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preface

This book is a completely revised edition of Human Evolutionary Genetics, 
first published in 2004. We decided to write the first edition because there 

were no textbooks available covering the areas that interested us. Once we had 
embarked upon the Herculean task of producing it, we realized why nobody had 
attempted to summarize this forbiddingly broad and contentious field before. 
But luckily the reception was positive, one eager person (our ideal reader and 
not, we point out, one of the authors in disguise) writing on Amazon that “I 
bought a copy for myself, and another one for my advisor. I have read it twice in 
a week!” A revised version seemed like a pretty good idea.

We cheerfully imagined that the second edition would be easier to write than the 
first. How wrong we were. First, all three original authors (MJ, MH, and CTS) had 
accumulated additional responsibilities that reduced the available time for writ-
ing. Second, the field obstinately continued to grow, and scarcely a week went 
by without some interesting and important development—the genomes of new 
species, genomewide surveys of human variation, next-generation sequencing 
and its data tsunami, spectacular ancient DNA discoveries, large-scale popu-
lation studies, novel statistical methods, archaeological and paleontological 
revelations—the list goes on. We sometimes wished everyone would just stop 
working for a bit, so we could catch up. So, our deadline for the second edition 
passed, was revised, and passed again. HEG1 was becoming more and more out 
of date. We needed help.

The cavalry duly arrived in the form of two sterling new recruits to the autho-
rial team—EH and TK. They brought their own areas of interest and expertise, 
but also a more efficient and energetic approach to the writing process, which 
revitalized the whole project. So, after a lengthy and difficult gestation, here is 
HEG2.

Following an initial introductory chapter, the book is divided into five sections, 
allowing it to be read by interested students and researchers from a broad range 
of backgrounds. “How do we study genome diversity?” (Chapters 2–4) and “How 
do we interpret genetic variation?” (Chapters 5–6) together provide the neces-
sary tools to understand the rest of the book. The first of these sections surveys 
the structure of the genome, different sources of genomic variation, and the 
methods for assaying diversity experimentally. The second introduces the evolu-
tionary concepts and analytical tools that are used to interpret this diversity. The 
subsequent two sections take an approximately chronological course through 
the aspects of our current state of knowledge about human origins that we con-
sider most important. The section “Where and when did humans originate?” 
(Chapters 7–9) first considers our links to our closest living nonhuman relatives, 
the other great apes, then investigates the genetic changes that have made us 
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human, and finally details the more recent African origin of our own species. 
“How did humans colonize the world?” (Chapters 10–14) describes how human 
genetic diversity is currently distributed globally and then discusses the evi-
dence for early human movements out of Africa, and the subsequent processes 
of expansion, migration, and mixing that have shaped patterns of diversity in 
our genomes. Finally, “How is an evolutionary perspective useful?” (Chapters 
15–18) demonstrates the wider applications of an evolutionary approach for 
our understanding of phenotypic variation, the genetics of diseases both simple 
and complex, and the identification of individuals. Extensive cross-referencing 
between these sections facilitates different routes through the book for readers 
with divergent interests and varying amounts of background knowledge.

An important feature is the use of “Opinion Boxes”—short contributions by 
guest authors who are experts in different aspects of this diverse subject area. 
These help to give a flavor of scientific enquiry as an ongoing process, rather 
than a linear accumulation of facts, and encourage the reader to regard the 
published literature with a more critical eye. Opinions about how data should 
be interpreted change, and often an objective way to choose between differ-
ent interpretations is not obvious. This is particularly true of genetic data on 
human diversity. Many of the debates represented in the Opinion Boxes scat-
tered through this book derive from methodological differences.

Additional resources have been incorporated to permit interested readers to 
explore topics in greater depth. Each chapter is followed by a detailed bibliog-
raphy, within which the sources that should be turned to first for more detail 
are highlighted in purple text. Electronic references to internet sites are given 
throughout the book, both for additional information and for useful software and 
databases. We explain specialist terms where they are first used, and include an 
extensive glossary at the back of the book that defines all terms in the text that 
are in bold type. At the end of each chapter is a list of questions (some short-
answer, and some prose) that allow the reader to test their knowledge as they 
proceed. Teachers may be interested to know that most of the figures are freely 
available from the Garland Science Website (www.garlandscience.com) for use 
in teaching materials.

An obvious difference from the first edition is the presence of two extra chapters, 
reflecting developments in understanding the human genome in the context of 
other hominid genomes, and in complex disease. A very welcome development 
is the availability of full-color printing, which makes complex figures much eas-
ier to understand.

