
Advances in VIRUS RESEARCH

RESEARCH ADVANCES IN RABIES

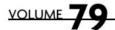
Edited by Alan C. Jackson

Advances in VIRUS RESEARCH

Research Advances in Rabies

SERIES EDITORS

KARL MARAMOROSCH Rutgers University, New Jersey, USA


AARON J. SHATKIN Center for Advanced Biotechnology and Medicine, New Jersey, USA

FREDERICK A. MURPHY University of Texas Medical Branch, Texas, USA

ADVISORY BOARD

DAVID BALTIMORE ROBERT M. CHANOCK PETER C. DOHERTY H. J. GROSS B. D. HARRISON BERNARD MOSS ERLING NORRBY J. J. SKEHEL M. H. V. VAN REGENMORTEL

Advances in VIRUS RESEARCH

Research Advances in Rabies

Edited by

ALAN C. JACKSON

Departments of Internal Medicine (Neurology) and of Medical Microbiology University of Manitoba Winnipeg, Manitoba, Canada

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier

32 Jamestown Road, London, NW1 7BY, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands 225 Wyman Street, Waltham, MA 02451, USA 525 B Street, Suite 1900, San Diego, CA 92101-4495, USA

First edition 2011

Copyright © 2011 Elsevier Inc. All Rights Reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) (0) 1865 843830, fax: (+44) (0) 1865 853333; e-mail: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://www.elsevier.com/locate/permissions, and selecting *Obtaining permission to use Elsevier material*

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

```
ISBN: 978-0-12-387040-7
ISSN: 0065-3527
```

For information on all Academic Press publications visit our website at elsevierdirect.com

Printed and bound in USA 11 12 13 14 10 9 8 7 6 5 4 3 2 1 Working together to grow libraries in developing countries www.elsevier.com | www.bookaid.org | www.sabre.org ELSEVIER BOOKAID Determined Sabre Foundation

CONTENTS

Contributors Preface	xi xvii
1. Rabies Virus Transcription and Replication	1
Aurélie A. V. Albertini, Rob W. H. Ruigrok, and Danielle Blondel	
I. Introduction	2
II. Molecular Aspects of Viral Transcription and Replication III. Structural Aspect of RABV Transcription and Replication;	2
Proteins Involved in Transcription and Replication IV. Cellular Aspect of Rabies Transcription and Replication:	10
IBs Formed in Infected Cells Are the Sites of Viral RNA Synt	thesis 16
V. Concluding Remarks	18
Acknowledgments	18
References	19
2. Rabies Virus Assembly and Budding	23
Atsushi Okumura and Ronald N. Harty	
I. Introduction	24
II. Rabies Virus M Protein	24
III. The Central Role of M and Supporting Role of G in RABV E	
IV. Features of M Protein Important for Budding	25
V. Viral L-Domain/Host Interactions	26
VI. Ubiquitination and RABV Budding	28
VII. Summary	29
Acknowledgments	29
References	29
3. Evasive Strategies in Rabies Virus Infection	33
Monique Lafon	
I. Introduction	34
II. Evasion from Host Immune Response	34
III. Preservation of Neuron and Neuronal Network Integrity	41
IV. Conclusions on RABV Evasive Strategies	45
References	47

. Rabies Virus Clearance from the Central Nervous System	55
D. Craig Hooper, Anirban Roy, Darryll A. Barkhouse, Jianwei Li, and Rhonda B. Kean	
 Introduction Rabies Virus Animal Reservoirs of the Rabies Virus and the Threat of Human Ra IV. Human Rabies Human Rabies The Current Rabies Postexposure Treatment Paradigm Obstacles in Clearing Wild-type Rabies Virus from the CNS Prospects for Human Rabies Immunotherapy Through Virus Clearance from the CNS 	59 60 60
Acknowledgments References	69 69
Role of Chemokines in Rabies Pathogenesis and Protection	73
Xuefeng Niu, Hualei Wang, and Zhen F. Fu	
I. Introduction II. Chemokines III. The Role of Chemokines in the CNS	74 75
When Infected by VirusesIV. Induction of Chemokine Expression in RABV InfectionsV. Overexpression of Chemokines Can Benefit the Host If the Expression Is Transient While It Harms the Host If the Expression	77 79
Is Persistent During RABV Infections VI. Chemokines Expression Correlates with the Activation of Dendrit	80 ic
Cells and Enhancement of Adaptive Immunity VII. Recombinant RABV Expressing Chemokines/Cytokines Can Be Use	81 ed
Effectively to Prevent the Development of Rabies VIII. Summary	82 84
Acknowledgments References	85 85
. Interferon in Rabies Virus Infection	91
Martina Rieder and Karl-Klaus Conzelmann	
I. Introduction II. Rabies and Interferon	92 96
III. Conclusions and Future Outlook	106
Acknowledgments	107
References	107

