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Preface

The heat shock response (HSR) is a key homeostatic mechanism that all cellular 
organisms utilize for resisting extracellular insult. The intracellular mediators of the 
HSR including the transcription factor heat shock factor 1 (HSF1) and the heat 
shock protein (HSP) have profoundly anti-inflammatory effects. HSF1 can be 
induced by the elevated temperatures encountered in inflamed tissues and in fever 
as well as by anti-inflammatory bioactive mediators.

The book Regulation of Heat Shock Protein Responses provides the most com-
prehensive review on contemporary knowledge on the regulation of HSP responses 
and its consequences to human diseases and disorders. Using an integrative approach 
to understanding the regulation of HSP responses, the contributors provide a synop-
sis of novel mechanisms by which HSP responses are regulated under normal physi-
ological and pathophysiological conditions.

To enhance the ease of reading and comprehension, this book has been subdi-
vided into various sections: Section I reviews current progress on the HSP and stress 
responses; Section II evaluates the chaperone function of HSP, including cellular 
proteostasis, disaggregation, protein folding, and calcium binding; Section III 
focuses the reader on the role of HSP in human diseases.

Key basic and clinical research laboratories from major universities and aca-
demic medical hospitals around the world contribute chapters that review present 
research activity and importantly project the field into the future. The book is a must 
read for researchers, postdoctoral fellows, and graduate students in the fields of 
Translational Medicine, Human Physiology, Biotechnology, Molecular Medicine, 
Infectious Diseases, and Pathology.

Toledo, OH, USA 
Houston, TX, USA

Alexzander A. A. Asea
Punit Kaur
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Chapter 1
Regulation of Mammalian HSP70  
Expression and Stress Response

Kamalakshi Deka and Sougata Saha

Abstract Abnormal environmental and physiological conditions can damage pro-
tein structures creating a toxic state in the cell due to loss of protein function and 
homeostasis. In many disease conditions the effect is so profound that interaction of 
structurally damaged proteins and aggregates with cellular macromolecules leads to 
cell and tissue damage as observed in protein misfolding related neurodegenerative 
disorders like Alzheimer’s, Parkinson’s and others. Thus structurally damaged pro-
teins bring an organizational and functional challenge for the cells and tissue which 
need to be resolved very quickly and efficiently to prevent cell and tissue damage. 
One of the ways cell senses and mounts protective response to proteotoxic stress is 
by heat shock response (HSR) which constitutes high expression of chaperone pro-
teins also called heat shock proteins (HSP) to tackle sudden increased demand for 
chaperones in a cell. HSR induces HSP70, one of the major chaperones, which 
protect cells from proteotoxic stress by prevention of misfolding and aggregation of 
polypeptides. Thus, a rapid and potent stress response depends on quick supply of 
large amount of HSP70 proteins. This extraordinary demand of HSP70 proteins is 
satisfied by an efficient gene expression programme which regulates HSP70 expres-
sion at every step from chromatin modification during transcriptional activation to 
stability of translated protein molecules. Stress dependent regulation of mammalian 
HSP70 expression is focus of this chapter and regulation at each of these steps will 
be discussed in detail.

Keywords Heat shock proteins · HSF1 · HSP70 · Regulation of HSP70  
expression · Stress response

K. Deka · S. Saha (*) 
Department of Molecular Biology and Biotechnology, Tezpur University,  
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Abbreviations

