Fetal Cardiology
SERIES IN MATERNAL-FETAL MEDICINE

About the Series
Published in association with the Journal of Maternal Fetal and Neonatal Medicine, the series in Maternal Fetal Medicine keeps readers up to date with the latest clinical therapies to improve the health of pregnant patients and ensure a successful birth. Each volume in the series is prepared separately and typically focuses on a topical theme. Volumes are published on an occasional basis, depending on the emergence of new developments.

Fetal Cardiology: Embryology, Genetics, Physiology, Echocardiographic Evaluation, Diagnosis and Perinatal Management of Cardiac Diseases
Simcha Yagel, Norman H. Silverman, Ulrich Gembruch

Stillbirth: Understanding and Management
Fabio Facchinetti, Gustaaf Dekker, Dante Baronciani, George Saade

Neurology and Pregnancy: Clinical Management
Michael S. Marsh, Lina Nashef, Peter Brex

Recurrent Pregnancy Loss: Causes, Controversies, and Treatment, Second Edition
Howard J. A. Carp

Textbook of Diabetes and Pregnancy, Third Edition
Moshe Hod, Lois G. Jovanovic, Gian Carlo Di Renzo, Alberto De Leiva, Oded Langer

Cesarean Delivery: A Comprehensive Illustrated Practical Guide
Gian Carlo Di Renzo, Antonio Malvasi

Obstetric Evidence Based Guidelines, Third Edition
Vincenzo Berghella

Maternal-Fetal Evidence Based Guidelines, Third Edition
Vincenzo Berghella

Maternal-Fetal and Obstetric Evidence Based Guidelines, Two Volume Set, Third Edition
Vincenzo Berghella

The Long-Term Impact of Medical Complications in Pregnancy: A Window into Maternal and Fetal Future Health
Eyal Sheiner

Operative Obstetrics, Fourth Edition
Joseph J. Apuzzio, Anthony M. Vintzileos, Vincenzo Berghella, Jesus R. Alvarez-Perez

