integral part of the 
early full summation of the field. We included for the first time 16 chapters which 
treated the immune systems of various phyla in depth: (1) the immune system, (2) 
phylogeny of the immune response, (3) nature of antigens, (4) phagocytosis, (5) 
quasi-immune recognition and primordial cell-mediated immunity, (6) primordial 
cell-mediated immunity, (7) the machinery of the immune system, (8) development 
of transplantation immunity, (9) characteristics of transplantation immunity, (10) 
genetic control and transplantation immunobiology, (11) invertebrate humoral 
immunity, (12) antibody synthesis, (13) the immunoglobulins, (14) activities of 
immune cells, (15) immunosuppression, and (16) epilogue.

That was the leading edge of our knowledge in 1976. There is a different approach 
in this book, some 42 years later. This assumes that readers are now educated 
enough to obviate the need to explicate intricacies of the immune response in great 
detail. That detail was an essential approach for the first edition – not so for the first 
revision. After all, many mechanisms are now sufficiently understood. Instead this 
revision has another approach: a focus on unique models, groups, exotic species – 
no need to spend time ad nauseam explaining antigen-antibody reactions in mice! 
The successors are animal species perhaps more interesting and exotic. Rather more 
exciting – the response in bats! After all, bats are carriers of various infections, so 
an analysis of their immune reactions would seem to be more novel. The study of 
their other physiological adaptations such as echolocation would be more exciting 
and new! And what about bigger, non-flying mammals – the elephant, promising 
clues to the scourge of cancer and dampening, we hope significantly, the urge to 
extinguish them permanently in their native habitats!

The 1976 edition dealt with humoral immunity in 4 phyla within a single 29-page 
chapter: echinoderms, mollusks, annelids, and arthropods. The book you hold now 
disperses these phyla into separate chapters that focus on different functions. 
Therefore, readers of this new edition can expect to find numerous characteristics of 
immune phenomena in separate animal taxa being presented in depth. This is evi-
dence that the field has advanced immeasurably since the first edition.

The emphasis now is on function, a veritable jardin zoologique, not technique. 
Moreover, methods and materials must often be modified for phyla that have dis-
tinct characteristics. For example, to perform a skin allograft on a fish, we transplant 
scales and watch the degeneration of melanophores as an indication that the graft is 
destroyed by the host immune system. In contrast, the equivalent skin graft in a 
mouse would require suturing or more drastic methods, then watching the healing 
process including signs of cicatrix formation, hemostasis, and ultimately rejection. 
Independently of technique, the principle is rejection of non-self, and the accept-
ance of self, whether fish scales or mouse skin. Another example of the widening 
scope of comparative immunology is single cell organisms. In 1976, knowledge of 
the prokaryotic immune response was nascent, as studies of restriction enzymes to 
cut viral DNA were just ramping up. Thanks to the discovery/addition of CRISPR 
(very simply, editing of disorganized nucleic acid) to the toolkits of prokaryotes and 
immunologists, the explication of self/not self and immune reactions at the molecu-
lar level should make significant strides forward.
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Part 1 of this book looks at the immune system in taxa from prokaryotes to uro-
chordates, all of them invertebrates. The overarching first chapter summarizes the 
evolution of immunity. This segues into discussions of amoebae, corals, flatworms, 
and roundworms. Annelids, arthropods, and mollusks are covered in three, two, and 
two chapters respectively. (To spread these three phyla into seven chapters would 
have been unthinkable in the first edition; too little was known!) Echinoderm immu-
nology introduces us to the deuterostomes. Urochordates, which include tunicates, 
are a suitable bookend; they are among the most “primitive” of the chordates.

Part 2 covers cephalochordates up to and including mammals. The cephalochor-
dates include branchiostomes (lancelets or amphioxus), fishes (cartilaginous and 
bony), reptiles, and birds (with focus on ostriches). This section ends with chapters 
that consider immunity in bats and elephants, followed by the phylogeny of naso-
pharynx lymphoid tissue.

Part 3 considers certain broader implications and vulnerabilities due to world-
wide climate change, cancer, therapy, and the quest for more diverse food sources. 
Immune responses in poikilotherms and ectotherms are vulnerable to temperature 
change making them sources of information that senior comparative immunologists 
always knew – internal temperature will affect the outcome and reproducibility of 
trials – a factor of less concern in experimental homeothermic species. The contin-
ued search for food sources may turn us to additional edible invertebrates, perhaps 
more plentiful and less polluting. Variations in immunity within a species and 
between species are the topic of the chapter on ecoimmunology. Toxicity and dis-
ease are explored in earthworms, bivalves, and frogs. The clinical use of maggots in 
biotherapy is described. The last chapter links cancer and evolution, connecting to 
evidence for neoplasia in bivalve mollusks seen before in this part.

With such impressive advances in comparative immunology since the first edi-
tion of this book, who can predict what the third edition will cover? Surely the matu-
ration of this field within the umbrella of immunology, combined with bright 
researchers adapting sound techniques, will lead to further basic and applied 
knowledge.

Preface
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France, In addition, I accepted an invitation from Professor Jean Dausset to publish 
a major review in French in the popular science magazine La Recherche.

It is impossible to mention everyone who has earned my appreciation in the writ-
ing of this book, for which I would run the risk of omission. I have now joined, to a 
limited extent, the digital age and suggest that interested colleagues search Google 
or PubMed to find a variety of publications consisting most recently of reviews and, 
occasionally, experimental papers. Generous research funds were provided by 
National Science Foundation, National Institutes of Health, and the American 
Cancer Society in support of my research in comparative immunology. As my pub-
lications increased, there was a corresponding decrease in national funding, which 
did not dampen my enthusiasm or productivity. As the old adage has it, “I will either 
find a way, or make one” (supposedly said by Hannibal in 218 BC when his plan to 
cross the Alps via elephants was challenged).