7. The Role of Toll-Like Receptors in the Induction of Immune Responses During Rabies Virus Infection	115
Jianwei Li, Milosz Faber, Bernhard Dietzschold, and D. Craig Hooper	
I. Toll-Like Receptors	116
II. Rabies in MyD88-Deficient Mice	118
III. The Host Response to Rabies Infection Involves TLR7IV. The Contribution of TLR7 Signaling to the Control of Rabies	119
Virus Spread to the CNS and Clearance from CNS Tissues	121
V. TLR7 and the Diverse Pathogenicities of Rabies Virus Variants	123
VI. Conclusions and Relevance to Therapeutic Immunization	124
Acknowledgments	124
References	125
8. Role of Oxidative Stress in Rabies Virus Infection	127
Alan C. Jackson, Wafa Kammouni, and Paul Fernyhough	
I. Introduction	128
II. Degeneration of Neuronal Processes in Experimental Rabies	128
III. Cultured Dorsal Root Ganglion Neurons for Studying Neuronal	
Process Degeneration	129
IV. Oxidative Stress	131
V. Oxidative Stress in Rabies Virus Infection	133
VI. Conclusions	135
Acknowledgments	136
References	136
9. Rabies Virus as a Research Tool and Viral Vaccine Vector	139
Emily A. Gomme, Celestine N. Wanjalla, Christoph Wirblich, and Matthias J. Schnell	
I. Rabies Virus as a Research Tool	140
II. The Need for Novel Vaccines for RABV	144
III. Modified Replication-Competent RABV as	
Rabies Vaccines for Wildlife	145
IV. RABV-Based Vectors as Vaccines Against Other Infectious DiseasesV. Safety: Generating Safer RABV Vaccines and	148
Vectors for Use in Humans	153
VI. Replication-Deficient or Single-Cycle RABV	153
VII. Potential Novel Human Rabies Vaccines Based on	
Replication-Deficient RABV	154
VIII. Replication-Deficient/Single-Cycle RABV as Vaccine Vector	155
IX. Killed RABV-RABV Proteins as Carriers of Foreign Antigens	155
References	156

vii

10.	Rabies Virus as a Transneuronal Tracer of Neuronal Connections	165
	Gabriella Ugolini	
	I. Introduction	166
	II. Differences in Properties of Alpha-Herpesviruses and	
	Rabies Virus as Transneuronal Tracers	169
	III. Rabies Virus	173
	IV. Perspectives	194
	Acknowledgments	195
	References	196
11.	Molecular Phylogenetics of the Lyssaviruses—Insights	
	from a Coalescent Approach	203
	Susan A. Nadin-Davis and Leslie A. Real	
	I. Introduction	204
	II. Lyssavirus Phylogeny	205
	III. Lyssavirus Phylogeography	207
	IV. Lyssavirus Adaptation	226
	V. Concluding Remarks	231
	References	232
12.	Bats and Lyssaviruses	239
	Ashley C. Banyard, David Hayman, Nicholas Johnson, Lorraine	
	McElhinney, and Anthony R. Fooks	
	I. Introduction	240
	II. Bat Lyssaviruses: Eurasia and Australasia	244
	III. Bat Lyssaviruses: Africa	254
	IV. Bat Rabies and the Americas	261
	V. Discussion	270
	Acknowledgments	278
	References	278
13.	Postexposure Prophylaxis for Rabies in Resource-Limited/	
	Poor Countries	291
	Prapimporn Shantavasinkul and Henry Wilde	
	I. Introduction	292
	II. Local Wound Care	292
	III. Evaluation of Risk of Rabies Exposure	293
	IV. Postexposure Prophylaxis of Previously Unvaccinated Patients	295
	V. Postexposure Prophylaxis in Previously Vaccinated Patients	301
	VI. Postexposure Prophylaxis Failures	303
	References	304