AD Activation domain
AMP Adenosine monophosphate
AMPKα AMP-activated protein kinase α
ARE AU rich element
ATE1 Arginyl transferase 1
ATF1 Activating transcription factor 1
Atxn Attexin
BAG2 BCL2 associated athanogene 2
CBP CCAAT binding proteins
CCDC127 Coiled-coil domain-containing protein 127
CCT Cytosolic chaperonin containing t-complex
CHBF Constitutive HSE binding factor
CHIP Carboxy terminus of Hsp70-binding protein
COX Cyclooxygenase
CPSF Cleavage and polyadenylation specificity factor
CREB cAMP response element binding protein
CRM1 Chromosomal maintenance 1
CSF-1 Colony stimulating factor 1
CstF Cleavage stimulatory factor
CTD C-terminal domain
CTF CCAAT box transcription factor
DBD DNA binding domain
eEF1A1 Eukaryotic elongation factor 1A1
eIF4F Eukaryotic translation initiation factor 4
ELAV Embryonic lethal abnormal vision
ER Endoplasmic reticulum
ERK Extracellular signal–regulated kinase
GSK-3β Glycogen synthase kinase 3 β
HBP HSF1 binding protein
HLE Human limbo-corneal epithelial
HR Heptapeptide repeats
HS Heat shock/ heat stress
HSE Heat shock element
HSF Heat shock factor
HSP Heat shock protein
HSPBP Heat shock protein binding protein
HSR Heat shock response
HuR Human antigen R
INFγ Interferon γ
IRES Internal ribosome entry site
JAK Janus tyrosine kinase
JNK c-Jun N-terminal kinase
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LPS Lipopolysaccharide
MAPK Mitogen-activated protein kinase
MEF Mouse embryonic fibroblast
miRNA micro RNA
MRPL18 Mitochondrial ribosomal protein L 18
NAD Nicotinamide adenine dinucleotide
NF Nuclear transcription factor
NF-IL6 Nuclear factor Interleukin 6
Nmi N-myc and Stat interactor
OLA1 Obg-like ATPase 1
PGC-1α Peroxisome proliferator-activated receptor γ coactivator 1-alpha
PIC Pre transcription initiation complex
PKCα Protein kinase C α
PKR RNA-dependent protein kinase
PN Proteostasis network
PP2A Protein phosphatase 2A
SIRT Sirtuin
SKI1 Snf1-related kinase interacting protein
SNRPE Small nuclear ribonucleoprotein polypeptide E
SSBP1 Single strand DNA binding protein
STAT Signal transducer and activator of transcription
StIP1 Stress induced phosphoprotein 1
SUMO Small ubiquitin-like modifier
SWI/SNF SWItch/sucrose non-fermentable
TNFα Tumor necrosis factor α
TRiC TCP-1 Ring Complex
UTR Untranslated region

1.1  Introduction

During our evolution, environment acts as an important selecting pressure and thus 
every organism lives in a habitat which has a specific environment. Such adjustment 
to a particular environment is achieved by establishing a homeostasis in its internal 
physiological components such as transcriptome, proteome, metabolome and inter-
cellular signaling in case of metazoans. Thus, changes in the environment beyond a 
tolerable level or changes in the internal physiological balance put living systems 
under stress. To sense such changes and overcome the stressful conditions several 
protective pathways exist, commonly termed cellular stress response, which is 
aimed to reestablish homeostasis among cellular components. One such cellular 
stress response module is heat shock response (HSR) which is induced during many 
stressful conditions like temperature stress, oxidative stress, heavy metal stress and 
many disease conditions which causes imbalance in protein homeostasis (proteosta-
sis) (Morimoto 2011). Thus HSR mainly comprises of induction of molecular 

1 Regulation of HSP70 Expression



6

chaperones which help to reestablish proteostasis and recover the cells from the 
stress induced damage by modulating protein folding, activity and stability. One of 
the key chaperones in HSR and the focus of this book is heat shock protein 70 
(HSP70). HSR and HSP70 are highly conserved across the evolutionary history 
from bacteria to mammals with some variations. In this chapter we will focus on 
regulatory mechanisms which govern the induction and expression of cytosolic 
HSP70 during stress in mammals.

