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Preface

We are delighted to offer this textbook to the scientific community, entitled

Human Genome Informatics, which covers a timely topic in the rapidly
evolving discipline of bioinformatics.

In the postgenomic era, the development of electronic tools to translate geno-

mic information into a clinically meaningful format is of utmost importance to
expedite the transition of genomic medicine into mainstream clinical practice.

There are several well-established textbooks that cover the bioinformatics field,

and there are also numerous protocols for bioinformatics analysis that one can
retrieve from the Internet. However, the field of human genome informatics is a

relatively new one that emerged in the postgenomic era, constituting a niche

research discipline. As such, there are hardly any books that discuss this impor-
tant new discipline, despite its broad implications for human health.

We therefore decided to deliver a textbook focused on human genome infor-
matics, in order to first define the field and some of its history, and then provide

an overview of the most commonly used electronic tools to analyze and inter-

pret human genomic information into a clinically meaningful format, hence
expediting the integration of genomic medicine into the mainstream clinical

practice. At the same time, the book will provide an update on related topics,

such as genomic data sharing, human genomic databases, and informatics
tools in pharmacogenomics. To our knowledge, no other existing book deals

exclusively with this topic.

We envision that this textbook will be of particular benefit to graduate and doc-
toral students, postdoctoral researchers in the field of genome informatics and

bioinformatics, and representatives from bioinformatics companies and diag-
nostic laboratories interested in establishing such tools to translate/interpret

the findings from their analyses. Also, this textbook will be ultimately useful

as the main course material or supplementary reading in related graduate
courses.
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Our effort to compile most of the chapters included in this textbook has been

assisted by many internationally renowned experts in their field, who have
kindly accepted our invitation to share with us and our readers their expertise,

experience, and results through contributed chapters. In addition, we made

efforts to formulate the book contents using simple language and terminology,
along with self-explanatory illustrations, in order that the book be useful not

only to experienced professionals and academics, but also to undergraduate

medical and life science students.

We are grateful to the publishing editors, Drs. Mariana Kuhl, Rafael Texeira, and

Peter Linsley at Elsevier, who helped us in close collaboration to overcome
encountered difficulties. We also express our gratitude to all contributors for

delivering outstanding compilations that summarize their experience and

many years of hard work in their field of research and to those colleagues
who provided constructive comments and criticisms on the chapters. We are

indebted to the copy editor, Jude Fernando, who has refined the final manu-

script prior to letting it into production. Also, we owe special thanks to the aca-
demic reviewers for their constructive criticisms of the chapters and their

positive evaluation of our proposal for this compilation.

We feel certain that some points in this textbook can be further improved.

Therefore, we would welcome comments and criticism from attentive readers,

which will contribute to improve the contents of this book even further in its
future editions.

Christophe G. Lambert
Center for Global Health, Division of Translational Informatics, Department of Internal Medicine,

University of New Mexico Health Sciences Center, Albuquerque, NM, United States

Darrol J. Baker
The Golden Helix Foundation, London, United Kingdom

George P. Patrinos
Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece;

Department of Pathology, College of medicine and Health Sciences, United Arab Emirates

University, Al-Ain, United Arab Emirates; Department of Pathology—Bioinformatics Unit,

Faculty of Medicine and Health Sciences, Erasmus University Medical Center, Rotterdam,

The Netherlands
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CHAPTER 1

Human Genome Informatics: Coming of Age

Christophe G. Lambert*, Darrol J. Baker†, George P. Patrinos‡,§,¶

*Center for Global Health, Division of Translational Informatics, Department of

Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM,

United States, †The Golden Helix Foundation, London, United Kingdom, ‡Department of

Pharmacy, School of Health Sciences, University of Patras, Patras, Greece, §Department of

Pathology, College of medicine and Health Sciences, United Arab Emirates University, Al-Ain,

United Arab Emirates, ¶Department of Pathology—Bioinformatics Unit, Faculty of Medicine and

Health Sciences, Erasmus University Medical Center, Rotterdam, The Netherlands

1.1 INTRODUCTION

Human genome informatics is the application of information theory, including

computer science and statistics, to the field of human genomics. Informatics
enlists computation to augment our capacity to form models of reality with

diverse sources of information. When forming a model of reality, one engages

in aprocess of abstraction. Theword “abstraction” comes fromthe Latin abstrahere,
which means to “draw away,” which is a metaphor, based in human vision, that

as we back away from something, the details fall away and we form mental

constructs about what we can discern from the more distant vantage point. That
more distant vantage point both encompasses a greater portion of reality and

yet holds in mind a smaller amount of detail about that larger space.

