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Preface

Genetic epidemiology is a relatively new field of epidemiology that studies the role of genetic
factors in health and diseases and has witnessed some exciting findings in our quest to
understand the nature of genetic inheritance. It is an amalgam of methods and approaches
applied in traditional epidemiology, statistics, genetics, and bioinformatics and it brings
together several scientific disciplines. In the last few years, scientists have been able to map
thousands of genetic variants contributing to complex diseases helping to unravel the
genetic causes of diseases on a population scale.

This book is a broad overview written at a level that should be accessible to a wide range
of interested scientists including epidemiologists, genetic statisticians, human geneticists,
clinicians, and bioinformaticians. I hope that this book will be also helpful for graduate
students pursuing research in related fields. Some chapters of the book assume a basic level
of competence with regard to statistic and probabilistic reasoning; however it was written
and edited having in mind that a noncompetent reader will be able to follow, if not all, most
of the text. For many scientists, genetic epidemiology is too convoluted to understand;
however I hope to persuade the reader that this view is not correct. My goal was to provide a
unifying overview of a fast-moving research while providing a description in some depth of
the techniques and data that are helping us to understand our genome and how it is related
to mainly complex diseases.

Chapter 1 provides an introduction to basic terms of epidemiology whereas Chapter 2
introduces the reader to the key principles of genetic epidemiology including genetic models
of inheritance and associations. The next three chapters describe the process of quality
control (Chapter 3), the analysis and the detection of common (Chapter 4) and rare
variation (Chapter 5) whereas Chapter 6 outlines state-of-the-art meta-analyses approaches
for the synthesis of such data. Chapter 7 outlines methods for detecting both gene-gene and
gene-environment interactions as well as approaches for increasing statistical power.

The next seven chapters cover novel, state-of-the-art methods that go beyond the
conventional approaches for the detection of common variation including analysis in the
HLA region (Chapter 8), novel family-based approaches (Chapter 9), approaches for
polygenic traits (Chapter 10), multivariate methods for meta-analysis of genetic associations
and meta-analysis of gene expression data (Chapters 11 and 12). Chapter 13 covers the
rapidly evolving method of Mendelian Randomization that is used for the estimation of
causal effects of an exposure on an outcome, whereas computational methods for the
analysis of Copy Number Variation are presented in Chapter 14. We conclude in the last
two chapters by assessing the functional role of the identified variants (Chapter 15) and the
challenges we are facing to use human genetics to identify and validate novel drug targets
(Chapter 16).

I thank sincerely all those who have helped to bring this book together and I am
grateful to the coauthors who accepted my invitation and contributed to this book, devoting
valuable time and effort.

Ioannina, Greece Evangelos Evangelou
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Chapter 1

Introduction to Epidemiological Studies

Lazaros Belbasis and Vanesa Bellou

Abstract

The basic epidemiological study designs are cross-sectional, case-control, and cohort studies. Cross-
sectional studies provide a snapshot of a population by determining both exposures and outcomes at one
time point. Cohort studies identify the study groups based on the exposure and, then, the researchers
follow up study participants to measure outcomes. Case-control studies identify the study groups based on
the outcome, and the researchers retrospectively collect the exposure of interest. The present chapter
discusses the basic concepts, the advantages, and disadvantages of epidemiological study designs and
their systematic biases, including selection bias, information bias, and confounding.

Key words Bias, Case-control study, Cohort study, Confounding, Information bias, Observational
studies, Selection bias, Study design

1 Definition of Epidemiology

Epidemiology is defined as “the study of the occurrence and distri-
bution of health-related events, states, and processes in specified
populations, including the study of the determinants influencing
such processes, and the application of this knowledge to control
relevant health problems” [1]. It is apparent that the scope of
Epidemiology is very wide and mainly includes the study of inci-
dence and prevalence of health conditions and traits, the study of
their determinants (i.e., risk and protective factors), and the design
of potential strategies for disease prevention.

Many subfields of Epidemiology have been developed, includ-
ing environmental epidemiology, genetic epidemiology, and nutri-
tional epidemiology. An early definition of Genetic Epidemiology
defined it as “the field that addresses the etiology, distribution,
and control of disease in groups of related individuals and the
inherited causes of diseases in population [2, 3]. Later, this defini-
tion was broadened to include the role of interaction between the
environment and the genetic factors in the occurrence of diseases
[3]. Also, the term Human Genome Epidemiology was coined to
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describe “the field that uses systematic applications of epidemio-
logic methods and approaches to the human genome to assess the
impact of human genetic variation on health and disease” [4]. The
present chapter constitutes a brief introduction to epidemiologic
study designs for Genetic Epidemiology.

