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The goal of the male gamete is to deliver a fully intact and functioning pater-
nal genome to the oocyte. To fulfill this aim, the process of chromatin matura-
tion during spermiogenesis must be correctly completed to guarantee DNA 
protection during the long journey to reach the oocyte and to properly de- 
condense and form the male pronucleus after fertilization. Genetic abnor-
malities in spermatozoa can be generated in any phase of the sperm production 
and life and may be due to endogenous and exogenous conditions, the latter 
including in  vitro manipulation for assisted reproduction and gonadotoxic 
therapies. In addition, emerging studies point out the importance of the dam-
age to the sperm epigenome and address the mechanisms involved in generat-
ing it. All these abnormalities may have profound consequences for male 
fertility status and even for the health of the progeny. This book presents an 
updated overview of the various types of damage that may affect sperm chro-
matin. Besides the main mechanisms involved in the generation of de novo 
mutations and DNA strand breaks and oxidation, two chapters of the book are 
dedicated to sperm epigenome and epigenetic damage and their consequences 
for the progeny. In addition, as one of the most important issues regards the 
possible medical interventions to reduce or prevent sperm DNA fragmenta-
tion, one chapter faces the important aspect of pharmacological and surgical 
treatments, lifestyle modifications, and prevention against exposure to envi-
ronmental and occupational toxicants.

We wish to thank all the authors for their invaluable contributions to the 
book. They are all expert scientists in the field, and we appreciate their will-
ingness to offer their knowledge in this important branch of reproductive 
medicine. We hope that this book will help the researchers in the topics of 
reproduction and serve as a reference for medical and technical staff working 
in assisted reproduction laboratories.

Florence, Italy Elisabetta Baldi
 Monica Muratori 
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Genetic Factors Affecting Sperm 
Chromatin Structure

Mélina Blanco and Julie Cocquet

Abstract
Spermatozoa genome has unique features that 
make it a fascinating field of investigation: 
first, because, with oocyte genome, it can be 
transmitted generation after generation; sec-
ond, because of genetic shuffling during meio-
sis, each spermatozoon is virtually unique in 
terms of genetic content, with consequences 
for species evolution; and finally, because its 
chromatin organization is very different from 
that of somatic cells or oocytes, as it is not 
based on nucleosomes but on nucleoprot-
amines which confer a higher order of packag-
ing. Histone-to-protamine transition involves 
many actors, such as regulators of spermatid 
gene expression, components of the nuclear 
envelop, histone-modifying enzymes and 
readers, chaperones, histone variants, transi-
tion proteins, protamines, and certainly many 
more to be discovered.

In this book chapter, we will present what 
is currently known about sperm chromatin 
structure and how it is established during sper-
miogenesis, with the aim to list the genetic 
factors that regulate its organization.

Keywords
Spermatozoa · Chromatin · Protamine · 
Nucleosome · Histone · Gene expression · 
Nucleus · Spermatids · Spermiogenesis