Placenta Accreta Syndrome
Robert M. Silver

For more information about this series please visit:
For being our inspiration, for their endless patience, we lovingly dedicate this volume to our wives, Noemie Yagel, Gabi Gembruch, and Heather Silverman
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>List of contributors</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>1</td>
<td>Cardiac morphogenesis</td>
<td>Adriana C. Gittenberger-de Groot, Monique R.M. Jongbloed, Marco C. de Ruiter, Margot M. Bartelings, and Robert E. Poelmann</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Cardiac anatomy and examination of specimens</td>
<td>Diane E. Spicer</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>Placental implantation and development</td>
<td>Simcha Yagel and Debra S. Goldman-Wohl</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>Placental circulations</td>
<td>Eric Jauniaux and Graham J. Burton</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>Technical advances in fetal echocardiography</td>
<td>Boris Tutschek and David Sahn</td>
<td>63</td>
</tr>
<tr>
<td>6</td>
<td>Epidemiology of congenital heart disease: Etiology, pathogenesis, and incidence</td>
<td>Julien I.E. Hoffman</td>
<td>78</td>
</tr>
<tr>
<td>7</td>
<td>Indications for fetal echocardiography: Screening in low- and high-risk populations</td>
<td>Anita J. Moon-Grady, Mary T. Donofrio, Sarah M. Cohen, and Simcha Yagel</td>
<td>86</td>
</tr>
<tr>
<td>8</td>
<td>Circulation in the normal fetus and cardiovascular adaptations to birth</td>
<td>Abraham M. Rudolph</td>
<td>101</td>
</tr>
<tr>
<td>9</td>
<td>Development of fetal cardiac and extracardiac Doppler flows in early gestation</td>
<td>Viola Seravalli, Ulrich Gembruch, and Ahmet A. Baschat</td>
<td>120</td>
</tr>
<tr>
<td>10</td>
<td>Examination of the normal fetal heart using two-dimensional echocardiography</td>
<td>Rabih Chaoui</td>
<td>137</td>
</tr>
<tr>
<td>11</td>
<td>The three vessel and tracheal view</td>
<td>Julia Solomon</td>
<td>148</td>
</tr>
<tr>
<td>12</td>
<td>First and early second trimester fetal heart screening</td>
<td>Simcha Yagel, Sarah M. Cohen, Reuven Achiron, Yaron Zalel, and Alfred Abuhamad</td>
<td>159</td>
</tr>
<tr>
<td>13</td>
<td>Four-dimensional ultrasound examination of the fetal heart using spatiotemporal image correlation (STIC)</td>
<td>Luis F. Gonçalves</td>
<td>174</td>
</tr>
<tr>
<td>14</td>
<td>Three- and four-dimensional ultrasound in fetal echocardiography: A new look at the fetal heart</td>
<td>Simcha Yagel, Sarah M. Cohen, Israel Shapiro, Baruch Messing, and Dan V. Valsky</td>
<td>195</td>
</tr>
<tr>
<td>15</td>
<td>Magnetic resonance imaging: Techniques and normal fetal cardiovascular physiology</td>
<td>Davide Marini, Sharon Portnoy, and Mike Seed</td>
<td>217</td>
</tr>
<tr>
<td>16</td>
<td>Magnetic resonance imaging: Abnormalities of the fetal circulation</td>
<td>Davide Marini, Sharon Portnoy, and Mike Seed</td>
<td>231</td>
</tr>
<tr>
<td>17</td>
<td>Abnormal visceral and atrial situs and congenital heart disease</td>
<td>Varsha Thakur, Edgar T. Jaeggi, and Shi-Joon Yoo</td>
<td>239</td>
</tr>
<tr>
<td>18</td>
<td>Cardiac malpositions and syndromes with right or left atrial isomerism</td>
<td>Rabih Chaoui</td>
<td>253</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Pulmonary vein anomalies</td>
<td>Anita J. Moon-Grady</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Ebstein malformation and tricuspid valve pathology</td>
<td>Lindsay R. Freud, Wayne Tworetzky, and Norman H. Silverman</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Intracardiac shunt malformations</td>
<td>Einat Birk and Norman H. Silverman</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Atrioventricular septal defect (“atrioventricular canal”)</td>
<td>Laurent Fermont and Lucile Houyel</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Double-inlet ventricle</td>
<td>Astrid Hellmund and Ulrich Gembruch</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Lesions of the right heart</td>
<td>Julene S. Carvalho</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Ventricular outflow tract anomalies (“conotruncal anomalies”)</td>
<td>Varsha Thakur, Edgar T. Jaeggi, and Shi-Joon Yoo</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Tetralogy of Fallot</td>
<td>Michael D. Puchalski</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Double-outlet right ventricle</td>
<td>Luke Ekersley and Lisa K. Hornberger</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Truncus arteriosus</td>
<td>Shaine A. Morris and Diego A. Lara</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Transposition of the great arteries</td>
<td>Silvia G.V. Alvarez and Lisa K. Hornberger</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Left heart malformations</td>
<td>Brian S. Snarr, Michael Y. Liu, and Jack Rychik</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Aortic arch anomalies</td>
<td>Varsha Thakur, Edgar T. Jaeggi, and Shi-Joon Yoo</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Coarctation of the aorta and interrupted aortic arch</td>
<td>Max E. Godfrey and Wayne Tworetzky</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Diseases of the myocardium, endocardium, and pericardium during fetal life and cardiomyopathy in the fetus</td>
<td>Simone R.F. Fontes Pedra and Carlos A.C. Pedra</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Ultrasound examination of the fetal coronary circulation</td>
<td>Ahmet A. Baschat, Ulrich Gembruch, and Viola Seravalli</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>The fetal venous system: Normal embryology, anatomy, and physiology and the development and appearance of anomalies</td>
<td>Simcha Yagel, Ori Shen, Sarah M. Cohen, and Dan V. Valsky</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Fetal cardiac tumors</td>
<td>Lisa K. Hornberger and Angela McBrien</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>The fetal thymus</td>
<td>Elena S. Sinkovskaya and Alfred Abuhamad</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Extracardiac Doppler investigation in fetuses with congenital heart disease</td>
<td>Annegret Geipel, Ulrich Gembruch, and Christoph Berg</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Electrophysiology for the perinatologist</td>
<td>Edgar T. Jaeggi</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Fetal bradycardia</td>
<td>Bettina F. Cuneo</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Fetal tachyarrhythmia</td>
<td>Ulrich Gembruch</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Cardiac diseases in association with hydrops fetalis</td>
<td>548</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ulrich Gembruch and Wolfgang Holzgreve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Congestive heart failure in the fetus</td>
<td>579</td>
<td></td>
</tr>
<tr>
<td></td>
<td>James C. Huhta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Twin-twin transfusion syndrome: Impact on the cardiovascular system</td>
<td>596</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jack Rychik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Fetal interventions for congenital heart disease</td>
<td>606</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lindsay R. Freud, Max E. Godfrey, and Wayne Tworetzky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Doppler evaluation in fetal growth restriction</td>
<td>614</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Javier Caradeux and Francesc Figueras</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Venous flow dynamics: Intrauterine growth restriction and cardiac decompensation</td>
<td>622</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Torvid Kiserud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Evaluation of fetal cardiac function: Techniques and implications</td>
<td>634</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Christoph Wohlmuth and Helena M. Gardiner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Genetics and cardiac anomalies</td>
<td>643</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hagit Shani, Pe’er Dar, and Mark I. Evans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Cardiac defects in chromosomally abnormal fetuses</td>
<td>651</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ritu Mogra and Jon Hyett</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Associated anomalies in congenital heart disease</td>
<td>665</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Christoph Berg, Ulrich Gembruch, and Annegret Geipel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Chromosome microarray analysis of the fetal heart</td>
<td>683</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Karina Seidl Nall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Congenital cardiovascular malformations and the fetal and neonatal circulation</td>
<td>690</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abraham M. Rudolph</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Intrapartum evaluation of fetal well-being</td>
<td>705</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hagai Amsalem, Yoram Sorokin, and Sean C. Blackwell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Intrapartum and delivery room management of the fetus with congenital heart disease</td>
<td>715</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mary T. Donofrio and Anita J. Moon-Grady</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>The neonate with congenital heart disease: Medical and interventional management</td>
<td>729</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alexander Lowenthal, Ulrike Herberg, and Einat Birk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Infants with congenital heart disease in the first year of life</td>
<td>753</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Andrew J. Parry and Frank L. Hanley</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Neurodevelopment in congenital heart disease: Intrauterine Doppler and fetal and neonatal magnetic resonance imaging</td>
<td>766</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shabnam Peyvandi and Mary T. Donofrio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Postnatal neurodevelopment in congenital heart disease: Short- and long-term neurodevelopment and interventions</td>
<td>775</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hedwig H. Hövels-Gürich and Christopher G. McCusker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Genetic counseling in families with congenital heart defects</td>
<td>784</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Klaus Zerres and Sabine Rudnik-Schöneborn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Cardiac disease in pregnancy</td>
<td>792</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sabrina D. Phillips and Frank Cetta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Maternal diseases and therapies affecting the fetal cardiovascular system</td>
<td>809</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waltraut M. Merz and Ulrich Gembruch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Index</td>
<td>819</td>
<td></td>
</tr>
</tbody>
</table>
This third edition of *Fetal Cardiology: Embryology, Genetics, Physiology, Echocardiographic Evaluation, Diagnosis, and Perinatal Management of Cardiac Diseases* marks a new beginning in our specialty. Like the first two editions, this edition was created through the generosity of the many professionals who shared their expertise: obstetricians, pediatric cardiologists, sonographers, molecular biologists, and medical physicists. This latest edition adds a complement of twelve new chapters, reflecting the immense strides made in recent years. We are delighted to welcome many new contributors, leaders in their specialties writing on diverse topics, to our team.