It was not always easy to win the intense competition for funds since compara-
tive immunology was not mainstream in the late 1960s; still, it was important 
enough to maintain funding for some of us still embued with questions that could be 
answered and useful after experimenting with plants and animals (leading to the 
production of pharmaceuticals). I interpreted this as an obscure hint that a new tactic 
that could provide support was needed! Why not increase the importance of com-
parative immunology by making it better understood, thus augmenting its visibility? 
Aha! Start a much needed journal! Founding a journal, like any project, whether a 
book or invention was feasible if a unique proposal could be presented to a pub-
lisher. Several disappointments greeted my proposal until finally, and seemingly 
spontaneously, came a positive response in 1976: Pergamon Press, under the guid-
ance of Robert Miranda, offered a contract to publish a journal, which I called 
Developmental and Comparative Immunology to be inclusive. I nervously signed 
the contract at the Federation meetings in nearby Anaheim, appointing my wife 
Helene the first and only administrative assistant for 18 years to assist in this inter-
national effort. With some minimal fanfare but discreet determination, Volume 1 
was published in 1977 with two hastily formed but enthusiastic advisory and edito-
rial boards, lending a measure of prestige!

Some aspects of the journal in the midst of substantial visibility were not usual. 
DCI was at first a “cut-and-paste” journal, produced like an international quilt (all 
sorts of fonts!)—but it was published nonetheless, extending the reach of DCI. DCI 
opened the giant doors of the publishing empire of Robert Maxwell, a CEO with a 
keen eye for up- and- coming publications. On his 65th birthday and the 10th anni-
versary of DCI, we, meaning all of his several hundred editors, gathered for a cele-
bration in Oxford, England. Sessions during the day were devoted to the realities of 
publishing, the advent of computers, and sneak peeks at what publishing was about, 
including scientific journals. Evenings featured elegant black-tie-and-tail events! 
Bubbles and exquisite cuisine rounded things off.

DCI matured, opened many more doors, and provided the necessary and continu-
ous visibility so essential for any idea as it might relate to biomedicine. But alas, it 
matured up to a point, when it came time to make some changes after more than 15 
years, when I passed the torch and other chief editors took up the reins. Having 
published my own papers and organized and published symposia, I gladly stepped 
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down and gave impetus for national societies under the aegis of DCI, Japan’s strong 
and influential JADCI, for example, is now a flourishing model.

Moreover, certain findings by studies of comparative immunology gave birth to 
other disciplines and journals, for example, the immune systems of animals and 
plants, harnessing the resources of the ocean. The idea was to promote the renais-
sance of ancient medical remedies, paying special attention to the beneficial sub-
stances derived from the sea that could be developed into medicinal products! What 
about bee venom acupuncture, born from the observation of humoral immune sys-
tem products? And bees are just one of many examples. Finally, tribute was paid to 
the earthworm, a source of food in other cultures whose humoral immune system 
had progressed to the point where an agent was isolated from its serum like fluid to 
prevent blood clots. The innovations kept coming!

One of the important spinoffs from my duties as DCI editor emerged as an 
incredible windfall while I was lecturing in Japan. Professor Nobuo Yamaguchi was 
a long-time friend in comparative immunology who was interested in launching, 
under Oxford University Press, a journal devoted to complementary medicine to fit 
this growing need to expand aspects of medical practice. For centuries, humans 
subsisted on natural products derived from plants and animals, before the advent of 
pharmaceutical houses, and the rapid advance of medical science. To my surprise, I 
was offered the editor-in-chief position. After a few hours of personal deliberation, 
I accepted the offer, which provided manna to fuel the emerging discipline of com-
plementary and alternative medicine (Cooper EL, Yamaguchi N (Eds). 
Complementary and alternative approaches to biomedicine. Advances in experi-
mental medicine and biology. vol. 546. New York: Kluwer Academic/Plenum Pubs 
2004). The journal Evidence-Based Complementary and Alternative Medicine 
(eCAM) is published by Hindawi, is open access, and, like DCI, earlier afforded me 
new opportunities to engage in an activity that gives me great pleasure—writing.

The spectre of starting a new organization provided a windfall of enthusiasm so 
essential during the birth of a cohesive, dedicated group. eCAM, like DCI and the 
aforementioned book, began with a bang. Here is a sampling of scholarly contribu-
tions as per Scopus, which are direct evidence of enthusiasm: Gibellini L, Marcello 
P, Milena N, Montagna JP, De Biasi S, Roat E, Bertoncelli L, Cooper EL, Cossarizza 
A (2011) Quercetin and cancer chemoprevention. Evid Based Complement Alternat 
Med. 2011:591356. doi: 10.1093/ecam/neq053; Cooper EL, Yao D (2012) Diving 
for drugs: Tunicate anticancer compounds. Drug Discov Today 17:636-648; Cooper 
EL, Balamurugan M, Huang C-Y, Tsao CR, Heredia J, Tommaseo-Ponzetta M, 
Paoletti MG (2012) Earthworms dilong: Ancient, inexpensive, noncontroversial 
models may help clarify approaches to integrated medicine emphasizing neuroim-
mune systems. Evid Based Complement Alternat Med. 2012:164152. doi: 
10.1155/2012/164152; Cooper EL, Hirabayashi K (2013) Origin of innate immune 
responses: revelation of food and medicinal applications. J Tradit Complement Med 
3:204-212; Mackler AM, Heber D, Cooper EL (2013) Pomegranate: Its health and 
biomedical potential. Evid Based Complement Alternat Med. 2013:903457. doi: 
10.1155/2013/903457; Huang C-Y, Cooper EL, Fang-Yeu Poh C, Kuo WW, Chen 
T-S, Sherman R (2014) Special invertebrate models and integrative medical applica-
tions: Regulations, mechanisms, and therapies. Evid Based Complement Alternat 
Med. 2014:843961. doi: 10.1155/2014/843961.
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Advances in Comparative Immunology 
Introduction

 Why Study Comparative Immunology?

This is the first revised textbook to offer a comprehensive review of recent and 
exciting advances in comparative immunology. The book presents an evolutionary 
approach to cellular and humoral immunity and reveals the immune system as ubiq-
uitous and necessary for all animals to survive. Many textbooks are available on 
immunology, but often they are oriented solely toward medicine or allied profes-
sions. This textbook of comparative immunology is a unique beginning text for 
those advanced students of biology, zoology, immunology, and other disciplines 
who are interested in more biological or comparative approaches to the analysis of 
immune competence.