Given the humanmind’s limit on the number of variables it can manage, as we
form our mental models of reality, we pay attention to certain facets of reality

and ignore others, perhaps leaving them to subconscious or unconscious pro-

cessing mechanisms. When we form models of reality, we have a field of per-
ception that encompasses a subset of reality at a particular scale and a particular

time horizon and that includes a subset of the variables at that spatio-temporal

scale. Those variables are recursively composed using abstractive processes, for
instance, by scale: an atom, a base pair, a gene, a chromosome, a strand of DNA,

the nucleus, a cell, a tissue, an organ, an organ system, the human body, a fam-

ily, a racial group defined by geography and heredity, or all of humanity. Note
this abstraction sequence was only spatial and ignored time. Because our per-

ceivable universe is seen through the lens of three spatial and one apparently

Human Genome Informatics. https://doi.org/10.1016/B978-0-12-809414-3.00001-2
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nonreversible temporal dimension, the mental models we compose describe

the transformations of matter-energy forwards through space-time. Let us relate
this to information theory and computer science, then bring it back to

genomics.

In the 1930s, Alan Turing introduced an abstract model of computation, called

the Turing machine (Turing, 1937). The machine is comprised of an infinite

linear blank tape with a tape head that can read/write/erase only the current
symbol and can move one space to the left or right or remain stationary. This

tape head is controlled by a controller that contains a finite set of states and

contains the rules for operating the tape head, based only on the current state
and the current symbol on the tape (the algorithm or program). Despite the

simplicity of this model, it turns out that it can represent the full power of every

algorithm that a computer can perform and is thus a universal model of
computation.

Suppose we wanted an algorithm to write down the first billion digits of the
irrational number π. We could create a Turing machine that had the billion

digits embedded in the finite controller (the program) and we could run that

program to write the digits to the tape one at a time. In this case, the length of
the program would be proportional to the billion digits of output. This might

be coded in a language like C++ as: printf(“3.1415926[…]7,504,551”),

with “[…]” filled in with the remaining digits. If a billion-digit number was
truly random and had no regularity, this would approach being the shortest

program that we could write (the information-theoretic definition of random-

ness). However, π is not a random number, but can be computed to an arbitrary
number of digits via a truncated infinite series. An algorithm to perform a series

approximation of π could thus be represented as a much shorter set of

instructions.

In algorithmic information theory, the Kolmogorov complexity or descriptive

complexity of a string is the length of the shortest Turing machine instruction

set (i.e., shortest computer program) that can produce that string (Kolmogorov,
1963). We can think of the problem of modeling a subset of reality as gener-

ating a parsimonious algorithm that prints out a representation of the trajectory

of a set of variables representing an abstraction of that subset of reality to some
level of approximation. That is, we say, “under such and such conditions, thus

and such will happen over a prescribed time period”. The idea of Kolmogorov

complexity motivates the use ofOccam’s razor, where, given two alternate expla-
nations of reality that explain it comparably well, we will choose the

simpler one.

In our modeling of reality, we are not generally trying to express the state space

transitions of the universe down to the level of every individual atom or quark

in time intervals measured by Planck time units, but rather at some level of
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abstraction that is useful with respect to the outcomes we value in a particular

context. Also, because reality has constraints (i.e., laws), and thus regularity, we
can observe a small spatial-temporal subset of reality frommodels that not only

describe that observed behavior, but also that generalize to predict the behavior

of a broader subset of reality. That is, we don’t just model specific concrete
observables in the here and now, but we model abstract notions of observables

that can be applied beyond the here and now.

The most powerful models are the most universal, such as laws of physics,

which are hypothesized to hold over all of reality and can thus be falsified if

any part of reality fails to behave according to those laws, and yet, cannot be
proven because all reality would have to be observed over all time. This then

forms the basis of the scientific method where we form and falsify hypotheses

but can never prove them. Unlike with hydrogen atoms or billiard balls where
the units of observation may be considered in most contexts as near-identical,

when we operate on abstractions such as cells, or people, we create units of

observation that may have enormous differences.