The fields of fetal imaging and cardiac therapies and interventions are rapidly changing and developing. Whereas in the preface to the second edition we showcased the three-dimensional/four-dimensional revolution in fetal cardiology, the highlight of the third edition is a pair of chapters focusing on fetal cardiac magnetic resonance imaging. This exciting and innovative discipline promises to enhance fetal diagnosis, inform perinatal management and postnatal treatment, and open new avenues in research.

This new edition comprises expanded and revised chapters on treatment options and pharmacological or surgical interventions available to affected fetuses, as well as all life stages of heart disease, from embryology to the neonate, to the reproductive health of women with congenital heart disease and the counseling of families affected by congenital heart disease. Progress in prenatal genetic investigations and counseling is canvassed in a new chapter on chromosome microarray analysis, exome, and whole genome sequencing of the fetal heart. Two chapters are devoted to the complex issue of the intrauterine and postnatal neurodevelopment of fetuses diagnosed with congenital heart disease and the management strategies available to them. An expanded chapter describes the evaluation of fetal cardiac function with advanced Doppler techniques, while another focuses on fetal bradydysrhythmia and the long Q-T syndrome, prior knowledge of which may save lives, not only of the fetus or newborn, but may lead to diagnosis and effective preventative treatment for affected but asymptomatic family members as well.

Congenital heart disease is a broad classification, estimated to affect 8:1,000 live births and to occur at a similar rate in aborti. This underlines the necessity to integrate comprehensive fetal echocardiography in every targeted organ scan. *Fetal Cardiology*, third edition, is a comprehensive guide intended for everyone interested in fetal development: anyone having an interest in the fetal heart, we believe, will find it useful. It is our hope that this volume will bridge the specialties of obstetrics, perinatology, pediatric and general cardiology, and radiology.

Simcha Yagel
Norman H. Silverman
Ulrich Gembruch
List of contributors

Alfred Abuhamad
Department of Obstetrics and Gynecology
Eastern Virginia Medical School
Norfolk, Virginia

Reuven Achiron
Chaim Sheba Medical Center
Sackler School of Medicine
Tel Aviv University
Tel Aviv, Israel

Silvia G.V. Alvarez
Department of Pediatric Cardiology and Congenital Heart Disease in Adolescents and Adults
“Dante Pazzanese” Institute of Cardiology
São Paulo, Brazil

Hagai Amsalem
Department of Obstetrics and Gynecology
Hadassah-Hebrew University Medical Center
Mt. Scopus, Jerusalem, Israel

Margot M. Bartelings
Department of Anatomy and Embryology
Leiden University Medical Center
Leiden, The Netherlands

Ahmet A. Baschat
The Johns Hopkins Center for Fetal Therapy
Department of Gynecology and Obstetrics
Johns Hopkins University School of Medicine
Baltimore, Maryland

Christoph Berg
Department of Obstetrics and Prenatal Medicine
University of Bonn
Bonn, Germany

Einat Birk
Pediatric Cardiology
Pediatric Heart Institute
Schneider Children’s Medical Center
Petach Tikva, Israel

Sean C. Blackwell
Division of Maternal-Fetal Medicine
Department of Obstetrics and Gynecology
University of Texas Health Sciences
Houston, Texas

Graham J. Burton
The Centre for Trophoblast Research
Department of Physiology, Development, and Neuroscience
University of Cambridge
Cambridge, United Kingdom

