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On behalf of the editors, I wish to dedicate 
this book to the memory of Kerri Anne 
Mowen, who sadly passed away at age 41 on 
February 14, 2016 of a brain aneurysm. 
Although I had long been familiar with her 
work, I first met Kerri in 2008 at the FASEB 
Methylation meeting where we shared our 
equal passion for both the protein arginine 
deiminases and protein arginine 
methyltransferases. What impressed me most 
about our first meeting was that Kerri was 
not only whip smart but also a joy to be 
around. We quickly became collaborators, 
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and most importantly friends, leading us 
eventually to cofound Padlock Therapeutics.
Kerri’s contributions to the PAD field are 
indelible and include developing both PAD2 
and PAD4 knockout mice, helping establish 
the key role of PAD4 in NETosis, and 
establishing the importance of PAD4 activity 
in the initiation versus effector phases of 
rheumatoid arthritis. Her imprint on the 
PAD field will long be felt, and her future 
contributions sadly missed.
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Chapter 1
A History of Deimination Research in Japan: 
The Founding Fathers

Hidenari Takahara

The research on protein deimination and the enzymes responsible for catalyzing this 
posttranslational modification started from investigations of the hair follicle and myelin 
in central nerve system. About 60 years ago, in 1958, the presence of protein- bound 
citrulline was first reported by Dr. George Rogers (Adelaide University, Australia) in 
the protein of the inner root sheath (IRS) of hair follicles (Rogers 1958). In order to 
obtain information about the protein composition of the IRS, he conducted a quantita-
tive amino acid analysis of an acid hydrolysate on sufficient amounts of IRS that were 
dissected from the vibrissae follicle of rats. At that time, the common method for sepa-
rating amino acids was paper chromatography, and when applied to the IRS hydroly-
sates, citrulline was discovered as a distinct ninhydrin- positive spot in an area adjacent 
to the basic amino acids. About 10 years after Rogers’s discovery, Dr. Mario Moscarello 
(Toronto University, Canada) started an intensive investigation of myelin sheath pro-
teins in the central nerve system. In 1971, he also found the presence of peptide-bound 
citrulline in myelin basic protein (MBP) using similar methods to Rogers (Finch et al. 
1971). Moscarello continued the investigation of MBP until he passed away in 2013, 
publishing many papers concerning the hyper-deimination of MBP in the pathology of 
multiple sclerosis. His research career involving the deimination of MBP was described 
in a eulogy in the first volume of this book series (Nicholas and Bhattacharya 2014).

Although it was unclear as to how the citrulline was incorporated into proteins, the 
source was thought to be arginine. In 1977, Rogers and colleagues (1977) were the 
first to conclusively demonstrate that arginine residues were indeed converted to 
citrulline via a deimination reaction where they combined hair follicle extracts with 
calcium to promote this reaction. Following this report, research to identify the spe-
cific deiminating enzyme was energetically carried out in Japan. In 1979, Dr. Kiyoshi 
Sugawara (Fig. 1.1; Ibaraki University, Japan) reported the presence of protein-bound 

H. Takahara (*) 
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citrulline in the epidermal proteins of newborn rat (Sugawara 1979). Successively, he 
demonstrated the existence of the enzyme that converts arginyl to citrulline residues 
in the extracts from the newborn rat epidermis (Fujisaki and Sugawara 1981). To 
assay the enzyme activity, he introduced a colorimetric method using simple syn-
thetic substrates of arginine blocked at the N- and C-terminals as a substrate. In this 
procedure, high temperatures (over 50 °C) and the presence of dithiothreitol (DTT) 
greatly enhanced enzyme activity. According to these procedures, he could overcome 
tedious and laborious work that was needed to measure enzyme activity using an 
amino acid analyzer. Dr. Sugawara then introduced the logical name peptidylarginine 
deiminase (PAD) for the enzyme, because it acts on arginine residues embedded in a 
peptide backbone and is distinct from deiminases that act on free arginine (Fujisaki 
and Sugawara 1981). In this year, PAD was registered as new enzyme to IUPAC 
Enzyme Committee and was classified into EC 3.5.3.15.