1.2 FROM INFORMATICS TO BIOINFORMATICS
AND GENOME INFORMATICS

In biology, we often blithely assume that the notion of ceteris paribus (all things
being equal) holds, but it can lead us astray (Lambert and Black, 2012; Meehl,

1990). For instance, while genetics exists at a scale where ceteris paribus generally

holds, we are nevertheless trying to draw relations with genetic variations at the
molecular scale, with fuzzy phenotypes at the level of populations of noniden-

tical people.

So unlike our previous example of writing a program to generate the first billion
digits of π, which has a very precise answer, our use of abstraction to model

biology involves leaving out variables of small effect, which nevertheless, when

left unaccounted for, may result in error when we extrapolate our projections of
the future with abstract models. We would dowell tomind the words of George

Box, “all models are wrong, but some are useful”:

Since all models are wrong, the scientist cannot obtain a “correct” one by

excessive elaboration. On the contrary, followingWilliam of Occam, he should

seek an economical description of natural phenomena. Just as the ability to

devise simple but evocative models is the signature of the great scientist,

overelaboration and overparameterization is often the mark of mediocrity

(Box, 1976).

How then dowe choose what variables to study at what level of abstraction over

what time scale? To begin to answer this question, it is useful to talk about
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control in the context of goal-directedness and to turn to a field that preceded

and contributed to the development of computer science, namely Cybernetics.
In 1958, Ross Ashby introduced the Law of Requisite Variety (Ashby, 1958). Vari-

ety is measured as the logarithm of the number of states available to a system.

Control, when stripped of its negative connotations of coercion, can be defined
as restricting the variety of a system to a subset of states that are valued and pre-

venting the other states from being visited. For instance, an organism will seek

to restrict its state space to healthy and alive ones. For every disturbance that can
move a system from its current state to an undesirable one, the system must

have a means of acting upon or regulating that disturbance. Ashby’s example

of a fencer staving off attack is helpful:

Again, if a fencer faces an opponent who has various modes of attack

available, the fencermust be providedwith at least an equal number ofmodes

of defense if the outcome is to have the single value: attack parried.

(Ashby, 1958)

The law of requisite variety says that “variety absorbs variety,” and thus that the
number of states of the regulator or control mechanism whose job is to keep a

system in desirable states (i.e., absorb or reduce the variety of outcomes) must

be at least as large as the number of disturbances that could put the system in an
undesirable state. All organisms engage in goal-directed activity, the primary

one being sustaining existence or survival. The fact that humanity has domi-
nated as a species reflects our capacity to control our environment—to both

absorb and enlist the variety of our environment in the service of sustaining

health and life.

In computing, a universal Turing machine is a Turing machine that can simulate

any Turing machine on arbitrary input. If DNA is the computer program for the

“Turing machine of life,” the field of human genome informatics is metaphor-
ically moving towards the goal of a universal Turing machine that can answer

“what-if” questions about modifying the governing variables of life. Note, the

computer science concept of self-modifying code also enriches this metaphor.
In particular, cancer genomics addresses the situation where the DNA program

goes haywire, creating cancer cells with distorted copies where portions of the

genome are deleted, copied extra times, and/or rearranged. Self-modifying code
in computer science is enormously difficult to debug and is usually discour-

aged. Similarly, in cancer, we acknowledge that it is too difficult to repair rap-

idly replicating agents of chaos, and thus, most treatments involve killing or
removing the offending cancer cells. Also, with the advent of emerging technol-

ogies such as CRISPR genome editing, humanity is now poised on the threshold

of directly modifying our genome (Cong et al., 2013). Such technologies,
guided by understanding of the genome, have the potential to recode portions

of the program of life in order to cure genetic diseases.
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With the human genome having a state space of three billion base pairs times

two sets of chromosomes, compounded by epigenetic modifiers that can vary
by tissue, compounded by replication errors, compounded by a microbiome

living in synergy with its host, compounded by effects of the external environ-

ment, the complete modeling of the time evolution of the state space of a
human organism at a molecular level appears intractable. Suppose we wanted

to perform molecular dynamics simulations of the human body at a femtosec-

ond time scale and do so for an hour. A human body contains approximately
7�1027 atoms that we would want to simulate over 3.6�1018 timesteps. Such

a simulationmight require 10,000 floating point operations per atom per time-

step to account for variousmolecular forces, taking on the order of 1050 floating
point operations. The world’s fastest supercomputer at the time of this writing

approaches 100 petaflops, or 1017 floating point operations per second

(Fu et al., 2016). Such a simulation would take 1033s or 3.17�1025 years
on such a computer. However, if Moore’s Law (Moore, 2006) holds and com-

putation capacity is able to double indefinitely every 2 years, in 220years we
could perform such a simulation in 1s.