14. Neuroimaging in Rabies	309
Jiraporn Laothamatas, Witaya Sungkarat, and Thiravat Hemachudha	
 I. Introduction II. Neuroimaging Techniques III. Neuroimaging in Rabies IV. Newer Neuroimaging Techniques in Rabies V. Conclusions Acknowledgments References 	310 311 314 320 324 325 325
15. Rabies Virus Infection and MicroRNAs	329
Nipan Israsena, Aekkapol Mahavihakanont, and Thiravat Hemachudha	
I. Introduction II. MicroRNAs III. miRNAs and Viruses IV. Inhibition of Rabies Viral Replication by siRNA/amiRNA V. Conclusions References	330 330 333 338 340 340
16. Design of Future Rabies Biologics and Antiviral Drugs	345
Todd G. Smith, Xianfu Wu, Richard Franka, and Charles E. Rupprecht	
I. Introduction II. Vaccines III. Antibodies IV. Antiviral Drugs V. Conclusions References	346 346 351 354 357 357
17. Therapy of Human Rabies	365
Alan C. Jackson	
I. Introduction II. Prevention of Rabies III. Therapy of Rabies IV. New Approaches V. Conclusions References	366 366 367 371 372 372

18. Mathematical Models for Rabies

Vijay G. Panjeti and Leslie A. Real

I. Introduction	378
II. The Development of the Mathematical Approach to Rabies	Dynamics 379
III. Modeling Approaches Using Reaction Diffusion Methods	381
IV. Methods for Incorporating Landscape Heterogeneities	384
V. Stochastic Models	387
VI. Incorporating Stochasticity and Spatial Heterogeneity	388
VII. Optimal Control	392
VIII. Conclusions	394
Acknowledgments	394
References	395
19. Evolution of Wildlife Rabies Control Tactics	397
Rick Rosatte	
I. Introduction	398
II. Historical and Contemporary Wildlife Rabies Control Tactic	
III. Advances in Rabies Vaccine-Bait Delivery Systems for Wildli	
IV. Advances in Wildlife Rabies Vaccines	405
 V. Advances in the Assessment of Wildlife Vaccination System VI. Advances in Contingency and Management Planning for Wildlife 	
Rabies Control	408
VII. Advances in Technologies for Studying the Ecology of the R	labies
Virus and Wildlife Rabies Vector Species	410
VIII. Summary	413
References	414
20. Understanding Effects of Barriers on the Spread	
and Control of Rabies	421
Erin E. Rees, Bruce A. Pond, Rowland R. Tinline, and Denise Bélanger	
I. The Concept and Mechanisms of Barriers	422
II. Assessing Barrier Effects	425
III. Assessing Interaction of Vaccination Barriers and Habitat Patte	erns 431
IV. Discussion	444
Acknowledgments	445
References	445
21. Rabies Research in Resource-Poor Countries	449
Henry Wilde and Boonlert Lumlertdacha	
References	454
Index	457

377

Color plate section at the end of the book

CONTRIBUTORS

Aurélie A. V. Albertini

UPR 3296 CNRS, Virologie Moléculaire et Structurale, Gif sur Yvette, France

Ashley C. Banyard

Rabies and Wildlife Zoonoses Group, Department of Virology, Veterinary Laboratories Agency, Weybridge, New Haw, Addlestone, Surrey, United Kingdom

Darryll A. Barkhouse

Center for Neurovirology, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA

Denise Bélanger

Faculté de médecine vétérinaire, Département de pathologie et microbiologie, GREZOSP Université de Montréal, Saint-Hyacinthe, Quebec, Canada

Danielle Blondel

UPR 3296 CNRS, Virologie Moléculaire et Structurale, Gif sur Yvette, France

Karl-Klaus Conzelmann

Max von Pettenkofer Institute and Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany

Bernhard Dietzschold

Center for Neurovirology, Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA

Milosz Faber

Center for Neurovirology, Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA

Paul Fernyhough

Division of Neurodegenerative Disorders, St. Boniface Hospital Research Centre, and Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada

Anthony R. Fooks

Rabies and Wildlife Zoonoses Group, Department of Virology, Veterinary Laboratories Agency, Weybridge, New Haw, Addlestone, Surrey, and National Centre for Zoonosis Research, University of Liverpool, Leahurst, Neston, Wirral, United Kingdom

Richard Franka

Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Zhen F. Fu

Departments of Pathology, University of Georgia, Athens, Georgia, USA

Emily A. Gomme

Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA

Ronald N. Harty

Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA

David Hayman

Rabies and Wildlife Zoonoses Group, Department of Virology, Veterinary Laboratories Agency, Weybridge, New Haw, Addlestone, Surrey, and Cambridge Infectious Diseases Consortium, Department of Veterinary Medicine, Cambridge; Institute of Zoology, Regent's Park, London, United Kingdom

Thiravat Hemachudha

Department of Medicine (Neurology) and WHO Collaborating Center in Research and Training on Viral Zoonoses, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

