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         Professor Mario Moscarello, one of the founders of the deimination fi eld, passed 
away on Thursday, August 8, 2013, at the age of 83 years, at Toronto Western 
Hospital, with his family by his side. Mario was a pioneer in myelin research, paving 
the way for a greater understanding of protein–lipid interactions and the role of post-
translational modifi cations on these interactions throughout his scientifi c research 
career of 52 years. At the time of his passing, he was Professor Emeritus at the University 
of Toronto and Senior Emeritus Scientist at The Hospital for Sick Children. During 
his career, he supervised more than 80 students from around the world. 

 Mario received his M.D. degree in 1955 from the University of Toronto and 
subsequently entered graduate school, obtaining a Ph.D. in biochemistry. His early 
career involved active research in the biochemistry of amino acids in encephalomy-
elitis and the encephalomyocarditis virus. Perhaps this foundation, both in amino 
acid analyses and myelin changes, prepared him for his subsequent discovery of 
deimination of myelin basic protein. 



 In 1966, Mario began studying the isolation of acid-soluble proteins from myelin. 
By 1968, he started an intensive investigation of myelin proteins along with 
Dr. D. Denise Wood. This led to the discovery of the presence of peptide-bound 
citrulline in myelin proteins in 1971, coincident with G. E. Rogers’ isolation of 
 l -citrulline as a component of proteins from cells in hair fi ber medullae and inner root 
sheaths of hair follicles. Mario showed that citrulline was present in acid hydrolysates 
of a protein fraction from normal human myelin and in the nonhydrolyzed protein as 
well, by direct colorimetric analysis. However, stemming from his deep familiarity 
with biochemistry, he further confi rmed the presence of citrulline by protease diges-
tion of myelin, chromatographic separation, and colorimetric confi rmation, which 
was state of the art at that time. This is one of the very fi rst landmark studies that 
placed  l -citrulline within proteins on the map. Arguably and potentially unbeknownst 
to him this was also one of the early milestones for the fi eld of deimination research. 

 Dr. Moscarello continued studying myelin, the interaction of myelin proteins with 
membrane lipids and, in 1976, showed that a nine-peptide sequence derived from 
myelin basic protein was encephalitogenic, but required more than a linear peptide 
to induce full encephalitogenic potential. In 1989, he demonstrated the lipid-aggre-
gating properties of citrulline-containing myelin basic protein, another seminal dis-
covery in deimination research. These studies were indicative of an important role for 
this posttranslational protein in basic biochemical alterations of neuronal membranes. 
Although Mario’s lab had developed an antibody that distinguished citrullinated 
moieties from arginine, it was during a collaboration with the late John. N. Whitaker 
(then at University of Alabama at Birmingham) in 1992 that they distinguished the 
MBP C1 isomer from its less-cationic citrullinated isomers and the least-cationic C8 
citrullinated isomer. In 1993, Mario began using the term “deimination” when he 
discovered the ability of the enzyme peptidylarginine deiminase from bovine brain to 
citrullinate (convert peptidyl-arginine to peptidyl-citrulline) human myelin basic 
protein. The discovery of this enzymatic activity was fi rst made by Kubilus and Baden 
in 1983; however, the activity was never tested for modifi cation of myelin basic 
protein until it was accomplished in the Moscarello laboratory. Another seminal 
discovery from Mario’s group came in 1994, when they showed that myelin in 
multiple sclerosis was developmentally immature and highly citrullinated. This was 
the fi rst report, which was published in the Journal of Clinical Investigation, describing 
the paradoxical increased deimination in the brains of infants and patients with 
multiple sclerosis, when compared with normal adults. Mario also showed similarities 
in posttranslational modifi cation of myelin basic proteins between models of multiple 
sclerosis and Pelizaeus-Merzbacher disease, thus establishing a possibility of 
common denominators in different demyelinating disorders. 

 We would like to think that Professor Moscarello is survived not only by his 
family, but also by his work, and we believe that advancing the fi eld of deimination 
research is the best way to keep his memory alive. With that thought, we dedicate 
this book to Professor Mario Moscarello, a great mentor and teacher who always 
instilled in his students the importance of leading a full life and to focus on the work 
at hand. Ironically, he always telegraphed this by referring to a lyric from the old 
spiritual entitled  Life ’ s Railway to Heaven , “Keep your hand upon the throttle, and 
your eye upon the rail.” We will miss him dearly.        
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  Pref ace   

 Deimination refers to the posttranslational conversion of protein-bound arginine 
into protein-bound citrulline. It is often interchangeably termed as “citrullination,” 
which may also refer to the conversion of free arginine into citrulline. As a result, 
we have promoted the use of the word “deimination” to exclusively refer to the 
posttranslational modifi cation (PTM) of protein-bound arginine for ameliorating 
some confusion for new investigators or researchers from other fi elds. 

 Despite being a relatively long-known PTM in mammals and other organisms, 
deimination has not been subject to rigorous research that some other PTMs have 
received, such as phosphorylation and glycosylation. Even sumoylation, a relatively 
newly discovered PTM, has about ten times more recorded published papers today. 
Currently, for a modifi cation such as phosphorylation there are 10,000-fold more 
published papers, compared to deimination. In recent major PTM meetings, deimi-
nation either records no or only a token presence. For example, during the recent 
ASBMB-conducted PTM meeting in 2012, deimination was represented only by a 
single poster. 

 Two advances are expected to accelerate the pace of research on deimination: (a) 
the discovery of deiminated proteins with direct relationships to human disease and 
(b) the development of new reagents for assessment and quantifi cation of deimi-
nated proteins. 