By the law of requisite variety, it would seem that our goal of controlling the

complete “computer program” of human life is doomed until long after the
hypothesized technological singularity when human computation capacity is

exceeded by computers (Vinge, 1993). We don’t appear to have the capacity

to model all possible deviations from health at a molecular level and form
appropriate responses. However, the successes in modern treatment of numer-

ous diseases suggest that there is enough constraint and regularity in how the

building blocks of life assemble to form recognizable and treatable categories of
processes and outcomes that we may hope that the set of variables we need to

control may not be ultimately intractable.

The evolution of a field of knowledge towards becoming a science begins

with classification (e.g., taxonomies), followed by searching for correlations

(e.g., genome-wide association studies), followed by forming cause and effect
models (e.g., well-characterized molecular mechanisms), and theories

(e.g., Darwinian evolution). Other than the successes of understanding mono-

genic disease processes, much of the past 15–20years of molecular genetic
research has been in the classification and correlation stage. We are still figuring

out the relevant variables in the field of genomic health, and only baby steps

have been taken to form dynamic causal models of complex systems.

To better understand causation, we need to measure and model the time evo-

lution of systems. This means that, in addition to understanding the germline
DNA, we need to understand the time evolution of epigenetic modifications,

gene expression, and the microbiome and how these all function together at

many orders of magnitude of temporal-spatial scale, including the variation
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we observe in human populations. Unfortunately, the field has barely

broached studies of this kind and will thus not be covered in this book.

1.3 INFORMATICS IN GENOMICS RESEARCH
AND CLINICAL APPLICATIONS

As indicated above, informatics plays a vital role not only in genomics research
by interpreting high-throughput genotyping and gene expression and deep

DNA sequencing analysis data, but also in clinical applications of these new

technologies. This not only include informatics tools for genomics, and recip-
rocally proteomics and metabolomics, analysis, but also tools for the proper

annotation, including but not limited to variant nomenclature. It is also of

equal importance to establish incentives for openly sharing genomics research
results with the scientific community.

1.3.1 Genome Informatics Analysis

Creating transparent and reproducible pipelines is essential for developing best

practices for tools, data, and workflow management systems. In Chapter 2, we

present a deeper dive into the software tools for managing genomic analysis
pipelines, including coverage of such systems as Galaxy and TAVERNA, empha-

sizing the importance of creating a reliable reproducible workflow upon which

others can build and contribute. Recommendations are made on coding stan-
dards, code testing and quality control, project organization, documentation,

data repositories, data ontologies, virtualization, data visualization, crowdsour-

cing, and the support of metastudies. Discussion is made of the tradeoffs
between the modularity and maintainability of command line tools versus

the usability of graphical user interfaces and how modern workflow manage-

ment systems combine the two.

Similarly, in this book, we present examples on how cytogenetics paradigms

shape decision making in translational genomics (Chapter 3). In particular,
we describe how early genomic technologies, such as low-resolution cytoge-

netic testing, shaped worldviews which continue to influence our mental

models of genomic medicine. In particular, as our capacity to sequence the
human genome has grown exponentially, our capacity to turn this data into

understanding has not kept pace. As a result, in medical decision making,

the two poles of the central conflict may be verbalized as: “give me only the
information I am sure about so that I don’t make errors of omission” versus

“give me as much information as possible so that I don’t make errors of

omission.” The advent of high-resolution genome-wide microarrays, followed
by whole-exome and whole-genome sequencing, has only exacerbated this

conflict, as cytogenetics gives way to cytogenomics and as physicians attempt

to perform decision making under ever more uncertainty.
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Ultimately, next-generation sequencing is gaining momentum in all aspects

of genomics research as well as clinical applications with several different
platforms existing today, making data resulting from deep DNA sequenc-

ing impossible to interpret without dedicated tools and databases. As such,

we opted to present a range of available tools and databases accompanied
by practical guidelines for next-generation sequencing analysis (Chapter 4).