D. Craig Hooper

Center for Neurovirology, Department of Cancer Biology, and Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA

Nipan Israsena

Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

Alan C. Jackson

Department of Internal Medicine (Neurology), and Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada

Nicholas Johnson

Rabies and Wildlife Zoonoses Group, Department of Virology, Veterinary Laboratories Agency, Weybridge, New Haw, Addlestone, Surrey, United Kingdom

Wafa Kammouni

Department of Internal Medicine (Neurology), University of Manitoba, Winnipeg, Manitoba, Canada

Rhonda B. Kean

Center for Neurovirology, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA

Monique Lafon

Unité de Neuroimmunologie Virale, Département de Virologie, Institut Pasteur, Paris, France

Jiraporn Laothamatas

Advanced Diagnostic Imaging and Image-Guided Minimal Invasive Therapy Center (AIMC) and Department of Radiology, Ramathibodi Hospital, Faculty of Medicine, Mahidol University, Bangkok, Thailand

Jianwei Li Center for Neurovirology, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA

Boonlert Lumlertdacha

Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand

Aekkapol Mahavihakanont

Department of Medicine (Neurology) and WHO Collaborating Center in Research and Training on Viral Zoonoses, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

Lorraine McElhinney

Rabies and Wildlife Zoonoses Group, Department of Virology, Veterinary Laboratories Agency, Weybridge, New Haw, Addlestone, Surrey,

and National Centre for Zoonosis Research, University of Liverpool, Leahurst, Neston, Wirral, United Kingdom

Susan A. Nadin-Davis

Centre of Expertise for Rabies, Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, Ontario, Canada

Xuefeng Niu

Departments of Pathology, University of Georgia, Athens, Georgia, USA

Atsushi Okumura Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA

Vijay G. Panjeti Department of Biology and Center for Disease Ecology, Emory University, Atlanta, Georgia, USA

Bruce A. Pond Wildlife Research and Development Section, Ontario Ministry of Natural Resources, Peterborough, Ontario, Canada

Leslie A. Real Department of Biology and Center for Disease Ecology, Emory University, Atlanta, Georgia, USA

Erin E. Rees Faculté de médecine vétérinaire, Département de pathologie et microbiologie, GREZOSP Université de Montréal, Saint-Hyacinthe, Quebec, Canada

Martina Rieder Max von Pettenkofer Institute and Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany

Rick Rosatte Ontario Ministry of Natural Resources, Wildlife Research and Development Section, Trent University, Peterborough, Ontario, Canada

Anirban Roy Center for Neurovirology, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA Rob W. H. Ruigrok UMI 3265 UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France

Charles E. Rupprecht

Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Matthias J. Schnell

Department of Microbiology and Immunology, and Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA

Prapimporn Shantavasinkul

Queen Saovabha Memorial Institute, The Thai Red Cross Society (World Health Organization Collaborating Center for Research on Rabies Pathogenesis and Prevention), Bangkok, Thailand

Todd G. Smith

Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Witaya Sungkarat

Advanced Diagnostic Imaging and Image-Guided Minimal Invasive Therapy Center (AIMC) and Department of Radiology, Ramathibodi Hospital, Faculty of Medicine, Mahidol University, Bangkok, Thailand

Rowland R. Tinline

Department of Geography, Queen's University, Kingston, Ontario, Canada

Gabriella Ugolini

Neurobiologie et Développement, UPR3294 CNRS, Institut de Neurobiologie Alfred Fessard (INAF), 1 Avenue de la Terrasse, Bât. 32, 91198 Gif-sur-Yvette, France

Hualei Wang

Departments of Pathology, University of Georgia, Athens, Georgia, USA

Celestine N. Wanjalla

Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA

Henry Wilde

WHO-CC for Research and Training on Viral Zoonoses, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

Christoph Wirblich

Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA

Xianfu Wu

Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA

PREFACE

Rabies is an ancient disease that unfortunately remains an important public health problem in humans. There have been many important research advances extending from our understanding of how rabies virus replicates and assembles to how the disease can be prevented and treated in humans and how rabies can be controlled in wildlife hosts. The vaccination of Joseph Meister by Louis Pasteur and colleagues in 1885 was just one of many important landmarks of our advances against a truly diabolical virus that infects the brain of its vectors and alters behavior, resulting in transmission by biting at a time when the deadly virus is secreted in the saliva. There has been much progress in many different areas, but many challenges remain involving our understanding of rabies virus infection. Only further basic research will give us a better understanding of mechanisms involved in all aspects of the infection, including at the level of the cell and of the host and also in human and animal populations. This knowledge is needed to develop strategies to better combat all aspects of the disease. In addition, rabies virus is now recognized as the best available tool for the study of neuronal circuits in the nervous system and neuroscientists will certainly use it much more in the future.