PREFACE
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AN INTRODUCTION TO HUMAN 
EVOLUTIONARY GENETICS

In this chapter, we introduce human evolutionary genetics and describe the 
recent dramatic advances in knowledge and understanding that have led to 

its central role in all human genetic studies. We explore the diverse sources of 
information about the human past that are available to us. These complemen-
tary records tell us about different aspects of the past, and are informative over 
different time-scales. We also identify the fundamental human evolutionary 
questions that can now be addressed using genetics. 

1.1 WHAT IS HUMAN EVOLUTIONARY GENETICS?
Evolutionary genetics is founded on the principle that the genetic record of life 
is contained in the genomes of living species and it reveals evolutionary proc-
esses and relationships all the way back to the last universal common ancestor 
of all species. To find out about this ancestral organism we have to compare 
and contrast the most distantly related branches on the tree of life. Comparisons 
among much more closely related individuals, such as those from the same spe-
cies, provide evidence on much more recent evolutionary processes. Our ability 
to read this genetic record has developed enormously in the last few years, 
although our confidence that information on our past exists within our heritable 
material is somewhat older. Genetic evidence comes from two main sources:

• The genomes of living individuals that must have been passed down from 
ancestors

• Ancient DNA from well-preserved organic remains, which may or may not 
be represented now in living descendants

Human evolutionary genetics involves the study of how different copies of the 
human genome differ from one another, and from those of our closest rela-
tives, other primates. Differences between genomes also form the basis of 
anthropological, medical, and forensic genetics. All of these fields are expe-
riencing massive advances as a result of two developments. First, the public 
availability of human and nonhuman genome sequences, annotated with 
important functional elements such as genes, and with sites of genetic vari-
ation. Second, technology allowing analysis of most of this genetic variation 
across the genome, initially with the development of hybridization microar-
rays (or chips), followed by the development of methods to sequence whole 
genomes rapidly and cheaply (so-called next-generation sequencing). This 
explosion of information is driving an unprecedented period of innovation that 
gives us the tools to analyze huge datasets of unparalleled quality and quantity. 
This wealth of data is itself catalyzing the development of new interpretative 
methods. In addition, with the publication of genome sequences from other 
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extant primates, as well as data from the genomes of extinct members of the 
genus Homo, we can now comprehensively catalog the genetic differences 
between humans and our closest relatives. As we shall see in this book, these 
impressive developments are allowing us to answer some of the most funda-
mental questions regarding human origins. These are indeed exciting times for 
human evolutionary genetics.

In times past, when writing materials were precious commodities, a scribe 
would often reuse an existing manuscript rather than obtain a new parchment. 
The manuscript would be turned through 90°, and overwritten. These over-
written manuscripts bearing the imprint of more than one text are known as 
palimpsests. The genetic record is similarly a complex palimpsest. Variation 
among modern individuals is shaped by cumulative past processes, which 
allows us to investigate different times in human prehistory with the same data. 

Different layers of the past are accessible through the analysis of genetic diver-
sity. Moving from the most ancient to the most recent, we encounter:

• Our phylogenetic relationship to other species (Chapter 7)

• The origin of our species (Chapters 8, 9)

• Prehistorical migrations (Chapters 10, 11, 12, and 13)

• Historical migrations (Chapter 14)

• Genealogical studies (Chapter 18)

• Paternity testing (Chapter 18)

• Individual identification (Chapter 18)

Extracting information on any one past period or event requires careful inter-
pretation to isolate it from previous and subsequent processes. This information 
can tell us not only about the demographic history and origins of populations 
but also something about the environmental challenges faced by those popula-
tions, through the influence of natural selection on genetic variation.

It is said that “the past is the source of the present” and this is true in the aca-
demic field of human evolutionary genetics as much as elsewhere. This exciting 
subject owes its current status to developments and debates over the last 150 
years in genetics, paleontology, archaeology, anthropology, and linguistics. In 
this book we have avoided cataloging this history, instead taking a twenty-first-
century perspective, but we discuss key developments where they are relevant, 
and provide a time line in Figure 1.1. 

1.2 INSIGHTS INTO PHENOTYPES AND DISEASES
What use can an evolutionary perspective on human genetic variation have 
beyond the reconstruction of the past for its own sake?

