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The International Committee on Taxonomy of Viruses (ICTV) classifies RNA viruses as 
those that belong to Group III, Group IV, or Group V of the Baltimore classification sys-
tem and contain ribonucleic acid (RNA) as genetic material throughout their entire life 
cycle. Group III includes double-stranded RNA viruses (dsRNAs), whereas Groups IV and 
V contain single-stranded RNA viruses (ssRNAs) of positive and negative polarity, respec-
tively. Positive sense RNA viruses (+ssRNAs) are those in which the RNA itself is translated 
by the host cell translation machinery and initiates an infectious cycle de novo. In contrast, 
negative sense RNA viruses (−ssRNAs) cannot be translated directly and require copying of 
the negative sense RNA into a positive sense RNA strand before the infection can 
proceed.

In biology, the term “forward genetics” is used to define an approach that seeks to find 
the genetic basis of a phenotype or trait. Forward genetics of RNA viruses implies imposing 
them to various stress conditions and then defining the genetic changes that occurred in the 
process. The term “reverse genetics” is an approach to unravel the function of a gene by 
establishing and analyzing the phenotypic effects of (artificially) engineered gene sequences. 
In case of RNA viruses, reverse genetics invariably requires the de novo reconstitution of 
the virus from a cDNA copy. Using molecular biology, cDNA copies of RNA viruses are 
cloned into a variety of vectors, most typically and in order of preference, plasmids, bacterial 
artificial chromosomes or bacmids, or recombinant viral vectors. The ability to further 
manipulate DNA elements encoding portions or entire cDNA copies of RNA viruses has 
revolutionized the manner in which these viruses can be studied and understood. Thanks 
to reverse genetics, it is possible to better define the molecular mechanisms that modulate 
pathogenesis, transmission, and host range of RNA viruses, to study virus evolution, recep-
tor binding characteristics, virus entry, replication, assembly, and budding. Reverse genetics 
allows the development of novel vaccine strategies and to better test and/or develop alter-
native intervention strategies such as novel antivirals. Perhaps the initial perception is to 
think that reverse genetics of dsRNAs and +ssRNAs is easier than −ssRNAs; however, 
genome size, secondary RNA structures, genome segmentation, cryptic signal sequences, 
among other issues, make reverse genetics of all kinds of RNA viruses equally challenging.

This book Reverse Genetics of RNA Viruses: Methods and Protocols is a compilation of 16 
chapters summarizing reverse genetics breakthroughs and detailed reverse genetics proto-
cols. The book does not cover every reverse genetics protocol for every RNA virus. Instead, 
it does provide comprehensive protocols for those RNA viruses that were initially the most 
challenging to obtain and/or that were developed most recently. This book, of course, 
would not have been possible without the outstanding and most generous contributions of 
our authors who are leaders in their respective fields and that have shared their insights and 
step-by-step protocols to help you, our colleagues, with your own research endeavors.  
I hope you find this book helpful.

Athens, GA, USA Daniel R. Perez 

Preface
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Chapter 1

Reverse Genetics for Mammalian Orthoreovirus

Johnasha D. Stuart*, Matthew B. Phillips*, and Karl W. Boehme

Abstract

Reverse genetics allows introduction of specific alterations into a viral genome. Studies performed with 
mutant viruses generated using reverse genetics approaches have contributed immeasurably to our under-
standing of viral replication and pathogenesis, and also have led to development of novel vaccines and virus-
based vectors. Here, we describe the reverse genetics system that allows for production and recovery of 
mammalian orthoreovirus, a double-stranded (ds) RNA virus, from plasmids that encode the viral genome.

Key words Plasmid-based reverse genetics, Reovirus, Double-stranded RNA virus, Recombinant 
virus, Viral reassortment, T7 RNA polymerase

1 Introduction

Viral mutants are powerful experimental tools. Analysis of mutant 
viruses has produced myriad breakthrough in our understanding 
of viral pathogenesis by illuminating how viruses replicate, alter 
host cell physiology, and modulate immune responses. Viral 
mutants can be derived using “forward genetics,” where a selec-
tive pressure impairs one or more viral functions and requires the 
virus to adapt in order to replicate efficiently under the restrictive 
condition. Defining genetic changes that occur during adaptation 
can identify nucleotides in coding or noncoding regions of the 
viral genome that are associated with resistance to particular pres-
sures. Forward genetics approaches are extremely effective for 
mapping the functions of viral proteins, but requires a selective 
pressure to restrict the virus and force genetic changes. In con-
trast, the ability to engineer viruses via reverse genetics enables the 
testing of properties for which a selective pressure is not available. 
Reverse genetics is the direct introduction of specific alterations, 

*Johnasha D. Stuart and Matthew B. Phillips contributed equally to this work.
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including point mutations, insertions, and deletions, into a viral 
genome. In this chapter, we provide a protocol for generating 
mammalian orthoreovirus (reovirus) using a plasmid-based rescue 
system.