The HSP70 is a family of molecular chaperones with molecular weight ranging 
from 66–78 kDa. HSP70 is highly conserved largest family of HSP comprising of 
as many as 7 genes in mouse and 13 genes in human (Hunt and Morimoto 1985; 
Radons 2016). HSP70 family members are monomeric proteins with diverse local-
izations like cytosol, nucleus, ER, mitochondria, exosomes in tissue fluids, and 
extracellular space in mammals (Asea et al. 2008; Asea et al. 2000; Lindquist and 
Craig 1988; Radons 2016; Welch and Feramisco 1984). For example in human 
while, HSPA1A, HSPA1B and HSPA8 (Hsc70) are predominantly cytosolic pro-
tein, HSPA5 (Grp78) and HSPA9 (Grp75/mortalin) is localized in ER and mito-
chondria respectively. In addition these HSP are known to translocate in different 
subcellular or extracellular locations at different physiological conditions. Another 
important regulation which differentiates HSP70 family members is ability to be 
induced in stress and diseases. The induction of HSP70 gene expression under same 
stress condition varies between tissue and cell types. For example, neuronal cells 
show very poor induction of HSP70 during proteotoxic stresses and thus higher 
susceptibility to protein aggregation disorders as seen in many neurodegenerative 
diseases like Alzheimer’s, Parkinson’s and others (Turturici et al. 2011). Many of 
the HSP70 family members like HSPA8, 5 and 9 are constitutively expressed and 
perform housekeeping function in proteostasis network (PN). While constitutively 
expressed HSPA8 accumulates in cytosol and nucleus and acts as a major compo-
nent in PN by preventing protein aggregation and promoting protein folding, ER 
specific HSPA5 helps in transport and folding of nascent polypeptides inside 
ER. Mitochondria specific constitutive HSPA9 helps in transport of protein across 
mitochondrial membrane. On the other hand HSP70 family members HSPA1A 
(HSP70–1) and HSPA1B (HSP70–2) acts as a sensor of proteotoxic stress and show 
a very quick induction during temperature and other types of stresses to counteract 
the proteostasis imbalance by helping in protein folding, stabilization and degrada-
tion if the damage is unrepairable. In recent time, HSP70 is also implicated in cou-
pling proteostasis to mRNA metabolism (ribostasis) (Walters and Parker 2015) 
which help in minimizing gene expression other than the stress response pathways. 
Three other HSP70 family member in human, HSPA6, HSPA7 and HSPA14 are 
also inducible genes, with HSPA7 considered as a pseudogene by many (Brocchieri 
et al. 2008; Parsian et al. 2000; Radons 2016). To deal with extreme proteotoxic 
condition caused by environmental and physiological stress, the regulation of 
HSP70 induction and expression also has to be fast and robust. HSP70 gene expres-
sion during stress represent one of the unique example where a strong induction in 
gene transcription is coupled with posttranscriptional, translational and posttransla-
tional regulation to ensure a robust protein output in a critical condition when gen-
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eral transcription translation machinery is halted (Morimoto 2011). In this chapter 
each of these aspects of HSP70 induction and expression will be discussed in detail.

1.2  Inducible HSP70 Genes in Mammals

Mouse inducible HSP70 genes HSP70.1 (HSPA1A) and HSP70.3 (HSPA1B) 
encode almost identical protein of 68 kDa. HSPA1A and HSPA1B ORF differs in 
only six single nucleotides encoding proteins that only differ by two amino acids 
and are thought to be functionally interchangeable proteins (Daugaard et al. 2007). 
However two genes show certain sequence differences in promoter region and 
3’UTR which do play a role in transcriptional and post transcriptional regulation of 
both the transcripts during stress. These two genes located ~8 kb apart within the 
MHC class III locus in chromosome 6  in mouse genome (Milner and Campbell 
1990). Two major inducible HSP70 proteins in human, HSPA1A and HSPA1B, are 
also highly identical proteins differing only by two amino acids and map to same 
locus in human chromosomes 6 (Harrison et al. 1987). The other stress inducible 
gene HSPA6 is highly homologous to HSPA1A (Leung et al. 1992) and located in 
human chromosome 1. Nearby resides another stress inducible gene, HSPA7, which 
is homologous to HSPA6 but the ORF is half in size compared to other HSP70s and 
thought to be a pseudo gene. However HSPA7 promoter shows stress specific regu-
lation and can be induced by nutritional stress, but not by oxidative stress or change 
in pH (Siddiqui et  al. 2008). A dendritic cell specific inducible HSP70 gene is 
HSPA14 (located in human chromosome 10) which produces little smaller protein 
compared to other HSP70s and play important role in immune cell regulation, cell 
transformation and metastasis (Wan et al. 2004; Wu et al. 2011; Yang et al. 2015).

1.3  HSP70 Promoter Organization and Activation

The promoter region of HSPA1A and HSPA1B genes are highly conserved in mam-
mals. The key regulatory element which makes these promoters unique is the pres-
ence of conserved sequences known as the heat shock elements (HSEs) which binds 
the heat shock factor 1 (HSF1) complex upon heat stress causing Transcriptional 
activation of HSP70 promoters. HSEs are located upstream of the basal promoter 
elements, TATA box, and human promoter has two of such elements. HSEs are 
made up of conserved sequence: 5’NАGAANNTTCNNGAANN- 3′, where N is 
any nucleotide (Amin et al. 1988). Several other key transcription factor binding 
sites are also present in HSP70 promoter. These include NF-Y (nuclear transcription 
factor Y), NF-κB (nuclear factor kappa B), CREB (cAMP response element binding 
protein), CCAAT, sp1 and STAT3 Table 1.1.

Basal transcription form mammalian HSP70 promoters are mediated by Sp1, 
CCAAT binding proteins (CBP) and CCAAT box transcription factor (CTF) 
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