In particular, we present the modular steps involved in the processing and

secondary analysis of next-generation sequencing pipelines, including both
DNA- and RNA-seq, while touching upon the follow-on tertiary analysis that

may be applied once genomic variants have been identified. We describe com-

mon formats for storing raw sequencing data, such as FASTQ and SAM/BAM, as
well as some popular online data repositories for sequencing data. We describe

the basic building blocks of next-generation sequencing pipelines, including

sequence alignment as well as approaches to annotation. We close reviewing
some of the limitless applications of next-generation sequencing as a modular

technology.

Apart from genomics application, proteomics and metabolomics are also com-

ing of age in the postgenomic era, and as such, proteomics and metabolomics

data analysis is also key for translational medicine. In Chapter 5, we underscore
the importance and pitfalls of large-scale proteomics and metabolomics mea-

sures in the clinic for characterizing biological processes and objectively char-

acterizing phenotypes in translational medicine. Discussion is made of ways
and means for managing the complexity of these datasets as genome/prote-

ome/metabolome interactions are considered and what challenges remain

for broader adoption of these technologies in clinical practice.

1.3.2 Genomics Data Sharing

The continued deposition of genomic data in the public domain is essential to
maximize both its scientific and clinical utility. However, rewards for data shar-

ing are currently very few, representing a serious practical impediment to data

submission. Moreover, a law of diminishing returns currently operates both in
terms of genomic data publication and submission since manuscripts describ-

ing a single or few genomic variants cannot be published alone. To date, two

main strategies have been adopted as a means to encourage the submission
of human genomic variant data: (a) database journal linkups involving the

affiliation of a scientific journal with a publicly available database and

(b) microattribution, involving the unambiguous linkage of data to their con-
tributors via a unique identifier. The latter could, in principle, lead to the estab-

lishment of a microcitation-tracking system that acknowledges individual

endeavor and achievement (Giardine et al., 2011; Patrinos et al., 2012).

In Chapter 6, we discuss an important trend in science that started early in the

field of genomics, as an outgrowth of public funding. That is, data generated for
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one research purpose by one organization can be shared with the entire field to

augment our collective capacity tomodel the complexity of the human genome
and genomic processes. We also discuss both social and technical challenges of

realizing the full potential of collaborative science, with an emphasis on reward

systems that enable credit and attribution to be made to genomic data contrib-
utors, which could eventually become more widely adopted as novel scientific

publication modalities.

1.3.3 Genomic Variant Reporting and Annotation Tools

Advances in bioinformatics required to annotate human genomic variants and

to place them in public data repositories uniformly have not kept pace with

their discovery. At present, there are a handful of tools that are used to annotate
genomic variants so that they are reported with a constant nomenclature. In

Chapter 7, we discuss the Human Genome Variation Society (HGVS) nomen-

clature system for variant reporting and its challenges with ambiguous report-
ing of variants. We then describe a new tool, MutationInfo, to automatically

infer chromosomal positions from dbSNP andHGVS genetic variants. This tool
combines existing tools with a BLAST-like alignment tool (BLAT) search in

order to successfully locate a much larger fraction of genomic positions for

HGVS variants. Finally, we compare the available tools for checking the quality
of variants documented in HGVS resources and dbSNP and we highlight the

challenge of consistently representing genomic mutations across databases

due to multiple versions of different coordinate systems in use.

1.4 PHARMACOGENOMICS AND GENOME INFORMATICS

Pharmacogenomics aim to rationalize drug use by delineating adverse reactions

and lack of drug response with the underlying genetic profile of an individual.
Since there is a documented lack of (pharmaco)genomics knowledge from cli-

nicians (Mai et al., 2014), there is an urgent need to develop informatics solu-

tions and tools to translate genomic information into a clinically meaningful
format, especially in the case of individualization of drug treatment modalities.

In other words, a tool that would be able to translate genotyping information

from a few or more pharmacogenomic biomarkers into recommendations for
drug use.

Chapter 8 touches upon the challenges in translating pharmacogenomics
knowledge—the relationship between genetic factors and drug safety and

efficacy—to decision making in a clinical setting. We present pharmacoge-

nomics information system approaches to managing both the complexity
and uncertainty of pharmacogenomic decision making towards achieving bet-

ter health outcomes through personalized drug treatment, in the context of a
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