2 Cross-Sectional Studies

The defining characteristic of cross-sectional studies is that both
exposure and outcome are ascertained at the same time. The tem-
poral sequence is often impossible to work out, because exposure
and outcome are identified at one time point. However, cross-
sectional studies are useful in Genetic Epidemiology, because
genetic exposures cannot change over time and unquestionably
preceded the outcome [5, 6].

3 Cohort Studies

A cohort study is “an observational epidemiological study in which
subsets of a defined population can be identified who are, have
been, or in the future may be exposed or not exposed to a factor
or factors hypothesized to influence the occurrence of a given
outcome” [1].

A cohort study tracks two or more groups forward from
exposure to outcome. This type of study can be done by going
ahead in time from the present (prospective cohort study) or
by going back in time to identify the cohorts and following them
up to the present (retrospective cohort study) [7]. In both prospec-
tive and retrospective designs, a cohort study moves in the same
direction, although data gathering might not. The exposure of
interest is measured at the beginning of the study, and the two
groups are defined based on the exposure or the level of exposure
to a specific factor.

Prospective cohort studies constitute the most reliable type of
observational studies, and they present many advantages. The tem-
poral sequence between putative cause and outcome is usually clear,
given that the exposed and unexposed can often be seen to be free
of the outcome at the beginning of the study [7]. Also, cohort
studies are useful in the investigation of multiple outcomes that
might arise after a single exposure [7]. For example, a cohort study
can be designed to assess the association between birth weight and
multiple health outcomes or traits. However, in this case, publica-
tion bias and reporting bias are often observed when the researchers
publish or report only the statistically significant findings [8]. -
Furthermore, testing multiple associations may lead to many
false-positive findings due to chance. To avoid reporting and
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publication bias, several approaches have been proposed. Study
registration and pre-specification of the project design and the
analysis plan are important initiatives to avoid post-hoc secondary
analyses seeking additional statistically significant findings
[8]. To reduce the rate of false-positive findings in the field of
Genetic Epidemiology, several statistical approaches for multiple
testing have been suggested, including a more stringent P-value,
q-values, or false discovery rate [9].

The cohort studies are also useful in the study of rare exposures
[7]. For example, they are the appropriate study design to examine
the health effects of occupational exposures, such as ionising radia-
tion and chemicals. Moreover, cohort studies reduce the risk of
survivor bias, i.e., diseases that are rapidly fatal are difficult to study
because of this factor [7]. Finally, cohort studies allow the calcula-
tion of incidence rates, risk ratios, and other outcome measures,
such as survival curves and hazard ratios [7].

However, cohort studies also have important shortcomings.
Ideally, both cases and controls should be the same in all important
aspects, except for the exposure of interest [7]. This seldom occurs,
and the absence of comparability between groups being studied
results in selection bias [10]. Also, cohort study is not the optimum
study design for rare diseases or diseases that take a long time
to develop, such as cancer [7]. Moreover, loss to follow-up can
be an important issue in this study design, especially for longi-
tudinal studies that have a long follow-up period. In this case,
differential losses to follow-up between exposed and unexposed
can bias results [7]. Another drawback is the potential change of
the exposure status of study participants during the follow-up
period [7].

One of the most frequent variations of cohort studies is the
nested case-control study, which is “a type of case-control study in
which cases and controls are drawn from the population in a cohort
study” [1]. The rational for designing a case-control study nested in
a cohort study is that some exposure variables are too expensive to
determine on the full cohort [7]. Nested case-control studies can
be designed to examine genetic associations for a specific health-
related outcome. The variable of interest is measured in the cases
group, and then the investigator chooses a random sample of all
participants who did not develop the outcome. This approach
minimizes the cost of measuring the variable of interest and ensures
that the exposure was present before the development of the out-
come. During the study design, a matching process is used and the
controls are matched to cases by important characteristics, such as
age and sex [7].