This book provides us with an overview of immune reactions—a possible step-
ping stone to graduate study in comparative immunology. Specialists, often with a 
mammalian orientation, can use the text as an introduction to a wealth of other 
vertebrates and invertebrates and a source of new and meaningful facts pertinent to 
immunology. Despite this orientation, the book would even be appropriate for medi-
cal, dental, and nursing students. Thus, comparative immunology is important to 
anyone who understands and appreciates the fundamental aspects of immunology 
and biology and who can grasp significant breakthroughs in immunology when 
viewed in phylogenetic perspective. Since the first edition, progress in the field has 
been outstanding!

Immunologists will quickly recognize many fruitful approaches to understand-
ing immunity. To aid the reader, much illustrative material and many references to 
original works and reviews are given. This expanding information reveals that anal-
yses need not be restricted to rabbits or guinea pigs, since the invertebrates, fishes, 
amphibians, reptiles, and certainly birds are excellent species for deciphering the 
basic mechanisms of immune reactions. It should be remembered that cellular 
immunity, undergoing rapid refinement and extended breadth, had deep historical 
roots in observations on invertebrate cellular immunity. For this reason a good deal 
of attention is devoted to specific cellular immunity in invertebrates. The apparent 
absence of circulating immunoglobulins, but the presence of a complicated and 
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efficient humoral immune system, in invertebrates should offer fertile ground for 
speculating on the nature of those pressures that may have led to the evolution of 
antibody synthesis in vertebrates.

 2018: Evaluating the Impact of Comparative Immunology

Actually, comparative immunology may succeed even further by some productive 
and essential “mimicry.” Comparative neurobiologists are now questioning their 
approaches in the special issue of Science called “Challenges in Neuroscience” 
(Yartsev 2017). They pose the question of whether a comparative approach is impor-
tant in exploring the nervous system. In essence, their proposal suggests a recogni-
tion of and focus on a handful of animal models to explore particular questions—more 
narrow analysis. Here are several of their suggestions: Utilize the frog Rana pipiens 
as ideal for a strategy to clarify synaptic transmission, or investigate the squid, 
horseshoe crab, and sea hare Aplysia to understand respectively action potentials, 
retinal physiology, and learning associated with neural memory. Back to immunol-
ogy: R. pipiens can offer extended clues due to the metamorphosis from tadpole to 
adult frog, setting in motion organogenesis, especially bone marrow, which is the 
source of immune stem cells.

I would suggest a similar discussion with respect to both the invertebrates and 
vertebrates in mind—offering more numerous models that can be whittled down to 
fewer numbers with a focus on the additional, more ecological problem of food sup-
plies and terrestrial and aquatic species as sources of life-saving drugs. Possible 
models are plentiful even after judicious and practical selection.

The study of immune systems in disparate phyla is also a way to quantify the bio-
logical effects of global climate change. Food webs are among the most significant 
phenomena affected by planetary warming. A population decline in one member spe-
cies could be disastrous for the remainder of the web. Likewise, a significant increase 
in the individuals of another species “invading” an extant web might lead to disrup-
tion. It is extremely conceivable that the dysfunction or competent function of a spe-
cies’ immune system could be a factor in population collapse or explosion, respectively. 
For example, temperature change will likely alter the mix of pathogens present in a 
particular habitat. The ability of species’ immune systems to cope with a disruption in 
any pathogens surrounding them could in turn impact the species’ survival.

And it is not disputable that humans and mice are the organisms in which the 
immune system has been most deeply investigated. The unquestioning extrapola-
tion of these findings to other animal species, including invertebrates and poikilo-
thermic ones, entails risks. Yet it is these nonmammalian species that dominate 
among animals in food webs. As Yartsev noted, “In the absence of comparative 
studies, an entire field may be led astray by observations that are either species spe-
cific or misinterpreted in the absence of comparative data.” He adds later, “… the 
comparative approach serves as an extremely powerful tool to assess the validity of 
universal principles on a case-by-case basis. In the absence of the comparative 
approach, many discoveries may not have occurred, would have reached the wrong 
conclusions, or would have taken far longer to be unveiled.” Thus the 
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comprehension of nonmammalian immune systems, which may be a large factor in 
the survival of food web members, will likely be unachievable by the simple exten-
sion of what is known about humans and rodents.

Research into temperature changes and the immune system in poikilotherms 
began years ago. Cellular immunity in Antarctic sea urchins reflected signs of stress 
with a 4 °C rise in temperature (Branco et al. 2012). Many marine organisms must 
adjust to acidification as well as warming. Expression of immunity-related genes 
was altered by lowering the pH in the mussel Mytilus chilensis (Castillo 2017). The 
effectiveness of the insect immune system may be heightened by heat shock (Wojda 
2016), but this is different from the chronic temperature rises that are occurring 
now. Immune competence declined in two species of freshwater fish of the Iberian 
Peninsula (Jesus et al. 2017). Hibernation and other survival strategies by poikilo-
thermic animals (Storey and Storey 2017) depend heavily on ambient temperatures, 
which are likely to increase by global warming.

 Distinct Periods in Conceptualizing Comparative Immunology

As suggested by Michael Suzuki, PhD, former graduate student, this book required 
something more than an ordinary preface of just two pages. After careful examina-
tion, the discipline of comparative immunology has in fact a long history, even as far 
back as early indications and records of concern by observers of disease onset. What 
is left in Egyptian tombs as evidence of war between humans and infectious dis-
ease? Aulus Cornelius Celsus recorded evidence of inflammation in mummies in his 
encyclopedia compiled in the Roman era. The early twentieth century revealed 
compelling evidence of inflammation, which we surely know today as the beginning 
that “jump starts” one component of the innate immune response.

This first revision of Comparative Immunology is an exciting contribution. Boyhood 
observations (e.g., ants on a well-worn trail always attack nonmembers) have been 
transformed into important real-world concepts (e.g., ants recognize self/nonself, a car-
dinal principle of immune competence). Early hunches are now channeled into tangible 
events. As a discipline, comparative immunology is an offshoot of the parent field, 
immunology, and is an amalgam of immunology and zoology. Comparative immunol-
ogy has gained wide acceptance in the biological sciences. All animals from protozoans 
to humans have solved the threat of extinction by evolving an immune-defense strategy 
that ensures the capacity to react against foreign, nonself microorganisms and cancers 
that disturb the homeostatic self. Invertebrate-type innate immune responses evolved 
first, and they characterize the metazoans. These rapid natural responses act immedi-
ately and are often essential for the occurrence of slower, more specific, adaptive 
vertebrate- type immune responses. As components of the innate immune system, there 
is an emphasis on several major steps in the evolutionary process: (1) recognition, (2) the 
phagocytic cell, and (3) the natural killer cell. We now know that some invertebrate and 
vertebrate mediators are homologous.