 Introduction

Spermatozoa are produced through a multi-step 
process called spermatogenesis, during which 
spermatogonial stem cells at the base of the semi-
niferous tubules enter the differentiation pathway 
to ultimately give rise to spermatozoa, released in 
the lumen of the testicular seminiferous tubules. 
Spermatogenesis can be divided into three 
phases: mitotic phase, meiosis, and post-meiotic 
phase or spermiogenesis. During mitotic phase, 
spermatogonial stem cells undergo mitotic divi-
sions to maintain the spermatogonial stem cell 
pool; some of them differentiate into primary 
spermatocytes. Each primary spermatocyte 
undergoes DNA replication and meiotic division 
to produce four haploid round spermatids. Round 
spermatids then differentiate into elongated sper-
matids in a process that involves dramatic mor-
phological changes including cytoplasm removal, 
acrosome biogenesis, development of flagellum 
for motility, accumulation of mitochondria in the 
midpiece, and extensive chromatin remodeling 
that results in nuclear condensation and tran-
scriptional silencing (Russell et  al. 1990). The 
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post-meiotic differentiation of round spermatids 
into spermatozoa is called spermiogenesis. 
During this step, spermatid chromatin is exten-
sively modified and remodeled to give rise to a 
chromatin organization only found in spermato-
zoa. Indeed, in all other cells (somatic cells, 
female germ cells, and male germ cells until 
spermatid stage), the nucleosome is the core par-
ticle of chromatin structure (Luger et al. 1997). 
Histone proteins H2A, H2B, H3, and H4 assem-
ble into an octamer around which 146 base pairs 
of DNA are wrapped, and this nucleosome struc-
ture occurs every 200 base pairs in the eukaryotic 
genome (Mcghee and Felsenfeld 1980; Luger 
et al. 1997). In sperm chromatin, the basal unit is 
not the nucleosome but the nucleoprotamine, 
formed of smaller, more basic proteins (richer in 
arginine) than histones: the protamines. Sperm 
chromatin is organized as toroids containing 
~50–100kb of DNA, leading to a chromatin 
structure 5–10 times more condensed than 
nucleosome-based chromatin (Ward and Coffey 
1991; Balhorn 2007). This tight compaction is 
essential to allow DNA to fit into a nucleus that is 
seven times smaller than an interphasic somatic 
cell nucleus (Ward and Coffey 1991) and to pro-
tect the paternal genome from physical and 
chemical damages. It is also possible that a small 
nucleus is a hydrodynamic advantage that con-
fers a higher speed to spermatozoa during their 
transit (Braun 2001).

Briefly, the process of replacement of histones 
by protamines requires (i) opening of the histone- 
based chromatin structure facilitated by histone 
posttranslational modifications (PTM)  – in par-
ticular histone hyperacetylation – and incorpora-
tion of histone variants, (ii) binding of 
bromodomain proteins to acetyl residues and 
recruitment of chromatin-remodeling proteins 
and of transition proteins, (iii) formation and 
repair of DNA breaks, and (iv) incorporation of 
protamines leading to a protamine-based com-
pact chromatin structure. At the end of this pro-
cess, most histones have been replaced by 
protamines. A small portion of histones (~1% in 
mice, ~10% in humans) is retained in the sperma-
tozoa genome and contributes to the epigenetic 
program of the embryo (Balhorn et  al. 1977; 

Gatewood et  al. 1990; Hammoud et  al. 2009; 
Brykczynska et al. 2010; Erkek et al. 2013; Ihara 
et  al. 2014; Carone et  al. 2014; Samans et  al. 
2014; Royo et  al. 2016; Yoshida et  al. 2018; 
Yamaguchi et  al. 2018). [For review, see 
Champroux et al. (2018).]

Studying animal models (mostly knockout 
mice) and patient cases, researchers and clini-
cians have found many genes involved in histone- 
to- protamine transition, and many more will 
certainly be discovered. Each of them is a genetic 
factor which could alter chromatin structure 
when mutated. In this review, we will present 
their known or predicted roles while describing 
the key steps leading to the transition from a 
histone- based chromatin to protamine-based 
chromatin (see also Table 1.1).

 Regulation of Spermatid Gene 
Expression

The differentiation of round spermatids into sper-
matozoa involves profound morphological and 
functional changes and requires a very specific 
genetic program with thousands of genes only 
expressed at that time and regulated at the tran-
scriptional and post-transcriptional levels (Steger 
1999; White-Cooper and Davidson 2011; Kleene 
2013). Studies of gene expression dynamic 
throughout spermatogenesis have shown that this 
program starts as early as the pachytene phase of 
meiosis [see, for instance, da Cruz et al. (2016) 
and Chen et al. (2018)].

Among the genes of which expression is acti-
vated/upregulated during spermiogenesis are 
those required for histone-to-protamine transi-
tion such as histone variants, chaperones, histone- 
modifying enzymes, transition proteins, and, of 
course, protamines themselves. Hence, transcrip-
tion regulators which control the spermatid gene 
expression program can indirectly impact on 
sperm chromatin structure via deregulating key 
genes of this process.

This is particularly true for regulators of 
Protamine 1 (Prm1) and Protamine 2 (Prm2) 
gene expression: in the mouse, Prm1 and Prm2 
are transcribed into mRNAs that can be detected 
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