A shared evolutionary history underpins our understanding of biology

The great twentieth-century evolutionary biologist Theodosius Dobzhansky 
wrote that “Nothing in biology makes sense except in the light of evolution.” All 
the sizes, shapes, chemistries, and genes of organisms alive today derive from 
ancestors that can be traced back over billions of years. All of these features 
have been shaped by the environmental challenges faced by these organisms 
and their ancestors. If it were not the case that humans share an ancestor with 
every other species on the planet, there would be no value in performing any 
form of comparative analysis. There would be nothing that the Escherichia 
coli bacterium, brewer’s yeast, fruit fly, nematode worm, zebrafish, mouse, or  
chimpanzee could tell us about ourselves. None of these species is our ances-
tor: they are our cousins, equally distant in time from our common ancestor 
(Figure 1.2). It is our shared evolutionary heritage with these species that makes 
them such powerful model organisms.
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To take just one example, sequencing the mouse genome allows us to identify 
more genes in the human genome than does sequencing the human genome 
alone. By identifying segments of DNA that are more similar between the two 
species than could be expected by chance, we can identify regions whose evo-
lution has been constrained by the need to perform a specific function. Some of 
these regions are genes. In other words, we can identify a gene not because it 
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1786   Recognition of language families
1856   Discovery of Neanderthal type specimen
1859   Publication of Darwin’s “The Origin of Species”
1866   Publication of Mendel’s “Experiments in Plant Hybrids”
1871   Publication of Darwin’s “The Descent of Man”
1900   Discovery of first genetic polymorphism—ABO blood group (Landsteiner)
1908   Hardy–Weinberg principle formulated
1918   Fisher reconciles Darwin’s natural selection and Mendel’s mechanism of inheritance
1925   Australopithecus fossil described from South Africa
1930–32   Fisher, Haldane & Wright publish the foundations of modern population genetics
1944   DNA shown to be heritable material
1949   Radiocarbon dating introduced
1953   Double-helical structure of DNA described
1956   Human chromosome number described
1957   Hemoglobin amino acid sequences determined
1959   Y chromosome shown to be sex-determining
1966   Genetic code deciphered
1968   Neutral theory of molecular evolution (Kimura)
1969   Internet first successfully tested
1977   Publication of DNA sequencing methods
1978   First human restriction fragment length polymorphisms (RFLPs) described
1978   First human in vitro fertilization
1980   First genome (φX174 bacteriophage) sequenced
1981   Human mitochondrial DNA (mtDNA) genome sequenced
1984   DNA fingerprinting (minisatellites) discovered
1984   DNA-DNA hybridization shows human–chimpanzee common ancestry
1985   Invention of polymerase chain reaction (PCR)
1985   First human ancient DNA results published
1985   First Y-chromosomal polymorphism described
1987   Development of laser-induced fluorescent detection of DNA
1987   African origin of human mtDNA identified
1988   Launch of Human Genome Project
1989   Development of capillary electrophoresis for sequencing
1990   First human microsatellites described
1991   Human Genome Diversity Project proposed
1994   Publication of “The History and Geography of Human Genes” (Cavalli-Sforza et al.)
1996   First mammal cloned from adult cell (Dolly)
1997   First Neanderthal mtDNA sequence
1999   First human chromosome sequenced (Chr 22)
2001   Release of draft human genome sequence
2002   Release of draft mouse and Plasmodium genome sequences
2002   Human Genome Diversity Project (HGDP) Cell Line Panel released
2004   First maps of copy-number variation published
2005   First-generation human Haplotype Map (HapMap) published
2005   Release of draft chimpanzee genome sequence
2005   First development of next-generation sequencing methods
2006   1 Mb of Neanderthal genomic sequence published
2007   First large-scale genomewide association studies
2007   First personal human genome resequenced (Venter)
2007   Second-generation human Haplotype Map (HapMap) published
2009   Exome capture and sequencing methods published
2010   Denisovan mtDNA and genome sequences published
2010   1000 Genomes Project pilot study published
2012   All great ape genomes now sequenced

Figure 1.1: Time line of important 
developments in the field of human 
evolutionary genetics.
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looks like a gene, nor because an organism treats it like a gene (that is, makes 
a product from it), but because it evolves like a gene.

Understanding evolutionary history is essential to understanding human 
biology today

If we were to take a perspective to the biology of modern humans that neglected 
evolutionary history, what might we predict about the genetic diversity of our 
species, the significance of our phenotypic differences, and the prevalence of 
disease-causing alleles?

First, we would be struck by the huge numbers of humans, especially when 
compared with other animals of similar size. We might reasonably think that 
this should be mirrored by a correspondingly greater genetic diversity. Second, 
we might note the clustered distribution of phenotypic diversity (for example, 
skin color) among modern human groups and might expect this to be matched 
by a similar structuring of genetic diversity. Third, we might suppose that  
disease-causing alleles would be specific to different continental groups, in a 
similar manner to some of their easily observable “normal” phenotypes. As we 
shall discover in this book, all of these conclusions would be wrong.