The zoological inheritance received by comparative immunology is evident from 
the astute recognition by the organization of the American Society of Zoologists 
(ASZ) (now the Society for Integrative & Comparative Biology) in 1975. The ASZ 
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always exerted a strong influence, and reinforced the will and ensuing success, 
which was official and provided essential support for establishing a fledgling group; 
I experienced this first-hand while creating the first organized group. Innate immune 
systems have been successfully defending invertebrates and plants against microbial 
infections since time immemorial. The germline-encoded receptors of innate sys-
tems are relatively limited in diversity and able to make only coarse distinctions 
between closely related structures. Nevertheless, they can recognize certain chemi-
cal features shared by groups of microorganisms (e.g., pattern recognition receptors) 
but not by the host, such as lipopolysaccharide of Gram-negative bacterial cell walls. 
This capability enables innate immunity to detect the presence of an infection, if not 
the precise cause—perhaps considered a biological, not a structural, distinction.

Because of its evolutionary success, innate immunity is no longer considered pri-
marily a stopgap measure, a temporary expedient for host defense; it is ubiquitous and 
omnipresent. There seems to be an absence of genetic-recombination mechanisms to 
generate specificity or “memory” because first and second exposures to a microbial 
substance elicit similar responses; yet there are exceptions. Acquired immunity first 
appeared in vertebrates. When they evolved, beginning with fish, thymus-controlled T 
cells appeared, as did bone-marrow-derived B cells (first found in anuran amphibians 
with long bones, as mentioned earlier in connection with metamorphosis). These were 
the precursors of the plasma cells that synthesize and secrete antibodies. Confirming 
the concept of self/nonself, invertebrates possess natural, nonadaptive, innate, non-
clonal, nonanticipatory immune responses, whereas vertebrates possess acquired, 
adaptive, induced, clonal, and anticipatory responses. The essence is survival.

Thus, Comparative Immunology, one of many contributions to immunology appear-
ing around 1976, provided real evidence, not guesswork, constituting the basis for a 
legitimate discipline. That survey added strong and palpable support for further 
advances, reaching out to scattered hints of observations that belonged to the ancestral 
parentage of animals. Through persistent local initiatives at many levels and in many 
cultures, there accumulated consistent evidence for the ubiquitous phenomenon of 
immunity. Immune competence is everywhere, globally, and has thrived, providing and 
giving back its fruits of understanding. As it happens, a cross-fertilization of many 
disciplines need not threaten the original views that were chiefly derived from mam-
mals and, therefore, human oriented, essential but not universally pertinent.

 Retrospective Look at Comparative Immunology

 Egyptians’ Discovery of Inflammation in Ancient Humans

The earliest surviving records of immune phenomena describe ailments in humans. 
For instance, inflammation is noted in an Egyptian papyrus of 3000 BC. (Weissman 
1990). Bacterial DNA isolated from an Egyptian infant mummy demonstrates that 
bacteremia and likely septicemia affected that child (Zink et  al. 2000). Parasitic 
infection by Ascaris spp. and related helminths were found in 1200 CE mummies of 
the Guanche people of the Canary Islands (Jaeger et al. 2016). Egyptian mummies 
exhibited signs of malaria, and symptoms of this parasitic disease were described by 
Hippocrates among some of his Greek contemporaries (Nerlich 2016).
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Some progress in the war against infectious agents affecting humans was made 
during later centuries, before these agents were identified and methods invented to 
assay immune responses. For instance, smallpox inoculation is mentioned in a Chinese 
text of the sixteenth century, written long before the nature of viruses became known. 
Benefits from such intellectual “low hanging fruits” were finite, and modern advances 
in understanding human immunity have required tools to observe and comprehend 
what people were fighting against. Mass production of microscopes and chemicals, 
invention of chambers for cell and tissue incubation, centrifugation, and usable radio-
isotopes are only a few of the influential technical approaches that have allowed the 
dissection of emerging immune responses. Techniques that could reveal how human 
immunity fights disease were eventually adapted and elucidated the immune systems 
of other animals, providing ever greater clarity in lower animals in the early to mid- 
twentieth century, and these efforts continue today.

 Advent of the Modern Era: Élie Metchnikoff

Since the time of Élie Metchnikoff, there has been a steady, but most of the time 
informal, approach to invertebrate immunity (Cooper et al. 2002). Yet more than 
20 years later after the discovery of simple phagocytosis, his views were rewarded 
and recognized by the Nobel Prize in Physiology or Medicine in 1908. For the cel-
lular arm of the immune system his contribution is far-reaching; over the years the 
implications have been extensive (Cooper 2008). Rather than dismissing his views 
entirely, the cellular arm of the immune system continued to enlarge, so overarching 
that it permeated every facet of the immune response, except for activities specific 
to B cells. The essence of comparative immunology has been pervasive.

Twice in the history of twentieth- and twenty-first-century immunology, the 
Nobel Prize in Physiology or Medicine has been based on simple basic aspects of 
inflammation. (The second was Jules A.  Hoffman in 2011 for the intricacies of 
receptor activity that drive immune responses.) Moreover, the experimental subjects 
have been animal models other than mice, again invertebrates, specifically insects. 
This lent credence to the advisable use of all species as sources of interrelated phe-
nomena. Metchnikoff spearheaded this significant approach by identifying phago-
cytosis in Daphnia, the water flea. Peering through the flea’s translucent body wall, 
our eminent Russian zoologist from Odessa, enjoying the beach in Sicily, reasoned 
that white mobile cells (leukocytes) slowly and deliberately encircled the foreign 
body, rendering this alien cell inactive and preventing death.