Javier Caradeux
BCNatal. Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital Sant Joan de Deu)
Institut Clinic de Ginecologia Obstetricia i Neonatologia Fetal i D Fetal Medicine Research Center
Barcelona, Spain

Julene S. Carvalho
Professor of Practice and Consultant in Fetal Cardiology
Head of Brompton Centre for Fetal Cardiology
Royal Brompton Hospital
and
Fetal Medicine Unit
St George’s University Hospital
and
Molecular and Clinical Sciences Research Institute
St George’s, University of London
London, United Kingdom

Frank Cetta
Division of Pediatric Cardiology
Department of Cardiovascular Diseases
Mayo Clinic
Rochester, Minnesota

Rabih Chaoui
Center for Prenatal Diagnosis and Human Genetics
Berlin, Germany

Sarah M. Cohen
Department of Obstetrics and Gynecology
Hadassah-Hebrew University Medical Center
Jerusalem, Israel
List of contributors

Bettina F. Cuneo
Children’s Hospital Colorado Heart Institute
Colorado Fetal Care Center
University of Colorado School of Medicine
Aurora, Colorado

Pe’er Dar
Department of Obstetrics and Gynecology and Women’s Health
Montefiore Medical Center
Albert Einstein College of Medicine
New York City, New York

Mary T. Donofrio
Professor of Pediatrics
George Washington University
and
Director of the Fetal Heart Program and Critical Care Delivery Program
Co-Director of the Cardiac Neurodevelopmental Outcome Program
Children’s National Medical Center
Washington, DC

Luke Eckersley
Fetal and Neonatal Cardiac Program
Pediatric Cardiology
Stollery Children’s Hospital
University of Alberta
Edmonton, Canada

Mark I. Evans
Fetal Medicine Foundation of America
Comprehensive Genetics PLLC
and
Department of Obstetrics and Gynecology
Mt. Sinai School of Medicine
New York City, New York

Laurent Fermont
Shaare Zedek Medical Center
Jerusalem, Israel

Francesc Figueras
BCNatal. Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital Sant Joan de Deu)
Institut Clinic de Ginecologia
Obstetricia i Neonatologia Fetal i+D Fetal Medicine Research Center
Barcelona, Spain

and

Center for Biomedical Research on Rare Diseases (CIBER-ER)
Madrid, Spain

Lindsay R. Freud
Assistant Professor
Division of Pediatric Cardiology
Department of Pediatrics
Morgan Stanley Children’s Hospital of New York-Presbyterian
Columbia University Medical Center
New York City, New York

Helena M. Gardiner
The Fetal Center
UTH ealth McGovern School of Medicine
Houston, Texas

Annegret Geipel
Department of Obstetrics and Prenatal Medicine
University of Bonn
Bonn, Germany

Ulrich Gembruch
Department of Obstetrics and Prenatal Medicine
University Bonn Medical School
Bonn, Germany

Adriana C. Gittenberger-de Groot
Department of Cardiology
Leiden University Medical Center
Leiden, The Netherlands

Max E. Godfrey
Pediatric Cardiology
Shaare Zedek Medical Center
Jerusalem, Israel

and

Schneider Children’s Medical Center
Petah Tikva, Israel

Debra S. Goldman-Wohl
Magda and Richard Hoffman Center for Human Placenta Research
Department of Obstetrics and Gynecology
Hadassah-Hebrew University Medical Center
Jerusalem, Israel

Luís F. Gonçalves
Professor and Co-Director, Fetal Imaging
Phoenix Children’s Hospital
Professor, Departments of Child Health and Radiology
University of Arizona College of Medicine-Phoenix
Phoenix, Arizona
Frank L. Hanley
Professor, Cardiothoracic Surgery
Executive Director, Betty Irene Moore Children's
Heart Center
Lucille Packard Children's Hospital
Stanford University
Stanford, California

Astrid Hellmund
Department of Obstetrics and Prenatal
Medicine
University of Bonn
Bonn, Germany

Ulrike Herberg
Department of Pediatric Cardiology
University of Bonn
Bonn, Germany

Julien I.E. Hoffman
Department of Pediatrics
Cardiovascular Research Institute
University of California
San Francisco, California

Wolfgang Holzgreve
University Clinic
University of Bonn
Bonn, Germany

Lisa K. Hornberger
Fetal and Neonatal Cardiac Program, Pediatric
Cardiology
Stollery Children's Hospital
Department of Pediatrics and Obstetrics and
Gynecology
University of Alberta
Edmonton, Canada

Lucile Houyel
Centre Marie Lannelongue
Le Plessis-Robinson, France

Hedwig H. Hövels-Gürich
Department of Pediatric Cardiology
Children's Heart Center
RWTH Aachen University
Aachen, Germany

James C. Huhta
Perinatal Cardiologist
MEDNAX Services, Inc.
Tampa, Florida

Jon Hyett
RPA Women and Babies
Royal Prince Alfred Hospital
New South Wales, Australia

Edgar T. Jaeggi
Department of Pediatrics
Fetal Cardiac Program
Labatt Family Heart Center
The Hospital for Sick Children
University of Toronto Faculty of Medicine
Toronto, Canada