Reovirus is a member of the Reoviridae family of viruses that 
infect a range of host organisms, including mammals, birds, insects, 
and plants [1]. The Reoviridae family includes rotavirus, a com-
mon diarrheal pathogen among children [2]; bluetongue virus, an 
economically important agricultural pathogen that causes disease 
in sheep and cattle [3]; and mammalian orthoreovirus, a useful 
model for studies of dsRNA virus replication and pathogenesis [1]. 
Reoviruses were originally isolated in the 1950s [4]. Most people 
become infected by at least one of the three circulating reovirus 
serotypes during childhood [5]. Although reovirus infections are 
typically asymptomatic and self-resolve, they are implicated in a 
number of cases of central nervous system disease in children [1]. 
The three reovirus serotypes are represented by a prototype labora-
tory strain: type 1 Lang (T1L), type 2 Jones (T2J), and type 3 
Dearing (T3D) [1]. Here, we provide a protocol for rescue of 
strains T1L and T3D using plasmid-based reverse genetics.

Reoviruses are non-enveloped, icosahedral viruses that con-
tain a segmented genome consisting of ten ds RNAs [1]. The 
genomic dsRNA molecules are divided into three categories based 
on their molecular weight [6, 7]. The reovirus genome contains 
three large (L), three medium (M), and four small (S) genomic 
segments [8]. Each gene segment encodes a single viral protein 
except for the S1 segment, which encodes two proteins. The 5′ 
end of each reovirus positive-sense RNA contains a 
7- methylguanosine cap, but the 3′ termini are not polyadenylated 
[9]. The negative-sense strand is complementary to the positive- 
sense strand and contains an unblocked phosphate at the 5′ end 
[10]. Two concentric protein shells, the outer capsid and core, 
comprise the virion particle [1]. Removal of outer capsid proteins 
during cell entry leads to deposition of a transcriptionally active 
core particle into the cytoplasm [11–13]. Nascent viral transcripts 
are extruded from channels at the icosahedral vertices of the core 
into the cytosol that are translated to make viral proteins [1]. Viral 
transcripts and newly synthesized viral proteins coalesce and cre-
ate new cores in a neo-organelle called the viral factory. Viral tran-
scripts are used as a template for synthesis of negative-sense RNAs 
within newly assembled core particles. Secondary rounds of tran-
scription occur within the viral factories that amplify viral RNA 
and protein synthesis. Outer capsid proteins are added to the 
newly formed core particles to produce progeny virions that are 
released from cells by an unknown mechanism [1].

Transfection of cells with genomic dsRNA alone produces a 
minimal amount of viral progeny [14]. However, reovirus recovery 
is markedly increased by transfecting cells with viral ssRNA or 

Johnasha D. Stuart et al.
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dsRNA that was pre-incubated in rabbit reticulocyte lysate to allow 
translation of viral proteins, and then infecting with an attenuated 
helper  reovirus [14]. Although infectious reovirus can be gener-
ated using the helper virus-based system, the technique is cumber-
some and inefficient. Moreover, use of the helper virus increases 
the risk of reassortment between progeny virus and helper virus. 
However, the ability to rescue virus from ssRNA or melted dsRNA 
indicated that the positive- sense strand could be used to drive viral 
replication.

A plasmid-based reverse genetics system for reovirus was devel-
oped based on these observations [15]. Single plasmids encoding 
each of the ten reovirus gene segments were cloned downstream of 
bacteriophage T7 RNA polymerase promoter (Fig. 1). A hepatitis 
delta virus (HDV) ribozyme was inserted immediately downstream 
of the 3′ end. These features are designed to produce RNA tran-
scripts that contain native reovirus 5′ and 3′ termini [16, 17]. The 
first- generation reovirus plasmid-based reverse genetics system 
relied on modified vaccinia virus strain DIs (rDIs) to supply T7 
polymerase [15, 18]. To recover virus from plasmids, L929 cells 
were infected with rDIs prior to transfection with plasmids encod-
ing all ten reovirus gene segments. Viable virus was recoverable 
within 48 h post-transfection [15]. Longer incubation times per-
mitted amplification of rescued virus and yielded higher recovery 
titers. To increase rescue efficiency, a second-generation system 
employed baby hamster kidney cells that stably express T7 RNA 
polymerase (BHK-T7 cells) (Fig. 2) [19]. Use of BHK-T7 cells 
enhances the efficiency of reovirus recovery by ensuring that T7 
RNA polymerase is expressed in every cell that receives plasmids. 
The second- generation system also uses plasmids that encode mul-
tiple reovirus gene segments to further enhance rescue efficiency by 
reducing the number of plasmids that must be taken up by a single 
cell. Currently, infectious reovirus can be recovered using as few as 
four plasmids [19].