The prescience of this observation did much to link aspects of protection to 
ubiquitous leukocytes or white cells, sensitive to uninvited intrusion and providing 
the first line of the body’s defense to foreign invasion: the militaristic analogy! 
Thus was born the essence of innate immunity, later declared constant in all living 
species. Metchnikoff, somewhat like Darwin, became a ubiquitous name associated 
with the essence of biology in the nineteenth century. There were glimmers of hard 
science that attempted to invade or break the intellectually stubborn doors of a natu-
ralist’s views. Although some have supported Darwin’s influence on the develop-
ment of comparative immunology, this has become evident only in recent years 
(Cooper 1982, 2008; Cooper et al. 2002).
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Darwin was born in 1809 and died in 1882. The young Darwin was well traveled 
and the quintessential observer in the wild. Metchnikoff, born in 1845, was less the 
adventurer, more a microbiologist, who died in 1916. They were a generation apart 
and apparently never met in person. Yet the aura of what they had discovered was 
surely “in the air,” creating an atmosphere whose influence was most probably felt 
internationally. For each achievement, in summary, there was an element of simplic-
ity despite the end product/result of shared similarities. Although they overlapped 
substantially in age, there are no records showing mutual influence on each other 
nor on the fields to which they contributed so vastly. One was the exploring natural-
ist who traveled extensively, the other staying close to his laboratory to make his 
discoveries. The universal act of phagocytosis, its ubiquity, laid the foundation for 
its acceptance as universal—no complicated reagents necessary to assert its perva-
sive influence. A similar prescient simplicity characterized them both.

 Leo Loeb: The Biological Basis of Individuality – Emergence of Self/
Nonself

Early in my career, as a junior faculty member, I accepted this Loeb book as a most 
treasured gift from Prof. Nicholas Cohen, the second postdoctoral fellow of 
W.H. Hildemann. Nick and I overlapped in many ways—our choice and subsequent 
abandonment of a first PhD research problem: the development of limb regeneration 
in urodele amphibians. On a page of this gift Nick wrote, “Let us never forget 
individuality.”

The Prussian-born physician Leo Loeb contributed the early appearance of the 
basis for self/nonself concepts as expressed in his 1945 The Biological Basis of 
Individuality. (This represented the beginning of crucial and important tomes and 
treatises in the field, which focus on self/nonself and mutually related variations.) 
Whether it was absolute prescience on the part of Loeb to anticipate self/nonself, or 
it was so obvious that the duality emerged, after a good deal of thought and publica-
tion, that there were inherent differences among all individuals, is unknown. Early 
on, what was crucial to comparative immunology was a recognition that this indi-
viduality was characteristic of all species. To add support to this emerging doctrine, 
Loeb not only perceived or anticipated the concept of self/nonself but recognized 
early on that any differences or likenesses were clearly demonstrable by simple 
experiments involving the transplantation of grafts in as many animal species as 
possible. What was revealed was the essence of self/nonself. To support his view 
that all living creatures possess the capacity to show differences when confronted 
with unlike tissues, Loeb established the field of transplantation immunity, whose 
basis was the early recognition of self/nonself, only later to be accepted by the 
founders of transplantation biology including Burnet and Brent.

As a favorite animal model, somehow earthworms became the choice of many col-
leagues close to Loeb who would become the experts providing the confirmatory evi-
dence when transplantation immunology in invertebrates was first discovered (Cooper 
et al. 1992). To confirm the universality of this kind of response, the recognition of 
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individuality differentials (later known as self), Loeb the inquiring scientist hastened 
to include other creatures where easily transplanted tissues could be made, thereby 
revealing the existence of individuality differentials. Quoting at length from Loeb 
(1946): “The lumbricidae differ from the planarians in a considerably greater fixity of 
their organs and presumably in a correspondingly greater specificity and fixity of the 
substances on which the differences between organs depend (organ differentials, a 
predecessor of the self / not self concept). While the organs have not yet become 
entirely rigid, still the differentiation between head and tail parts is more fixed than in 
planarians [see chapter by Oviedo]…

“In accordance with this change in the organs we find a greater differentiation in 
the organismal differentials, as is indicated in the transplantation experiments on 
lumbricidae which have been carried out especially by Korschelt and his associates, 
Joest, Rutloff, Leypoldt, Harms, Rabes, and more recently by Mutscheller. The ear-
lier of these experiments antedated the majority of the investigations on coelenter-
ates and planarians. At that time attention was focused on problems which have 
since” been couched in different terms. Every effort made by Loeb emphasized the 
individuality of all beings regardless of level of evolution expressed as distinctions 
between self and nonself that characterized that individuality. To lend credence to 
universality, various models explored the unique character of the experimental spe-
cies. As will be seen later, many of the models in this period were analyzed later, 
beginning in the 1970s as the parent field of immunology became better understood. 
Still we must recognize that even among mammals, like the laboratory mouse, 
information was woefully inadequate with respect to components of the immune 
system and what each component did when confronted with the demand of the ani-
mal to defend itself against that which was foreign, again expressing individuality 
differentials, later becoming self/nonself.

For example, several researchers working in the 1920s devoted enormous atten-
tion to the fate of transplants between different species of earthworms. Only in the 
1970s did investigators see that the observation of earlier scientists was immune 
capability, expressed as the biological basis of individuality. However, the 1970s 
workers were equipped with functioning stronger evidence that specifically defined 
differentials, i.e., self/nonself. The self/nonself model remains solid and was only 
questioned many years later. In the 1990s the view that danger in an organism could 
act as a nonself stimulus arose, offering more testable opportunities for further 
research (Matzinger 2002a, b).

 1960–1980

First appearance of clonal selection; self versus nonself; integrity of body; ontogeny 
and phylogeny of immune system; phylogeny separately; defense reactions in inver-
tebrates; Cushing and Campbell, Principles of Immunology (1957), whose chapter 
12 has an early mention of comparative immunology).

Immunology was beginning to show some resemblance to what we know today 
as comparative immunology. As a growing field, it was turning toward analysis and 
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considerations of mechanisms. However, as we see from today’s vantage point, 
mechanisms were really scant, since technology was undeveloped, and the applica-
tion of technology to questions rarely yielded meaningful analyses and conclusions. 
Naturally, as an emerging experimental science, advancement of the parent disci-
pline required animal models. The first two acceptable models were the laboratory 
mouse and rat. Rabbits were also employed as the discipline grew. Eventually other 
warm-blooded animals, such as chickens, guinea pigs, and hamsters, were some-
times added to the necessary experimental mix of animal models. Immunology con-
cerned with human problems naturally searched for relevant animal models and 
posed questions that could be answered, thereby opening windows and doors, per-
haps advantageous, as would be seen later, what were somewhat unproductive exer-
cises. These early forays into the science revealed little, yet they stimulated 
researchers’ desire to open yet more doors and windows. Once these were opened, 
what would become the emphasis?