Eric Jauniaux
EGA Institute for Women's Health
Faculty of Population Health Sciences
University College London
London, United Kingdom

Monique R.M. Jongbloed
Departments of Cardiology, Anatomy, and
Embryology
Leiden University Medical Center
Leiden, The Netherlands

Torvid Kiserud
Department of Clinical Science
University of Bergen
and
Department of Obstetrics and Gynecology
Haukeland University Hospital
Bergen, Norway

Diego A. Lara
Pediatric Cardiology
Department of Pediatrics
Ochsner Hospital for Children
New Orleans, Louisiana

Michael Y. Liu
Fetal Heart Program
The Cardiac Center
Children's Hospital of Philadelphia
and
Department of Pediatrics
Perelman School of Medicine
University of Pennsylvania
Philadelphia, Pennsylvania

Alexander Lowenthal
Pediatric Cardiologist
Heart Institute
Schneider Children's Medical Center of Israel
Petach-Tikvah, Israel
List of contributors

Davide Marini
Labatt Family Heart Centre
The SickKids Hospital
Toronto, Canada

Angela McBrien
Department of Pediatrics and Obstetrics and Gynecology
Stollery Children's Hospital
University of Alberta
Edmonton, Canada

Christopher G. McCusker
School of Applied Psychology
University College Cork
Cork, Ireland

Waltraut M. Merz
Department of Obstetrics and Prenatal Medicine
Center of Obstetrics and Gynecology
University of Bonn
Bonn, Germany

Baruch Messing
Ma'ayanei HaYeshua Medical Center
Bnei Brak, Israel

and

Chaim Sheba Medical Center
Ramat Gan, Israel

Ritu Mogra
RPA Women and Babies
Royal Prince Alfred Hospital
New South Wales, Australia

Anita J. Moon-Grady
Division of Cardiology
Department of Pediatrics
University of California San Francisco
and
Fetal Cardiovascular Program
UCSF Benioff Children's Hospital
San Francisco, California

Shaine A. Morris
Division of Pediatric Cardiology
Department of Pediatrics
Texas Children's Hospital and Baylor College of Medicine
Houston, Texas

Karina Seidl Nall
Certified Genetic Counselor
Steward Healthcare
Fetal Diagnostic Center
Gilbert, Arizona

and

Metis Genetics
Addison, Texas

Andrew J. Parry
Department of Paediatric Surgery
Bristol Royal Hospital for Children
Bristol, United Kingdom

Carlos A.C. Pedra
Pediatric Interventional Program
Instituto Dante Pazzanese de Cardiologia
and
Pediatric Interventional Laboratory
Hospital do Coração
Sao Paulo, Brazil

Simone R.F. Fontes Pedra
Fetal and Pediatric Echocardiography Laboratory
Instituto Dante Pazzanese de Cardiologia
and
Fetal Unit
Hospital do Coração
Sao Paulo, Brazil

Shabnam Peyvandi
Division of Cardiology
Department of Pediatrics
University of California San Francisco
and
Fetal Cardiovascular Program
UCSF Benioff Children's Hospital
San Francisco, California

Sabrina D. Phillips
Department of Cardiovascular Diseases
Mayo Clinic
Jacksonville, Florida

Robert E. Poelmann
Departments of Cardiology
and
Institute of Biology Leiden
Sylvius Laboratory
Leiden University
Leiden, The Netherlands

Sharon Portnoy
Department of Physiology and Experimental Medicine
University of Toronto and Hospital for Sick Children
Toronto, Canada

Michael D. Puchalski
Division of Pediatric Cardiology
Department of Pediatrics
Primary Children's Hospital
University of Utah School of Medicine
Salt Lake City, Utah
Sabine Rudnik-Schöneborn
Sektion für Humangenetik der Medizinischen Universität
Innsbruck
Zentrum Medizinische Genetik Innsbruck
Innsbruck, Austria

Abraham M. Rudolph
Department of Pediatrics
University of California
San Francisco, California

Marco C. de Ruiter
Department of Anatomy and Embryology
Leiden University Medical Center
Leiden, The Netherlands

Jack Rychik
Professor
Fetal Heart Program
The Cardiac Center
Children's Hospital of Philadelphia
and
Department of Pediatrics
Perelman School of Medicine
University of Pennsylvania
Philadelphia, Pennsylvania

David Sahn
Professor Emeritus
Oregon Health and Sciences University
Portland, Oregon

Mike Seed
Associate Professor
Division of Cardiology
Hospital for Sick Children
Department of Paediatrics
University of Toronto
Toronto, Canada

Viola Seravalli
The Johns Hopkins Center for Fetal Therapy
Department of Gynecology and Obstetrics
Johns Hopkins University School of Medicine
Baltimore, Maryland

Hagit Shani
Department of Obstetrics and Gynecology and Women's Health
Montefiore Medical Center
Albert Einstein College of Medicine
New York City, New York
and
The Josef Buchman Gynecology and Maternity Center
Sheba Medical Center
Ramat Gan, Israel