I would like to express my appreciation to the series editors, Karl Maramorosch and Frederick Murphy, and to Lisa Tickner at Elsevier for giving me the opportunity of putting together a research volume on rabies and to our many contributors, who are all experts in their fields, for their hard work in preparing insightful and up-to-date chapters that summarize our current state of knowledge in diverse aspects of this very interesting and important viral disease.

> Alan C. Jackson Winnipeg, Manitoba, Canada December 2010

Rabies Virus Transcription and Replication

Aurélie A. V. Albertini,* Rob W. H. Ruigrok,[†] and Danielle Blondel*

Contents I	Introduction	2
	Molecular Aspects of Viral Transcription	
	and Replication	2
	A. Virion structure	2
	B. Genome organization	3
	C. Viral cycle	5
	D. Viral transcription and replication	5
	Structural Aspect of RABV Transcription	
	and Replication; Proteins Involved in Transcription	
	and Replication	10
	A. Nucleoprotein	10
	B. Phosphoprotein	10
	C. Large protein	14
IV	Cellular Aspect of Rabies Transcription	
	and Replication: IBs Formed in Infected Cells Are the	
	Sites of Viral RNA Synthesis	16
V	Concluding Remarks	18
A	cknowledgments	18
	eferences	19

Abstract

Rabies virus (RABV) is a negative-stranded RNA virus. Its genome is tightly encapsidated by the viral nucleoprotein (N) and this RNA–N complex is the template for transcription and replication by the

© 2011 Elsevier Inc. All rights reserved.

^{*} UPR 3296 CNRS, Virologie Moléculaire et Structurale, Gif sur Yvette, France

[†] UMI 3265 UJF-EMBL-CNRS, Unit of Virus Host Cell Interactions, Grenoble, France

Advances in Virus Research, Volume 79 ISSN 0065-3527, DOI: 10.1016/B978-0-12-387040-7.00001-9

viral RNA-dependent RNA polymerase (L) and its cofactor, the phosphoprotein (P). We present molecular, structural, and cellular aspects of RABV transcription and replication. We first summarize the characteristics and molecular biology of both RNA synthesis processes. We then discuss biochemical and structural data on the viral proteins (N, P, and L) and their interactions with regard to their role in viral transcription and replication. Finally, we review evidence that rabies viral transcription and replication take place in cytoplasmic inclusion bodies formed in RABV-infected cells and discuss the role of this cellular compartmentalization.

I. INTRODUCTION

Rabies virus (RABV) and rabies-related viruses belong to the *Lyssavirus* genus of the *Rhabdoviridae* family, which also includes the *Vesiculovirus* genus with the prototype vesicular stomatitis virus (VSV). However, the natural histories of RABV and VSV are very different. RABV is a prototype neurotropic virus that causes fatal disease in humans and animals, whereas VSV is an arthropod-borne virus that primarily affects rodents, cattle, swine, and horses and can cause mild symptoms upon infection of humans and other species. *Rhabdoviridae* are part of the *Mononegavirales* order, which includes other virus families such as the *Paramyxoviridae*, the *Filoviridae*, and the *Bornaviridae*.

RNA transcription and replication of rhabdoviruses require an intricate interplay of the nucleoprotein N, the RNA-dependent RNA polymerase (RdRp) L, a nonenzymatic polymerase cofactor P, and the RNA genome enwrapped by N, also called the nucleocapsid. During RNA synthesis, P binds L to the N–RNA template through an N–P interaction that involves two adjacent N proteins in the nucleocapsid. L–P binding to the N–RNA probably triggers conformational changes that allow access of the polymerase to the RNA.

II. MOLECULAR ASPECTS OF VIRAL TRANSCRIPTION AND REPLICATION

A. Virion structure

Rabies virions have a bullet-like shape, with a diameter of 75 nm and a length of 100–300 nm depending on the strain (Matsumoto, 1962; Tordo and Poch, 1988b). One end is conical, and the other end is flat (Fig. 1). The viral RNA is encapsidated by the nucleoprotein N (450 amino acids (aa)) to form a helical nucleocapsid in which each N protomer binds to nine nucleotides like for VSV (Iseni *et al.*, 1998; Thomas *et al.*, 1985). The nucleocapsid is associated with a significant amount of phosphoprotein P (297 aa),