Enter an emerging group of biologists qua zoologists (not yet comparative 
immunologists!) familiar with other animals as incredible sources of relevant 
immune characteristics. This was further hampered again by a lack of sufficient 
immune information to establish universal traits among many animal species. These 
new fledgling immunologists were often not viewed as such by the existing mam-
malian immunologists, who were locked in imperceptibly with their furry and 
homeothermic creatures. Still, their value as former microbiologists, now focused 
on the immunology of infectious diseases, was a source of consolidation and bridge 
building, capable of straddling the divide less strenuously than the uncomfortable 
hard-core microbiologists. After all, they were and are more open to the beauties of 
the living world, able to escape from a firmly closed mindset focused narrowly but 
understandably on humans. This essential anthropocentricity offers little in our 
search for the universality of the basics, which include widespread mechanisms of 
survival; after all, at best survival meant preserving certain warm-blooded creatures 
and barnyard birds as sources of food. In this book, it is the immune system that we 
analyze for common denominators, thus opening doors for our entrance into the 
wide array of animal species to the exclusion of plants—although equipped to guard 
against disease and ensure survival, their mechanisms are different.

I worked driven by affection and dedicated to the cause of the first version of 
Comparative Immunology, published in 1976. This was done through multiple invi-
tations actually, one for Comparative Immunology via a comparative endocrinolo-
gist, Prof Howard Bern of the University of California, Berkeley. The decade of the 
1970s represented an important watershed. Doors opened and my ideas, whose 
seeds lay dormant to some extent in the 1960s, suddenly burst forth. This was an 
important period for laying the groundwork of comparative immunology. For me, it 
began with the award of a Guggenheim Fellowship for studies on comparative 
immunology at the Karolinska Institute Sweden in 1970. This period saw the launch 
of dedicated efforts to understand the evolution of the immune system. It seemed 
reasonable to think and to imagine that protection against infectious microbes was 
a property of all creatures, humans included.
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Burnet wrote Immunological Surveillance in 1970, where he revealed the possi-
bility that immune systems evolved to protect against mutated cells, including can-
cer cells; two textbooks on comparative immunology, one by Cooper, another by 
Marchalonis, appeared; nomenclature that is still in use today was laid down; 
Volume 1, Number 1 of the journal Developmental and Comparative Immunology 
was published in January 1977; books on animal models of comparative and devel-
opmental aspects of immunity and disease appeared; volume 4 of Contemporary 
Topics was commissioned (part of a series). Thus, the 1970s were especially pro-
ductive—different names, but universality among animal groups and problems of 
disease were important topics.

This was immunology’s turning point, a crucial period devoted to comparative 
immunology. In 1974 I edited Contemporary Topics in Immunobiology (Cooper 
1974). The fourth volume in this outstanding series presented modern approaches to 
cellular and humoral immunity and examined relationships between invertebrate 
and vertebrate immune capacity. Noted scientists, including Nobel Laureate 
Macfarlane Burnet, discussed the novel theory of immunologic surveillance—an 
explanation of how cells distinguish between self and nonself—and related it to 
cancer biology. Also included were studies of graft rejection in earthworms, as well 
as in hydras and other marine invertebrates. The work looked at several insect 
immune defenses and described leukocytes derived from the octopus white body. 
(By the way, it would be interesting to see how the immune system of the octopus 
surpasses that of many other animals, considering the complexity of the octopus 
nervous system and the fact that octopuses have the capacity to show emotion, as 
demonstrated in some studies.) Finally, this book describes events in phagocytosis 
and presents a notable but contentious view—tumors in Drosophila and, perhaps, 
in some other invertebrates.

My 1976 book, Comparative Immunology, was part of the Foundations of 
Immunology series by Prentice Hall, which included at least five other volumes. 
This series of monographs was intended to provide readers of diverse backgrounds 
with an authoritative and clear statement concerning aspects of immunology. This 
book contained 16 chapters with such diverse topics that were intentionally basic, 
seeking clarity for a diverse audience. It covered the immune system, phylogeny of 
the immune response, nature of antigens, phagocytosis, quasi-immune recognition, 
primordial cell-mediated immunity, the machinery of the immune system, develop-
ment of transplantation immunity, characteristics of transplantation immunity, 
genetic control and transplantation immunobiology, invertebrate humoral immu-
nity, antibody synthesis, the immunoglobulins, activities of immune cells, immuno-
suppression, an epilogue that treated two pertinent topics for adaptive immunity, 
and, finally, the impact of immunology.

The year 1976 also saw the publication of another book called Comparative 
Immunology, edited by John J. Marchalonis. This book was similar to the one by 
E.L. Cooper except for a focus on authors, of whom many agreed on certain charac-
teristics. This contrasted with Cooper’s emphasis on animal models. Thus 
Marchalonis’s book was more universal with respect to subjects and experts in the 
field, which counted up to almost 25 comparative immunologists! The Marchalonis 
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book was perhaps easier to read and covered the subject of comparative immunol-
ogy in more depth if for no other reason than its breadth (740 pages long) compared 
to Cooper’s (338 pages). Both were and still are valuable, but a comparison of the 
two with each other revealed that their style and content were not so even.

Enter a different twist to the topic of comparative immunology, a tertiary book, 
Comparative Immunobiology, by Margaret Manning and Rodney Turner. Compared 
to the two previously mentioned texts, this book contained approximately 180 
pages, small and compact, written by two colleagues, and based upon their experi-
ences teaching the subject to students in the last year of a biology sequence. This 
book was aimed primarily at students who wanted to understand how the immune 
system works, especially aspects of comparative and evolutionary biology, but who 
weren’t planning on specializing in immunology. Manning and Turner expressed 
the hope that their book would introduce the phylogeny of immunity to students 
already knowledgeable in other aspects of immunology.