In 1982, I joined Dr. Sugawara’s laboratory. This was just after he obtained a new 
finding that the extract from rabbit skeletal muscle contains very high deiminase 
activity, about 120-fold compared to that of the newborn rat epidermis. Since the 
available amounts of the newborn rat epidermis were very low and the tissue prepara-
tions were burdensome, the high abundance of a PAD in rabbit skeletal muscle was 
an exciting research finding that gave me a tremendous head start to further charac-
terize this enzyme. My first research project at Ibaraki University was to purify the 
PAD from rabbit skeletal muscle. Very fortunately, I quickly purified the enzyme to 
homogeneity and determined the chemical, physiochemical, and kinetic properties 
toward several synthetic arginine derivatives including natural proteins (Takahara 
et  al. 1983). This was the first and most definitive report demonstrating that the 

Fig. 1.1 The founding 
fathers: left, Professor Dr. 
George Rogers (Adelaide 
University, Australia). 
Center, Professor Dr. 
Hidenari Takahara (Ibaraki 
University, Japan). Right, 
Professor Dr. Kiyoshi 
Sugawara (Ibaraki 
University, Japan). Taken 
at the first International 
Symposium of 
Deimination and Skin 
Biology, April 2009 in 
Osaka, Japan

H. Takahara
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enzyme could catalyze the conversion of arginyl to citulline residues in native protein 
substrates in vitro. Among the protein substrates examined using this purified PAD, 
the reaction toward the Kunitz soybean trypsin inhibitor (STI) attracted our attention 
(Takahara et al. 1985). The effect of the enzyme on STI activity was remarkable as 
treatment with this PAD rapidly abolished the inhibitory activity of STI without alter-
ing its overall conformation; complete inactivation of STI was attained within several 
minutes at 37 °C. Surprisingly, only the modified arginine residue was the reactive 
site (or primary contact site) despite the fact that all of the remaining nine arginine 
residues in STI are exposed on the protein surface (Takahara et al. 1985). This study 
was first an indication of a biological function for the deimination and biochemical 
application of PAD. Furthermore, the observation that skeletal muscle PAD showed 
a high affinity for only the functional arginine residue in STI inspired the idea of an 
effective affinity adsorbent composed of immobilized STI for PAD purification. Our 
expectation was fully realized, as a 1800-fold purification with 50% yield was 
achieved by this affinity column (Takahara et al. 1986). Thereafter, we could supply 
a sufficient amount of purified rabbit skeletal muscle PAD to other researchers. 
Although recombinant enzymes from various sources superseded the rabbit skeletal 
muscle PAD since the latter half of the 1990s, the natural enzyme is still under requi-
sition today. Several earlier experiments conducted with rabbit skeletal muscle PAD 
elicited important insights into the physiology and pathophysiology of protein deimi-
nation. For instance, our collaborative work with Dr. Masaki Inagaki (Aichi Cancer 
Center, Japan) provided very interesting results. In general, vimentin, an intermedi-
ated filament protein, is expressed by various cells and forms a stable, less dynamic 
molecular network. In 1989, we found that there was a complete loss of filament-
forming ability of vimentin after PAD treatment. The enzyme could also deiminate 
the filaments that had been polymerized and induced filament disassembly. The 
deimination reduced the isoelectric point of the head domain, in which the positive 
charge of arginine residues are essential for maintaining the ability to form filaments, 
resulting in the complete loss of their intermediate filament constructs. Similar results 
were obtained with other intermediate filaments such as desmin and glial fibrillary 
acidic protein (GFAP) (Inagaki et al. 1989). Thus, we presumed that deimination of 
intermediated filaments controls the cytoskeletal network. This hypothesis was veri-
fied by several subsequent reports by others in the field. In particular, deiminated 
vimentin was found in vivo, and this modification triggers structural collapse and 
promotes apoptosis (Asaga et al. 1998; Hsu et al. 2014). There is also some evidence 
that deimination of GFAP is a characteristic feature of neurodegenerative diseases 
(Ishigami et al. 2005).