 Usually the functions of a protein and its involvement in key biological processes 
spark interest in that protein, especially if a PTM is found to regulate the role of the 
protein in question. Unfortunately, early detection of deimination occurred in pro-
teins that were primarily structural, during a time in which the study of structural 
cellular proteins was thought not to be particularly exciting. Although the fi rst deimi-
nated proteins were described in the late 1950s, almost 20 years went by before the 
enzymes responsible for this PTM, the peptidyl-arginine deiminases (PADs), were 
fi rst discovered and later confi rmed in almost all tissues of the human body. 
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 Although PAD was found in the brain as early as the 1980s, showing to deimi-
nate myelin structural proteins, the largest infl ux of researchers into the fi eld up 
until that point did not occur until the late 1990s, after a direct association was 
found between the presence of deiminated proteins and the occurrence of rheuma-
toid arthritis. In fact, this disease is now primarily confi rmed with a blood test that 
measures the amount of antibodies against deiminated proteins. As a result, the fi rst 
chapters (Chaps.   1    –  6    ) of this book are dedicated to this topic, covering clinical 
aspects, the importance of anti-peptidyl-citrulline antibodies, and the roles of gum 
disease, smoking, and white blood cells themselves in the propagation and detection 
of this disorder. 

 Closely related to the joint, deimination is also involved in other related tissues, 
such as skin (Chap.   7    ) and hair (Chap.   8    ), playing important roles in the outer pro-
tection of the human body. The next eight chapters are dedicated to the nervous 
system, including the role of deimination in peripheral nerve development and 
responses to damage (Chap.   9    ). Also included are infl ammatory diseases of the 
brain, such as multiple sclerosis (Chaps.   10     and   11    ), and neurodegenerative dis-
eases, such as Creutzfeldt-Jakob disease (Chap.   12    ), Alzheimer’s disease (Chap.   13    ), 
Parkinson’s disease, amyotropic lateral sclerosis, and others (Chap.   14    ). Also 
included in the central nervous system is the spinal cord (Chap.   15    ) and eye (Chap.   16    ), 
in which deimination has been linked to several normal processes, as well as disease 
states. 

 Recently, increased PAD has been linked to cancer (Chap.   17    ). But probably the 
most interesting discovery within the last few years has been the role of deimination 
as a possible reverser of arginine methylation involved in epigenetic processes con-
trolling the transcription of DNA (Chap.   18    ), since this mechanism may have rami-
fi cations for all of the prior normal processes and disease states linked to deimination. 
Thus, understanding the place of deimination vis a vis methylation on arginine resi-
dues of histone proteins that control the unwinding of the genetic code may be of 
immense biological signifi cance. 

 On the other hand, confi rmatory detection of deimination still remains a chal-
lenge. A rate-limiting step exists with the availability of reliable reagents and meth-
ods that enable verifi able detection of this PTM. Compounded with limitations in 
detection are problems with localization of peptidyl-citrulline moieties, which will 
need some additional development. For example, a current review on mass spectro-
metric methods used in this regard summarizes the current state of confi rmatory 
detection (Chap.   19    ). Also, confounders such as the presence of peptidyl- 
homocitrulline, a PTM of lysine, must be acknowledged and accounted for, when 
studying deimination (Chap.   20    ). However, the most exciting and latest advance-
ment in deimination research is the development and use of the fi rst wave of PAD 
antagonists (Chap.   21    ), which is further highlighting how this PTM may be manipu-
lated as new therapeutic interventions for a vast variety of human diseases in which 
increased deimination is believed to play a critical role. As evidenced in this book, 
teams of chemists, biologists, engineers, neuroscientists, and physicians have come 
together, with the promise of integrated collaboration that will hopefully prompt the 
development of new reagents and methods, as well as possible new treatments for 
devastating diseases that presently have few therapeutic options. 
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 Ultimately, understanding how protein deimination is involved in human health 
and disease will hopefully be the focus of a new wave of investigators who will join 
us in uncovering the secrets of these altered proteins. As a fi rst step, this book sum-
marizes our current knowledge of this exciting and growing research fi eld.  

               Birmingham ,  AL ,  USA     Anthony P.    Nicholas      
Miami,  FL ,  USA  Sanjoy K.    Bhattacharya          
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1.1         The Peptidylarginine Deiminase Family 

 The free amino acid form of citrulline was fi rst isolated from watermelon ( Citrullus 
vulgaris ) over 70 years ago (Curis et al.  2005 ), while the peptidyl form of citrulline 
was fi rst recognized within the hair follicle (Rogers  1962 ). Peptidylcitrulline is a 
noncoding amino acid that is generated through hydrolysis of peptidyl-arginine 
residues by Ca 2+ -dependent peptidylarginine deiminase (PAD) enzymes, with 
ammonia released as a reaction by-product (Fig.  1.1 ). This process is referred to as 
deimination or citrullination. The conversion of arginine to citrulline results in only 
a small increase in molecular mass (less than 1 Da) but also converts the positively 
charged guanidino group on an arginine residue into the neutrally charged ureido 
group on the citrulline amino acid. The small mass difference between arginine and 
citrulline residues has made identifying sites of deimination challenging, especially 
on proteins isolated from cellular sources (Hao et al.  2009 ).

   Although an approximate 1 Da change in mass may seem like a relatively minor 
difference, the conversion of charge from an arginine to a citrulline can have 
dramatic consequences on protein structure, proteolytic susceptibility, and protein–
protein interactions (Vossenaar et al.  2003 ). For example, fi laggrin is a highly basic 
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