The year 1977 was a good one, soon after Comparative Immunology, when 
J.J. Marchalonis published his Immunity in Evolution. “Evolution of the vertebrate 
complex immune system has shown no morphological changes apparent from fossil 
evidence. But comparative studies of immunity in invertebrate species reveal an 
extraordinary evolution of cellular and molecular mechanisms capable of differen-
tiating self from non self. In this thorough review, Marchalonis introduced readers 
to the evolutionary background of immunity and showed how this approach can 
illuminate this phenomenon in more familiar eutherian mammals.” These, of course, 
are in contrast to monotreme and marsupial mammals, lesser known exotic species, 
typically Australian.

Although some invertebrates appear capable of immune-like responses (this was 
proven in the 2000s), only in vertebrates does highly specific biochemical recognition 
of foreign substances occur. As we would see some 30 years later, this seeming gap or 
even pessimism with respect to invertebrate responses was due to a lack of strong 
evidence. Marchalonis traced the evolution of cellular and humoral immunity from 
the versatile system of cyclostome fishes through the elaborations introduced by sub-
sequent evolving vertebrate groups. Modification of the ancestral immunoglobulin 
IgM into a variety of Ig types received detailed attention. The emergence of T and B 
lymphocytes and cooperative interactions were revealed in detail. Marchalonis pro-
vided background on evolution and biochemistry so that readers unfamiliar with one 
or more aspects of this review could follow along with relative ease. Numerous illus-
trations summarized data, showed evolutionary development, or explained genetic 
hypotheses. Immunologists, evolutionary biologists, and readers interested in molecu-
lar evolution would and will still find frequent use for this book!

 1980–Present

The period opening the 1980s was ripe with a concern for the concept of self/nonself 
discrimination. Self/nonself discrimination; Contemporary Topics in Immunobiology, 
volume 9, 1980; cellular recognition reactions in invertebrates; 1st Congress of 
Developmental and Comparative Immunology held in Aberdeen, Scotland in 1980; 
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proceedings of that congress were published as Aspects of Developmental and 
Comparative Immunology, J.B. Solomon (ed); two influential books by Jan Klein; 
Sigel and Cohen (eds), The Reticuloendothelial System, volume 3: Phylogeny and 
Ontogeny, published in 1982.

Already self/nonself was riding high on more and more confirming evidence, 
strengthening this view that had firm roots that had been published as early as the 
late nineteenth century. J.J. Marchalonis and Nicholas Cohen (with MG Hanna, Jr) 
edited Contemporary Topics in Immunobiology, volume 9, 1980. As a special trib-
ute they dedicated the volume to Sir Frank Macfarlane Burnet, who “first used the 
phrase ‘self/non self discrimination’ in 1940. His concepts have provided a chal-
lenge to two generations of immunologists….It is with great pleasure that we dedi-
cate this volume to Sir Mac on the occasion of his 80th birthday” (M.G. Hanna, Jr.). 
Very briefly, at that time there was demonstrable concern for considering cellular 
recognition reactions in invertebrates: (1) Do invertebrates show specificity in the 
recognition of antigen? (2) What is the molecular basis for this interaction? (3) Does 
a phylogenetic lineage of immunoreactive complexity exist, which eventually leads 
to the complex vertebrate immune response?

The 1980s were also an especially fertile time for expansion in several directions 
and were characterized by enormity, as illustrated by the two monumental treatises 
of Jan Klein, plus the volume edited by Sigel and Cohen, The Reticuloendothelial 
System, volume 3. Jan first published Immunology: The Science of Self/Non-self 
Discrimination in 1982. The content was provocative, but it is the organization that 
stands alone in structure and deserves some explanation. Rather than organizing the 
text into four “nonprovocative” sections, for example, Introduction, and so forth, 
Jan published an unusual set of sections, each of which described aspects of 
self/nonself recognition. Here is his unique presentation. He opened this composi-
tion, his book, as his symphony, by confessing that he knew very little about immu-
nology! In my opinion this is not true. His knowledge was as extensive as that of any 
of us who dared to approach mid-nineteenth-century immunology since what we 
know now hardly resembles the early days of self/nonself. For each of those desig-
nations, there are infinitesimal splinterings into various markers, signals, stimuli 
and receptors, that it boggles the mind to think how far and fast we went from indi-
viduality differentials to our present state, past the reigning dogma in the late nine-
teenth century. Later in the decade, Jan Klein introduced us to another way of 
looking at the essence of the immune system. This time, Natural History of the 
Major Histocompatibility Complex was published some six years after the “sym-
phonic” look at the immune system. Actually this second book echoed what was 
enunciated in the book The Biological Basis of Individuality by Leo Loeb.

A third member of the club of large sequels (tomes) to the Loeb book is the book 
edited by Cohen and Sigel, The Reticuloendothelial System (Cohen and Sigel 1982). 
There are at least ten volumes in this series on the reticuloendothelial system; the 
Cohen and Sigel book is volume 3, Phylogeny and Ontogeny, and was published in 
1982. (One partner in this series, the Reticuloendothelial Society, renamed itself the 
Society for Leukocyte Biology in 1984.) The tome’s 21 chapters and 740+ pages 
included most of the invertebrate and vertebrate phyla covered in the present book, but 
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no mention was made of nematodes. Perhaps the explosion of research in C. elegans 
over the intervening decades provided a motivation to investigate the immunology of 
roundworms. The preface by Cohen and Sigel mentions a driver of the diversity of 
animals studied in the current book: “a wealth of new, often unique, models with 
which to study immunological problems that are not restricted to mammals.”

The 1990s were also a busy and productive period. Immunologie Animale, pub-
lished in 1990 by Flammarion (Paris), includes 15 chapters on comparative immu-
nology, for example, invertebrates, fish, and so forth. The period also saw the 
resurrection of Metchnikoff. Other figures or topics included AI Tauber, 
Metchnikoff, and the origins of immunology: metaphor to theory (1991); earth-
worms alone; primordial immunity—foundation for vertebrates; developmental 
immunology; evolution and phylogenesis of immune reactions; comparative histo-
physiology; modulators of immune responses; publication of New Directions in 
Invertebrate Immunology in 1996, edited by K.  Söderhäll, S.  Iwanaga, and 
G.R. Vasta; this book from SOS Publications has more extension to invertebrates 
of concepts well studied in mammals, including clotting cascades in horseshoe 
crabs, lectins in insects, and pheromones in ciliate protozoa.