Introduction to Epidemiology 3



4 Case-Control Studies

A case-control study is an observational epidemiological study of
persons with the disease of interest and a suitable control group of
persons without the disease [1]. In this study design, study groups
are defined by outcome, and the study population is divided into
two groups, cases and controls, based on whether the outcome of
interest has occurred [11, 12]. Case-control studies cannot yield
incidence rates, but they provide an odds ratio, derived from the
proportion of individuals exposed in each of the case and control
groups [12]. When the incidence rate of a particular outcome in the
population of interest is low (rare disease assumption), the odds
ratio from a case-control study is considered a good approximation
of risk ratio [12].

Case-control studies are considered an efficient study design
in terms of time, money, and effort. Specifically, this study design
is appropriate to investigate diseases with a low incident rate
and diseases that have a long latency period, such as cancer
[12]. However, case-control studies have also some disadvantages
and, in these cases, cohort studies are considered a more efficient
design. If the frequency of exposure is low, case-control studies
quickly become inefficient, because researchers would have to
examine many cases and controls to find one who had been exposed
[12]. A simplified rule has been proposed indicating that cohort
studies are more efficient in settings in which the incidence of
outcome is higher than the prevalence of exposure [12]. Also,
selection of a control group and obtaining exposure history [12]
are two main methodological issues affecting the validity of the
results of case-control studies and are discussed in more detail.

The term “selection bias” is used to describe “the bias in the
estimated association or effect of an exposure on an outcome that
arises from the procedures used to select individuals into the study
or the analysis” [1]. Investigators can reduce selection bias by mini-
mizing judgement in the selection process, and the selection process
should be defined and described in detail for both case and control
group [12]. Often only a sample of cases from a population is
included as participants in a case-control study. During the selection
process, investigators should focus on incident cases rather than
prevalent cases, since diagnostic patterns change over time and this
can affect the consistency of diagnosis between incident and preva-
lent cases [12]. Controls should be free of the disease being studied,
but they should also be representative of those individuals who
would have been selected as cases had they developed the disease.
For example, if the case group included all affected individuals in a
specified region, then the control group could be chosen at random
from the general population of the same area [12].

The term “information bias” is used to describe “a flaw in
measuring exposure, covariate, or outcome variables that results
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in different quality of information between comparison groups”
[1]. A type of information bias is recall bias, which is “a systematic
error due to differences in accuracy or completeness of recall to
memory of past events or experiences” [1]. For example, in a case-
control study for risk factors of melanoma, when information for
past history of sun exposure, sunburns and solarium use is retro-
spectively collected, melanoma cases are more prone to report an
increased exposure to these factors [13]. Also, information bias
could be caused by data gatherers using different techniques to
elicit information based on the case or control status. Thus, data
gatherers should be unaware of the case or control status of the
respondents, to minimize the risk for information bias [12].

Another important issue in the design of case-control studies is
the matching ratio of controls to cases. There is usually little
marginal increase in precision from increasing the ratio of controls
to cases beyond four, except when the effect of exposure is large
[14]. In general, the best way to increase precision in a case-control
study is to increase the number of cases by widening the base
geographically or temporally rather than by increasing the number
of controls, because the marginal increase in precision from an
additional case is greater than from an additional control [14].

5 Confounding

Selection bias and information bias have already been discussed in
the section above. Another important issue in epidemiological
studies is confounding. Three criteria should be fulfilled for a
variable to be a confounder [15]. First, the confounding factor
must be an extraneous risk factor for the disease. Second, a con-
founding factor must be associated with the exposure under study
in the source population. Third, a confounding factor must not be
affected by the exposure or the disease, and it cannot be an inter-
mediate step in the causal path between the exposure and the
disease of interest.

Several approaches have been suggested to control for con-
founding [10]. These methods can be applied either during the
selection of cases and controls or during the statistical analyses. The
simplest approach is restriction, i.e., during recruitment period
researchers exclude individuals having the exposure that is sus-
pected to be a confounding factor. Another way is pairwise match-
ing. In a case-control study, during the selection of controls, cases
and controls can be matched by the confounding factor. However,
matching can be proven challenging if it is done on several potential
confounding factors. Moreover, control for confounding can be
done after a study has been completed. One approach is stratifica-
tion which can be considered a post hoc restriction, done during
the analysis [10]. Multivariate techniques (e.g., multivariate logistic
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regression) have also been proposed to examine the effect of one
variable while controlling for the effect of many other factors [10].
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