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Preface

Signaling pathway is a comprehensive mechanism by which all cellular organisms 
communicate internally and externally with their microenvironment. This is a 
highly complex and exact process. Errors in signaling pathways and in the process-
ing of cellular information are known to be responsible for the majority of diseases 
including cancer and inflammatory and neurological disorders. Knowledge gained 
from the better understanding of signaling pathways will help in elucidating disease 
processes and will assist in the development and design of novel targeted treatment 
therapies to combat human diseases and disorders. Heat shock proteins (HSP) are 
uniquely involved in a number of critical signaling pathways.

The book Heat Shock Proteins in Signaling Pathways provides the most com-
prehensive review on contemporary knowledge on the role of HSP in signaling 
pathways relevant to a number of diseases. Using an integrative approach, the con-
tributors provide a synopsis of novel mechanisms, signal transduction pathways. To 
enhance the ease of reading and comprehension, this book has been subdivided into 
various sections: Section I reviews current progress on our understanding of inflam-
matory signaling pathways, Section II focuses on oncology signaling pathways, and 
Section III emphasizes neurological signaling pathways.

Key basic and clinical research laboratories from major universities, academic 
medical hospitals, and biotechnology and pharmaceutical laboratories around the 
world have contributed chapters that review present research activity and impor-
tantly project the field into the future. The book is a must-read for graduate students, 
medical students, basic science researchers, and postdoctoral scholars in the fields 
of Translational Medicine, Clinical Research, Human Physiology, Biotechnology, 
and Cell and Molecular Medicine and also for pharmaceutical scientists and 
researchers involved in drug discovery.

Toledo, OH, USA  Alexzander A. A. Asea 
Houston, TX, USA   Punit Kaur 
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Chapter 1
Thiol-Based Redox Signaling: Impacts 
on Molecular Chaperones and Cellular 
Proteostasis

Amy E. Ford and Kevin A. Morano

Abstract Signaling through protein cysteine residues to regulate diverse biological 
processes is widely conserved from bacterial to human cells. Differential cysteine 
reactivity enables cells to sense and respond to perturbations in the cellular redox 
environment, which may impact protein structure and activity. This chapter will 
focus on how redox signaling regulates components of the protein quality control 
network to mitigate proteotoxic stress caused by redox active compounds. While 
specifics of redox-based activation of the endoplasmic reticulum unfolded protein 
response and the cytoplasmic heat shock and oxidative stress responses differ, the 
presence of regulatory proteins containing reactive cysteines is a common feature. 
Moreover, several protein chaperones are reversibly regulated via cysteine switches 
that govern their ability to protect or refold damaged polypeptides. These responses 
are biologically indispensable, given the propensity of dysregulated cells to produce 
endogenous reactive oxygen species and the prevalence of thiol-reactive xenobiot-
ics in the external environment.

Keywords Chaperone · Oxidative stress · Proteostasis · Reactive oxygen species · 
Redox · Signaling
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Abbreviations

CRD cysteine-rich domain
Cys cysteine
ER endoplasmic reticulum
HMW high molecular weight
HS heat shock
HSP heat shock protein
HSR heat shock response
LMW low molecular weight
NBD nucleotide binding domain
NEF nucleotide exchange factor
OS oxidative stress
OSR oxidative stress response
PDI protein disulfide isomerase
PQC protein quality control
Prx peroxiredoxin
ROS reactive oxygen species
SOH sulfenic acid
TF transcription factor
Ub ubiquitin
UPR unfolded protein response

1.1  Introduction

Cysteine (Cys) is one of the least abundant amino acids, but serves critical and 
unique roles in protein structure and chemistry due to its irreplaceable functionality 
as the only amino acid with a readily ionizable thiol group (Marino and Gladyshev 
2010). Thiol reactivity depends on its accessibility and protonation state (pKa), the 
latter of which is influenced by local protein microenvironment properties such as 
pH, secondary structure, and hydrogen bonding (Kortemme and Creighton 1995; 
Ferrer-Sueta et al. 2011). Although methionine also contains a sulfur atom, the thio-
ether is in a relatively less reactive form and is typically not involved in biologically 
relevant reactions. Cys residues are most often buried within the interior of the 
protein structure; however, they can also be found exposed to the solvent (Poole 
2015). Additionally, cysteines are typically clustered into two or more groups, char-
acteristic of metal binding and redox centers. These chemical and functional proper-
ties allow for rapid and reversible redox regulation of protein activity, frequently but 
not exclusively through the formation of intramolecular disulfide bonds, to sense 
and control diverse cellular states and processes.

Reactive oxygen species (ROS) produced as a byproduct of aerobic metabolism, 
oxidative protein folding, and exposure to oxidants and highly toxic xenobiotics 

A. E. Ford and K. A. Morano
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have the potential to modify reactive thiols (Marnett et al. 2003; Tu and Weissman 
2004; West et al. 2012). Oxidants such as hydrogen peroxide and diamide can react 
with protein thiols to form both reversible and irreversible thiolations (Winterbourn 
and Hampton 2008; Paulsen and Carroll 2010). Following initial formation of 
sulfenic acid (SOH), the modified thiol can either be further oxidized into sulfinic 
(SOOH) or sulfonic (SOOOH) acid or form a disulfide bond with a nearby free thiol 
(e.g. intramolecularly with a proximal Cys residue or with glutathione). These mod-
ifications play biological roles in sensing and regulation of activity of redox enzymes 
and transcriptional programs. The highly toxic heavy metal cadmium and metalloid- 
anion arsenite can target proteins in multiple ways – covalent binding of free thiols, 
metal ion displacement, and catalyzing oxidation (Tamás et al. 2014). In addition to 
oxidants and heavy metals, Cys residues are susceptible to modification by organic 
electrophiles, which form thiol adducts and may induce intermolecular cross-links 
between proteins (Zhang et al. 1995; Sánchez-Gómez et al. 2010). While xenobiot-
ics are not involved in normal, steady state redox regulation, exposure to these 
agents can mimic endogenous modifications and induce similar downstream 
signaling.