Leslie Brent, professor emeritus of immunology, St Mary’s Hospital Transplant 
Unit, Paddington, London, published the book History of Transplantation 
Immunology over which there was considerable excitement since the second chapter 
was devoted to the immunological basis of allograft rejection. He opens that chapter 
with a statement from Sir Peter Medawar (1957): “… the immunology of transplan-
tation not merely for its bearing on cancer research or the repair of radiation dam-
age, but it offers one of the few negotiable pathways into the central regions of 
biology, where immunology, genetics, embryology and the rest of them lose their 
identities in problems that bear upon biology as a whole.”

The early years of the field focused on various contributions. Of much interest to 
comparative immunologists, in the middle of that second chapter, Brent immediately 
poses the following question: Are invertebrates capable of allograft reactivity? Then 
comes the explosion: For here enter statements expressing skepticism that they are 
capable, despite the fact that a variety of invertebrate groups supported the idea, with 
observations in sponges, coelenterates, sea anemones, coral, and worms. Organisms 
from echinoderms to insects all possess the following immunologically competent 
characteristics: (1) selective reactivity, (2) cytotoxic or antagonistic reactions following 
sensitization, (3) inducible memory, and (4) selective altered reactivity on secondary 
contact—criteria with which most immunologists would concur. The debate moved to 
comparing Hildemann and Cooper vis-à-vis the mammalian transplantation contin-
gent. The discussion was devoted then to a defense of graft rejection in earthworms and 
other invertebrates. Not all immunobiologists agreed with the notion, yet Cooper, 
Rinkevic, Uhlenbruck, and Valembois published “a stout defense” in 1992  in the 
Scandinavian Journal of Immunology. This lively discussion ended on a somewhat sad 
note with the untimely death of Hildemann, who had been a staunch promoter and 
advocate of what his post doc Cooper had been doing, inspiring other people.

Subsequent years saw a continued proliferation of books dealing with the 
panorama of animal evolution and immunity and the appearance of the journal 
Trends in Innate Immunity (Karger), a blurring of the clear border between innate 
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and adaptive immunity (Cooper 2012), publication of “Adaptive Immunity from 
Prokaryotes to Eukaryotes: Broader Inclusions Due to Less Exclusivity?” in Recent 
Advances in Immunology to Target Cancer, Inflammation and Infections, edited by 
J. Kanwar , the discovery of B and T lymphocytes that have some properties of 
innate immunity and natural killer cells with antigen-specific immune memory.

Self/nonself is an important hypothesis that has guided research in immunology. 
It is closely connected to adaptive immunity (restricted to vertebrates) and innate 
immunity (found in vertebrates and invertebrates). Self/nonself is now being chal-
lenged, and investigators are turning to the danger hypothesis to guide and open new 
areas of research. Emerging information suggests that genes involved in the develop-
ment of cancer are present in Drosophila and C. elegans. Short lifespan may not rule 
out the presence of genes that are related to the development of cancer (Cooper 2010).

The self/nonself theory has dominated immunology since the 1950s. In the 
1990s, Matzinger and her colleagues suggested a new, competing theory, called the 
danger theory. This theory has received mixed responses, both enthusiasm and 
criticism. Here we assess the danger theory vis-à-vis recent experimental data on 
innate immunity, transplantation, cancers, and tolerance to foreign entities and try to 
determine more clearly whether danger is well defined (Pradeu and Cooper 2012).

Adaptive immunity is now being deconstructed to encompass less stringent rules, 
including initiation and actual effector activity. Expanding the repertoire of inverte-
brate innate immunity has greatly facilitated the search for what actually constitutes 
innate and adaptive. Strict definitions become blurred, casting a skeptical eye on the 
use of rigid definitions of innate and adaptive immunity (Kvell et  al. 2007). 
Immunology has experienced remarkable growth. Immutable tenets deserve a brief 
mention. First, there must be strict divisions between adaptive and innate immunity. 
Second, to raise these two views allows for extended inclusions, reveals the essential 
merits of innate immunity, and acknowledges inclusive invertebrate characteristics. 
We can even include features of adaptive responses especially to danger (Pradeu 
and Cooper 2012). To facilitate this emerging reality means recognizing hazy 
characteristics that fade into each other, that blur; they are neither black nor white 
but a “clear gray”—reminiscent of impressionist paintings (Cooper 2010, 2012).

 What Hath Comparative Immunology Wrought?

Knowing how the immune system works is lifesaving, now requiring less analysis. 
Comparative immunology knocked on the hermetically sealed door and opened it, 
revealing an incalculable cornucopia of biomedical importance and relevance: it has 
clarified innate immunity, recognized cancer which still has a limited acceptance in 
lower animals, identified sources of less polluting food, and called for respecting 
and humanely treating all species. Thus, comparative immunology is no longer eso-
teric, no longer buried in the earth, but is now out in the open with its relevance and 
benefits for all to see and enjoy!

Los Angeles, CA, USA Edwin L. Cooper
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 History

It has been estimated that Earth appeared around 4600 million years ago (MYA), 
and organic molecules of increasing complexity were subsequently established in 
the surface layers. Primitive anaerobic life forms may have seen light soon after, 
around 3700 MYA (Hassenkam et al. 2017), and the advent of photosynthesis (2400 
MYA) created the basis for an even more intense expansion of diversity. Ever since 
this early history of Earth, basic organic molecules and primitive organisms have 
been exposed to infection and parasitism. From the very start of these interactions 
mechanisms to protect the integrity of the molecules and organisms must have been 
present, securing their subsequent survival and development. RNA molecules can 
be interpreted as the first parasites of DNA, and molecular mechanisms for the 
release and processing of RNA may have appeared to regulate their binding. These 
became important tools when the first simple microorganisms appeared and were 
attacked by plasmids and virus. Protective molecular mechanisms including the use 
of restriction enzymes and clustered regularly interspaced short palindromic repeats 
protected bacteria against plasmids and irrelevant or harmful genes (Dunin- 
Horkawicz et  al. 2014). The first unicellular organisms needed a wider array of 
cellular tools to recognize food and secure its uptake. Active contact with other 
organisms required methods to resist invasion by foreign pathogens, including 
viruses, bacteria, or even other protozoans.
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