In parallel with research on rabbit skeletal muscle PAD, we attempted to develop 
a model system using the mouse/rat for investigation of the physiological function 
of PAD. From 1988, Dr. Tatsuo Senshu (Tokyo Metropolitan Institute of Gerontology, 
Japan) started his investigations into the PADs. Together, by 1995, our findings, 
coupled with those of Senshu’s laboratory, established that PAD is widely  distributed 
in many tissues with the notable exception of serum and the location of the enzyme 
was essentially in cytoplasm. Among the tissues tested thus far, the activity of PAD 
in the salivary glands, pancreas, and uterus far exceeded those of any other tissues. 

1 A History of Deimination Research in Japan: The Founding Fathers
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Immunohistochemical analyses indicated that the enzyme is preferentially located 
in acinal cells of the salivary glands and pancreas and in the luminal and glandular 
epithelia of the uterus (Takahara et al. 1989; Watanabe et al. 1988). Additionally, we 
noted estrous cycle-dependent changes in enzyme expression in the uterus, with the 
level being highest and lowest at diestrus (Takahara et al. 1989). Senshu’s group 
also found estrous cycle-dependent change of this enzyme in the rat pituitary gland 
(Senshu et al. 1989). The expression of PAD in the pituitary and uterus responds 
adequately to administration with 17β-estradiol (Senshu et al. 1989; Takahara et al. 
1992). In the uterus, a remarkable series of events takes place during the estrous 
cycle. The luminal and glandular epithelia of the uterus at the estrous stage show 
hyperplasia and vigorously secrete fluid into the lumen. Therefore, PAD may be 
important for exocrine events, but the physiological roles of PAD in the uterus and 
pituitary are still unknown.

During investigations of PAD activity in the skin, we had a question: why are the 
substrate specificities of the skeletal muscle PAD toward several arginine deriva-
tives different from those of the epidermal PAD reported previously (Fujisaki and 
Sugawara 1981)? Both PADs showed high activity toward the synthetic arginine 
derivatives blocked at the N- and C-termini (i.e., benzoyl-l-arginine ethyl ester), 
whereas the skeletal muscle PAD showed very low activity to C-terminal free argi-
nine derivatives such as benzoyl-l-arginine and acetyl-l-arginine. On the other 
hand, these C-terminal free substrates were comparably processed by epidermal 
PAD. This question was resolved by our comprehensive work published in 1991 
(Terakawa et al. 1991). We compared the elution profiles of the PAD activities of the 
extracts from several tissues of mouse using anion-exchange chromatography, in 
which PAD activity was simultaneously measured with the different substrates. As 
shown in Fig. 1.2, three peaks were eluted upon chromatography of the skin extract. 
Since each peak showed different substrate specificities, we proposed designating 
them as peptidylarginine deiminase type I (PAD1), II (PAD2), and III (PAD3) 
according to the order of elution. The extracts of the skeletal muscle, pancreas, sali-
vary gland, and brain (spinal cord) showed a single peak that corresponded to type 
II enzyme. Type I enzyme is specifically located in the uterus and epidermal cells, 
and type III enzyme is present in the hair follicle. These three types of enzyme were 
not significantly different in catalytic properties, including absolute dependence on 
calcium ions for activity and the stimulation with DTT.  Senshu’s group also 
described the presence of three isozymes in rat tissues and called them “epidermal 
type, skeletal muscle type, and hair follicle type,” which correspond to PAD1, 
PAD2, and PAD3, respectively (Watanabe et al. 1988). Thereafter, by innovative 
techniques such as molecular genetics and proteomics, two new PAD isozymes 
were found in rat epidermis (Yamakoshi et  al. 1998)/a keratinocyte cell line 
(Ishigami et al. 1998) and in the mouse ovary (Wright et al. 2003), and they were 
named PAD4 and ePAD, respectively. In 1999, Dr. Michiyuki Yamada (Yokohama 
City University, Japan) and colleagues identified a novel PAD in human myeloid 
leukemia HL-60 cells, which can induce to differentiate into granulocytes by reti-
noic acid (Nakashima et al. 1999). By comparison of the amino acid sequence and 
substrate specificity of HL-60 PAD with those of the four known rat PADs, they 