Reovirus has long been at the forefront of viral genetics 
because the segmented genome enables mapping of serotype-
specific phenotypic differences to an individual gene [1]. 

Reovirus Gene SegmentT7 Promoter HDV Ribozyme

Ribozyme cleavage siteTranscriptional start site

Fig. 1 Schematic of the reovirus T7 transcription cassette. Each reovirus gene segment cDNA is cloned into the 
plasmid vector downstream of a T7 polymerase promoter sequence and upstream of an HDV ribozyme 
sequence. The T7 transcriptional start site and HDV ribozyme cleavage site are indicated

Reovirus Reverse Genetics
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Coinfection of cells with two distinct reovirus serotypes pro-
duces reassortant viruses, which are progeny viruses that con-
tain different combinations of gene segments from the parental 
strains. Panels of reassortant viruses with known genomic con-
tent can be tested for the capacity to elicit a specific phenotype. 
Statistical analysis is employed to determine which gene or 
genes associate with a particular phenotypic effect. Reassortant 
reoviruses can be generated by plasmid-based reverse genetics 
system by blending the desired combination of plasmids. Single-
gene reassortant viruses can be produced by individually replac-
ing a gene segment in one genetic background with a single-gene 
segment from a different reovirus strain (Fig. 3). More geneti-
cally complex reassortant panels can be created from pools of 
viruses that contain multiple gene segments from each parental 
strain. Gene segments associated with a specific phenotype can 
be identified using the same analyses applied to traditional reas-
sortant panels.

2 Materials

All cell culture reagents should be sterile.

 1. Baby hamster kidney (BHK-21) cell line that constitutively 
expresses bacteriophage T7 RNA polymerase (BHK-T7) [20] 
(see Note 1).

2.1 Cell Lines 
and Reagents

BHK-T7
Cells

2-4 days

Recombinant reovirus

4-plasmid system10-plasmid system

L1
L2

L3
M1

M2
M3

S1
S2

S3
S4

Fig. 2 Reverse genetics for recombinant reovirus rescue. Using the ten- or four- 
plasmid system, BHK-T7 cells are transfected with plasmids containing reovirus 
cDNA. The cells are incubated at 37 °C for 2–4 days and then lysed by multiple 
freeze/thaw cycles to harvest recombinant reovirus

Johnasha D. Stuart et al.
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 2. Spinner-adapted mouse L929 cells.
 3. Complete Dulbecco’s modified Eagle’s MEM (DMEM) 

(Invitrogen) supplemented with 10% fetal bovine serum 
(Invitrogen), 2 mM l-glutamine (Invitrogen), 100 U/mL of 
penicillin + 100 μg/mL of streptomycin mixture (Invitrogen), 
and 250 ng/mL of amphotericin B (Sigma). Store at 4 °C.

 4. OPTI-MEM I reduced serum medium (Invitrogen). Store at 
4 °C.

 5. Complete Joklik’s MEM (JMEM) (Sigma) supplemented with 
5% fetal bovine serum, 2 mM glutamine, 100 U/mL of peni-
cillin + 100 μg/mL of streptomycin mixture, and 250 ng/mL 
amphotericin B. Store at 4 °C.

 6. Double concentration (2×) Med199 medium (Sigma), incom-
plete (see Note 2). Store at 4 °C.

 7. Complete 2× Med199 medium supplemented with 5% fetal 
bovine serum, 4 mM l-glutamine, 200 U/mL penicillin + 
200 μg/mL of streptomycin mixture, and 500 ng/mL of 
amphotericin B. Store at 4 °C.

 8. Geneticin® (Invitrogen).
 9. 2% Bacto-Agar solution (Fisher Scientific) (see Note 3).

rs
T

1L
rs

T
3D

 rsT3D/T1L

L

M

S

L1 L2 L3 M1 M2 M3 S1 S2 S3 S4

Fig. 3 Electrophoretic analysis of a reovirus single-gene reassortant panel. 
Purified virions were electrophoresed in a 10% SDS-polyacrylamide gel, fol-
lowed by ethidium bromide staining (0.5 μg/mL) to visualize viral dsRNA gene 
segments. Shown are recombinant wild-type strains rsT1L and rsT3D, along with 
ten single-gene reassortants in which a single-gene segment from T3D was 
replaced with a gene segment from T1L. The size classes of the large, medium, 
and small gene segments are indicated as L, M, and S, respectively

Reovirus Reverse Genetics
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