Israel Shapiro
Department of Obstetrics and Gynecology
Bnai-Zion Medical Center
Technion, Faculty of Medicine
Haifa, Israel

Ori Shen
Shaare Zedek Medical Center
Jerusalem, Israel

Norman H. Silverman
Professor of Pediatrics (Cardiology)
University of California San Francisco
San Francisco, California
and
Professor of Pediatrics (Emeritus)
Division of Pediatric Cardiology
Stanford University
Stanford, California
and
Honorary Professor of Pediatrics
University of Cape Town
Cape Town, South Africa

Elena S. Sinkovskaya
Associate Professor
Department of Obstetrics and Gynecology
Eastern Virginia Medical School
Norfolk, Virginia

Brian S. Snarr
Fetal Heart Program
The Cardiac Center
Children's Hospital of Philadelphia
and
Department of Pediatrics
Perelman School of Medicine
University of Pennsylvania
Philadelphia, Pennsylvania

Julia Solomon
Director Fetal Diagnostic Center
Physicians Group of Arizona
Steward Healthcare
Gilbert, Arizona

Yoram Sorokin
Department of Obstetrics and Gynecology
Wayne State University School of Medicine
Detroit, Michigan

Diane E. Spicer
Department of Pediatric Cardiology
Congenital Heart Center
University of Florida
Gainesville, Florida
List of contributors

Varsha Thakur
Division of Cardiology
Department of Pediatrics
The Hospital for Sick Children
University of Toronto Faculty of Medicine
Toronto, Canada

Boris Tutschek
Professor of Obstetrics and Gynecology
Prenatal Zurich
Zürich, Switzerland

Wayne Tworetzky
Department of Cardiology
Boston Children’s Hospital
Harvard Medical School
Boston, Massachusetts

Dan V. Valsky
Division of Obstetrics and Gynecology
Hadassah-Hebrew University Medical Center
Jerusalem, Israel

Christoph Wohlmuth
The Fetal Center
UTHealth McGovern School of Medicine
Houston, Texas

Simcha Yagel
Magda and Richard Hoffman Center for Human Placenta Research
Division of Obstetrics and Gynecology
Hadassah-Hebrew University Medical Center
Jerusalem, Israel

Shi-Joon Yoo
Department of Diagnostic Imaging
The Hospital for Sick Children
University of Toronto Faculty of Medicine
Toronto, Canada

Yaron Zalel
Sackler School of Medicine
Tel Aviv University
Tel Aviv, Israel

Klaus Zerres
Institut für Humangenetik der RWTH Aachen
Aachen, Germany

and

Medical Faculty
Heinrich Heine University
Düsseldorf, Germany

and

Department of Obstetrics and Gynecology
Paracelsus Medical University
Salzburg, Austria
Cardiac morphogenesis

Adriana C. Gittenberger-de Groot, Monique R.M. Jongbloed, Marco C. de Ruiter, Margot M. Bartelings, and Robert E. Poelmann

Introduction

Cardiovascular development and the regulatory mechanisms underlying this major embryonic event have become essential knowledge for the fetal cardiologist. The increased potential of ultrasound technology to detect morphology of the growing heart requires more insight into the morphogenetic and epigenetic pathways essential for normal and abnormal development. This area is now expanding with the possibilities of acquiring data from patients by human exome screening, transcriptome analysis, single nucleotide polymorphism (SNIP) technology, and chromatin remodeling.1–3 It is essential to link these genetic, epigenetic, and environmental clues from patient material to advance our understanding of the complicated interactive processes that govern heart development. The crucial processes in human cardiac development take place within the first 6 weeks of embryogenesis and, as such, cannot be pursued using in vivo diagnostics. It is, therefore, still imminent that essential knowledge is incorporated from animal models such as (transgenic) mouse, chicken, and, more recently, zebrafish, as basic principles of heart formation can be compared between various animal models and human development, even profiting from an evolutionary-developmental approach.4,5 One has to take into account, however, important species differences such as, for instance, a double-sided aortic arch in fish and reptiles, a right-sided aortic arch system in birds, as compared to a left-sided system in mammals,6 a persisting left-sided caval vein in mice, and the lack of cardiac septation in fish and many reptiles with only a two- or three-chambered heart tube as a final result. The influence of hemodynamics on the developing system has long been underestimated or neglected because of insufficient refined technology to study this in vivo in the developing embryo. Currently, newly designed techniques including microparticle image velocimetry have opened up this research field.7,8 For the fetal cardiologist, particle image velocimetry is a very interesting new development, as noninvasive techniques such as echo-Doppler add physiologic insight to morphology.

The various converging fields of research have sometimes resulted in a confusing use of terminology, which is not easily solved,9 and which will undoubtedly continue with future new discoveries. This chapter describes in brief the major events in cardiac development.10 There is a focus specifically on the continuous recruitment of myocardium from the second heart field11,12 and on extracardiac cellular contributions13 to the heart and their modulatory role.14 Genetic and epigenetic causal pathways will be briefly discussed. (For all abbreviations of genes and gene products, see Table 1.1; for all embryological and anatomical abbreviations, see Table 1.2.)