H. Takahara



Fig. 1.2 DEAE-Sephacel ion-exchange column chromatography of the PAD activity from various 
tissues from mouse. The substrates used for measuring PAD activity were Benzoyl-l-Arg-O-ethyl 
ester (open circle), Benzoyl-l-Arg (open triangle), and protamine (filled circle)
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concluded that HL-60 PAD did not belong to any PADs and named it PAD5 
(Nakashima et al. 1999). However, human PAD5 proved to be the human ortho-
logue of mouse PAD4 (Chavanas et al. 2004), and it was subsequently named PAD4 
by the HUGO Gene Nomenclature committee (HGNC). In addition, to avoid confu-
sion, the HGNC recommended that PAD5 remains unused and ePAD be renamed 
PAD6. In total, it is now recognized that there are five PAD isozymes, i.e., PAD1, 
PAD2, PAD3, PAD4, and PAD6.

Cloning of the cDNAs for the five PAD isozymes was a historic struggle that 
stretched from 1989 to 2004. In 1989, Watanabe and Senshu first reported on the 
cDNA of rat PAD2 and deduced its amino acid sequence (Watanabe and Senshu 
1989). Four years later, we revealed at long last in the full nucleotide sequence of 
mouse the PAD2 cDNA (Tsuchida et al. 1993). Looking back on that time, we had 
to overcome several obstacles to reach our goal. The N-terminal amino acid 
sequence of mouse PAD2 was Nα-acetyl-Met-Gln-, a sequence which has never 
previously been reported among Nα-acetyl-Met protein. As such, it was difficult to 
assign the methionine codon (ATG) at the translational start of the cDNA. In 1997, 
we purified a small amount of PAD3 from newborn rat epidermis by a procedure 
that included STI-affinity chromatography and carried out peptide mapping by the 
in situ protease digestion method (Nishijyo et  al. 1997). Subsequently, we suc-
ceeded in cloning the cDNA and sequenced the full-length cDNA encoding rat 
PAD3 by RT-PCR and 3′−/5′-RACE methods using synthesized nucleotide primers 
designed from the internal amino acid sequences (Nishijyo et al. 1997). This was 
the first report exhibiting the entire amino acid sequence of the isozyme, and by 
alignment of the PAD2 and PAD3 sequences, we found that a half of C-terminal 
region was highly conserved, and we predicted that the conserved region was likely 
responsible for the catalytic activity of this enzyme. This notion was ultimately 
proved by the excellent works of Dr. Mamoru Sato (Yokohama City University, 
Japan) and his coworkers in 2004, who determined the X-ray crystal structure of 
human PAD4 (Arita et al. 2004). These leading researches ultimately resulted in the 
cloning of the cDNAs for other PAD isozymes. Most cDNA isozymes from the 
rodent (Yamakoshi et al. 1998; Ishigami et al. 1998; Wright et al. 2003; Watanabe 
and Senshu 1989; Tsuchida et al. 1993; Nishijyo et al. 1997; Rus’d et al. 1999) and 
human PAD (Nakashima et  al. 1999; Chavanas et  al. 2004; Kanno et  al. 2000; 
Ishigami et al. 2002; Guerrin et al. 2003) were established in laboratories in Japan. 
In addition, we produced the bacterial recombinant PADs of mouse and human in 
run-up to other laboratories (Ohsugi et al. 1995). The constructed plasmids had a 
unique DNA linker containing a pair of Shine-Dalgarno sequences and a short pre-
ceding cistron inserted into the adjacent 5′-region of the coding region, so that we 
could obtain a large quantity of the PADs without a sequence tag in bacteria. These 
recombinant PADs were also easily purified by STI-affinity chromatography and 
helped a great deal for many investigations (Ohsugi et al. 1995).

In 1992, Senshu and coworkers developed an excellent procedure for the detec-
tion of deiminated proteins on membranes or fixed tissues (Senshu et al. 1992). This 
method involves a three-step process. In the first step, citrulline-containing proteins 
immobilized on the membrane or fixed tissues are chemically modified. In the 

H. Takahara
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