To understand why this is so, we must comprehend that the past is not simply 
something that happened, and is studied for its own sake, but is more prop-
erly considered as the source of the present. If we are to improve our present 
circumstances, we must take account of how that present has come to be. An 
evolutionary perspective does not just address the question, What happened in 
the past? but also the question, Why is the present like it is?

Once we understand that the obvious differences between peoples’ appear-
ances can be unreliable indicators of biological origins, we start to appreciate 
the other factors that have shaped and continue to shape human biology. The 
interaction of humans and their surroundings comes to the fore, as does an 

Last Universal Common Ancestor
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Figure 1.2: Cousins, not ancestors.
A phylogenetic tree relates different 
branches of modern species, showing 
that they are all equally derived from their 
common ancestors in terms of time. Here 
branch lengths reflect evolutionary time, 
rather than evolutionary change.
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understanding of human adaptability in the face of huge variability in inhabited 
environments.

Understanding evolutionary history shapes our expectations about  
the future

An evolutionary perspective on human genetic variation also allows us to make 
predictions, both about biological research, and about the future of our spe-
cies. Today, we can pose many more biological questions than we are able to 
answer. An evolutionary perspective tells us how we might go about answering 
these questions, and about what kinds of answers we might expect.

Phenotypic traits of humans, be they skin color, height, or diseases such as dia-
betes, are controlled by a combination of inherited and environmental factors, 
and stochastic developmental and molecular processes. The easiest traits to 
dissect genetically are those determined in large part by single genes—so-called 
Mendelian traits. However, almost all of the phenotypic traits of most interest 
to both anthropologists and physicians are not so simple. Such complex traits 
are governed by interactions between multiple genes and the environment, and 
disentangling these interactions will help to relieve the considerable burden of 
complex diseases on individuals and economies.

Knowledge of our past helps us to predict the numbers and frequencies of 
genetic variants that influence a given trait and to choose the best strategy 
for identifying them—how best to define a human population (Box 1.1), which 
populations to choose, and which segments of the genome to concentrate on. 

Box 1.1: Caucasians, Caucasoids, European-Americans, Whites? The confusing classification of human social groups

Population geneticists, forensic geneticists, anthropologists, 
and archaeologists need labels to refer to social groups of 
human beings. These labels differ between fields, and even 
within fields. In papers describing DNA diversity in a group of 
people living in the USA whose ancestors came from Europe, 
for example, you may find them referred to as:

• A US population: because of population admixture in 
the last 500 years, the people of the USA are an extremely 
heterogeneous group, of which those of European descent 
form only a part.

• Caucasians, or Caucasoids: this is not meant to imply an 
origin in the Caucasus mountains, but refers to “beautiful 
people” in a racial classification scheme of the German 
anatomist Blumenbach (1752–1840). The skull that was 
claimed to best represent the characteristics of this group 
came from the Caucasus. The other classifications in this 
scheme were Mongoloid, Malay, Ethiopian, and American 
(referring to Native Americans).

• European-Americans: usually in contradistinction to 
African-, Hispanic-, Japanese-, Native-, and other Americans. 
There is heterogeneity within this grouping—people who 
would classify themselves as European-American have 
ancestors from many different parts of Europe, such as 
Ireland, Italy, Poland, Russia, and Turkey.

• Whites: this classification is favored by some scientific 
journals over “Caucasians,” which might quite reasonably be 
reserved for people who really do come from the Caucasus. 
However, it seems odd to use “Whites,” when authors of a 
paper may have no idea what skin color the donors of their 
DNA samples had.

Often these racial or ethnic labels disguise a great deal of 
biological heterogeneity, and the identification of DNA 
donors as members of social groups is not self-evident. 
Much confusion is possible when a paper has the title: 
“Strong Amerind/White sex bias and a possible Sephardic 
contribution among the founders of a population in 
northwest Colombia”2. It includes labels based on 
indigenous continental affiliation, skin color, membership 
of a group defined on religious-historical grounds, and 
current small-scale geography. A DNA donor may belong to 
a large number of categories simultaneously. In addition, 
when populations are compared in genetic studies, the 
level of classification in different samples may be unequal. 
The Hadza of Tanzania, with a population size of only 1000, 
have in some studies occupied the same analytical status as 
the South Chinese, whose population size is 600,000 times 
greater.

In general, the most suitable default method for classification 
is to use geographical information, rather than national, 
cultural, or phenotypic labels.
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