Primary cardiogenesis

The primary heart tube (Figure 1.1a) develops from the precardiac mesoderm, also referred to as the first heart field (FHF) (Figure 1.2), which is located bilaterally in the splanchnic layer of the lateral plate mesoderm of the embryo. These cardiogenic plates fuse rostrally in the midline and form a crescent-shaped structure that will develop into the primary heart tube.15 The inner lining of this tube is formed by cardiac jelly and endocardial cells that are continuous with the endothelium of the embryonic vascular plexus. The endocardium is most probably a heterogeneous population both in origin and in function depending on the site in the heart. The endoderm of the adjoining developing primary gut plays an important inductive role in the differentiation of the primary heart tube through a cascade of inductive signaling molecules, such as the bone morphogenetic protein (BMP) and fibroblast growth factor (FGF), as well as the inhibitor wingless-related integration site (Wnt) families.17 The primary heart tube is therefore not just a small homunculus in which all future segments of the heart are already present. This has become generally accepted, and many reviews and book chapters now provide these new insights.11,14,18,19 Data on the components of the primary heart tube are somewhat confusing, but the most recent data, based on extensive and minute tracing studies, are in favor of an initial small atrial compartment, a myocardial atrioventricular (AV) canal, in which cardiac jelly is remodeled into AV endocardial cushions (putative AV valves),20 and a primitive ventricle (Figure 1.1b) connecting to the arterial pole.21 In the human embryo, this primary heart tube already starts to beat with peristaltic contractions at 3 weeks of development. The formed primary heart tube is never completely symmetric (Figure 1.1a), and
genetic determinants of sidedness22 and cardiac looping23 are present. Many mouse knockout studies of genes that are essential for primary cardiogenesis lead to early embryonic lethality. Heterozygous mutations of some of these genes in the human population can lead to congenital malformations such as, for example, those described for Nkx2.5 mutation.3,24

Secondary cardiogenesis and organogenesis

Early marker experiments in chicken embryos,5,16 as well as elegant tracing of cell clones in mouse embryos,21 have proved that essential parts of the cardiac myocardium at both the outflow and the inflow of the primary heart tube are newly recruited. Transgenic reporter mice with cardiac progenitor-specific marker genes like Isl1, Mef2c, and Nkx2.5 have further supported these findings.3,18 As the splanchnic mesoderm forming the primary heart tube is referred to as the FHF, the newly recruited cardiac cells derive from mesenchyme referred to as the second heart field (SHF) (Figures 1.1d and 1.2), which is initially positioned mediially, but eventually attains a dorsal position between the endoderm of the gut and the primary heart tube. As the dorsal mesocardium is interrupted in its midportion, these SHF-derived cells can only reach the heart tube at the arterial and the venous poles (Figure 1.2). The specific contributions of the SHF to the developing heart are discussed in the next paragraph.

The addition of SHF cardiac cells from a proliferating dorsal pericardial wall source25 results in a lengthening of the primary heart tube concomitant with ongoing dextral looping that is also governed by genetic factors like asymmetric Pitx2c expression.23,26

Recruitment of second heart field cardiac progenitors

Experimental studies show specific characteristics of the addition of cardiac cells. Here details at the outflow tract (OFT) (arterial pole) and inflow tract (venous pole) are described separately.27

The arterial pole

Dependent on the marker experiments and reporter gene constructs, several temporospatial patterns of contribution of SHF myocardium have been distinguished, in its most extensive form comprising the complete right ventricle, including the arterial outflow tract and the right side of the ventricular septum27 (Figures 1.1c and 1.3a). Ongoing scientific insight resulted in changes in nomenclature that might be somewhat confusing (Figure 1.2). The contribution of the SHF-derived cells to the outflow tract is not symmetric, as we and others28,29 have recently shown. There is a marked deposition toward the (embryonic left) pulmonary side of the OFT forming the right ventricular outflow tract myocardium and components of the pulmonary arterial wall (Figure 1.3b). This process is actually responsible for lifting of the pulmonary orifice anteriorly and to the right of the aortic orifice and as such explains rotation of the orifices and great arteries at the arterial pole (Figure 1.3 and Video 1.1). We have called this anterior SHF-directed process the “pulmonary push.”28