Protein homeostasis (“proteostasis”) is essential for cellular function, and is 
defined as the status of the protein complement of a cell as determined by protein 
synthesis, assembly and degradation/turnover. Molecular chaperones assist proteins 
in their proper folding and prevent non-native conformations that lead to misfolding 
and aggregation (reviewed by Verghese et al. 2012). Proteins that cannot be folded 
properly or any non-native confirmations that arise are shuttled to specific protein 
aggregation sites and/or degradation pathways. These functions are performed by a 
variety of different chaperone classes and machines that make up the protein quality 
control (PQC) network. Members of the highly conserved Hsp70 class of chaper-
ones are located in all major subcellular compartments and function in many aspects 
of proteostasis including native folding, transport, disaggregation, and degradation. 
Hsp70 performs these functions with the assistance of co-chaperones such as 
J-domain-containing Hsp40 proteins and nucleotide exchange factors (NEF), 
including the Hsp110, HspBP1 and Bag protein families (Bracher and Verghese 
2015). Unlike Hsp70, the conserved Hsp90 system of chaperones interacts with 
specific “client” proteins, including kinases, receptors, and transcription factors, to 
aid in protein maturation and assembly of macromolecular complexes (Röhl et al. 
2013). Cells also utilize small heat shock proteins that form multimers to aid in 
disaggregation (Verghese et al. 2012).

Cys modification by thiol-reactive compounds (described above) has the poten-
tial to alter protein structure and affect protein stability and solubility. Using in vitro 
folding assays, live cell imaging, and proteomic approaches, thiol stress has been 
found to induce protein aggregation (Sharma et al. 2008; Jacobson et al. 2012, 2017; 
Weids et al. 2016). Accumulation of protein aggregates resulting from exposure to 
these compounds can be toxic to cells as demonstrated by dose-dependent loss of 
cell viability (West et al. 2011). Protein aggregation is linked to diverse human dis-
eases including diabetes, cancers, and neurodegenerative disorders such as 
Alzheimer’s, Parkinson’s and Lou Gehrig’s diseases (Valastyan and Lindquist 2014; 
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Hipp et al. 2014). In addition to protein aggregation, oxidative stress (OS) and metal 
dyshomeostasis have been implicated, suggesting that disruption of redox balance 
and, therefore, redox regulation, as a contributing factor to these diseases.

Multiple studies have investigated the in vivo redox state of thiol-containing pro-
teins during steady state conditions, peroxide stress, and changes to redox status due 
to aging or genetic mutations (Le Moan et al. 2006; Brandes et al. 2011, 2016). A 
common theme amongst these studies is the diversity of cellular processes that 
depend on redox-active thiol-containing proteins – redox systems, energy metabo-
lism, translation, and, notably, protein folding. In this chapter, we will discuss the 
interplay between the PQC network and redox signaling with respect to changes in 
the protein folding environment.

1.1.1  Regulation of Stress Responses

The ability to respond and adapt to environmental changes through transcriptional 
reprogramming is essential for survival and proliferation. Bacterial responses to 
stress are numerous due to the diversity of niches and are regulated by specific or 
over-lapping stresses (Chalancon and Madan Babu 2011; Helmann 2011). 
Transcriptional activators, repressors and alternative sigma factors block or recruit 
RNA polymerase and additional co-regulators to regulate gene expression. Activity 
of these proteins is often controlled through anti-sigma factors that act as stress sen-
sors and interact with the transcriptional regulator to sequester or facilitate its deg-
radation (Hughes et al. 1998; Zhou et al. 2001; Arsène and Tomoyasu 2000). The 
major chaperone Hsp70 system composed of DnaK/DnaJ/GrpE (E. coli) and the 
Hsp60 chaperonin (GroEL/ES in E. coli) machines protect nascent polypeptides 
from insults to the folding environment and assist in refolding or degradation of 
damaged proteins. The two chaperone systems have been implicated in stress 
response sensing and regulation, most notably the Hsp70 system that regulates sta-
bility of the bacterial stress factor σ32 (Arsène and Tomoyasu 2000).

A distinguishing feature of eukaryotes is the presence of membrane-bound 
organelles that allow for the compartmentalization of distinct protein folding envi-
ronments that differ in redox status: a reducing environment predominates in the 
cytosol and nucleus, and an oxidizing one is characteristic of the ER and mitochon-
drial inner membrane space, as well as the extracellular milieu. Changes in the 
redox balance within these compartments are sensed via protein thiol modifications 
which lead to activation of transcriptional responses (see Fig. 1.1). Within the ER, 
the response to redox imbalance is well characterized and is known as the unfolded 
protein response (UPR). In the cytosol, cells activate a specific transcriptional pro-
gram to oxidative stress called the oxidative stress response (OSR). On the other 
hand, the response to misfolded proteins, classically termed the heat shock response 
(HSR), is primarily modulated by the transcription factor (TF) Hsf1; however, the 
mechanism of Hsf1 activation by oxidation of the reducing environment is unclear. 
Within the last 10 years, studies have investigated the connection between OS and 
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