<table>
<thead>
<tr>
<th>Table 1.1</th>
<th>Mentioned genes and gene products</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textbf{14-3-3 epsilon:}</td>
<td>Eluted in the 14th fraction on positions 3.3</td>
</tr>
<tr>
<td>\textbf{Actc:}</td>
<td>Cardiac muscle α actin</td>
</tr>
<tr>
<td>\textbf{Acvr2b:}</td>
<td>Activin A receptor type B</td>
</tr>
<tr>
<td>\textbf{Alk2:}</td>
<td>Activating receptor-like kinase</td>
</tr>
<tr>
<td>\textbf{BMP:}</td>
<td>Bone morphogenetic protein</td>
</tr>
<tr>
<td>\textbf{CHD7:}</td>
<td>Chromodomain helicase DNA binding protein 7</td>
</tr>
<tr>
<td>\textbf{Cited2:}</td>
<td>cbp/300-interacting transactivator 2</td>
</tr>
<tr>
<td>\textbf{DSCAM:}</td>
<td>Down syndrome cell adhesion molecule</td>
</tr>
<tr>
<td>\textbf{eNOS:}</td>
<td>Endothelial nitric oxide synthase</td>
</tr>
<tr>
<td>\textbf{ET1:}</td>
<td>Endothelin-1</td>
</tr>
<tr>
<td>\textbf{FGF:}</td>
<td>Fibroblast growth factor</td>
</tr>
<tr>
<td>\textbf{GATA:}</td>
<td>Transcription factors binding to the GATA sequence</td>
</tr>
<tr>
<td>\textbf{GJA1:}</td>
<td>Gap junction α-1 protein</td>
</tr>
<tr>
<td>\textbf{HAND2:}</td>
<td>Heart and neural crest derivatives</td>
</tr>
<tr>
<td>\textbf{HCN4:}</td>
<td>Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 4</td>
</tr>
<tr>
<td>\textbf{Isl1:}</td>
<td>Insulin gene enhancer protein 1</td>
</tr>
<tr>
<td>\textbf{Irx4:}</td>
<td>Iroquois homeobox protein</td>
</tr>
<tr>
<td>\textbf{KLF2:}</td>
<td>Krüppel-like factor-2</td>
</tr>
<tr>
<td>\textbf{Lrp2:}</td>
<td>Low-density lipoprotein-related protein-2</td>
</tr>
<tr>
<td>\textbf{Mef2c:}</td>
<td>Myocyte-specific enhancer factor</td>
</tr>
<tr>
<td>\textbf{MHC:}</td>
<td>Myosin heavy chain</td>
</tr>
<tr>
<td>\textbf{MYH 6,7:}</td>
<td>Myosin heavy chain</td>
</tr>
<tr>
<td>\textbf{NFA1c1:}</td>
<td>Nuclear factor of activated T cells</td>
</tr>
<tr>
<td>\textbf{NKx2.5:}</td>
<td>Nk2 homeobox 5</td>
</tr>
<tr>
<td>\textbf{Nodal:}</td>
<td>Member of transforming growth factor superfamily</td>
</tr>
<tr>
<td>\textbf{Notch1:}</td>
<td>Notch homolog-1</td>
</tr>
<tr>
<td>\textbf{Pax3:}</td>
<td>Paired box transcription factor</td>
</tr>
<tr>
<td>\textbf{Pitx2c:}</td>
<td>Paired-like homeodomain transcription factor</td>
</tr>
<tr>
<td>\textbf{Pdgfrα:}</td>
<td>Platelet-derived growth factor receptor-α</td>
</tr>
<tr>
<td>\textbf{Podoplanin:}</td>
<td>Encoded by the PDPN gene</td>
</tr>
<tr>
<td>\textbf{Raldh2:}</td>
<td>Retinaldehyde dehydrogenase-2</td>
</tr>
<tr>
<td>\textbf{RhoA:}</td>
<td>Ras homolog gene family</td>
</tr>
<tr>
<td>\textbf{SALL4:}</td>
<td>Spalt-like transcription factor</td>
</tr>
<tr>
<td>\textbf{Shox2:}</td>
<td>Short stature homeobox</td>
</tr>
<tr>
<td>\textbf{Tbx:}</td>
<td>T-box proteins</td>
</tr>
<tr>
<td>\textbf{TGFβ3:}</td>
<td>Transforming growth factor</td>
</tr>
<tr>
<td>\textbf{Wnt:}</td>
<td>Wingless-related integration site</td>
</tr>
<tr>
<td>\textbf{VEGF:}</td>
<td>Vascular endothelial growth factor</td>
</tr>
</tbody>
</table>
findings are in line with earlier observations that a specific sensitivity of the pulmonary outflow tract myocardium might relate to distinct genetic coding areas in the subpulmonary and subaortic outflow tract region, which are important for the rotation of the outflow tract.30

The venous pole

At the venous pole, the contribution of SHF is important for the growth of the atria. The incorporation of sinus venosus myocardium in the dorsal wall of the atria is an important mechanism (Figure 1.1b). In parallel with the anterior SHF at the outflow tract, we have introduced the term posterior SHF for this region (Figures 1.1d and 1.2), which is now generally accepted.31,27,31 We and others have discovered that the sinus venosus myocardium is initially Nkx2.5-negative32,33 (Figure 1.4a,b).

Tracing of Isl1-positive progenitor cells has shown the extent of the incorporation. In contrast to the outflow tract, this area and the derived sinus venosus myocardium have specific gene expression patterns, including Tbx18,34 Shox2,35,36 BMPs,31,37 and podoplanin.33 Based on specific gene expression patterns studied in various research centers, there has arisen some controversy concerning whether or not a specific pulmonary venous progenitor myocardium exists.37–39 A recent publication, using LaacZ tracing of posterior SHF cells, shows the common origin of sinus venosus cells with cells incorporated at the posterior atrial wall, including the pulmonary venous myocardium.40 Subsequent differentiation with specific gene patterns for each region has most probably led to the controversy.

Not only myocardial wall is added to the venous pole, but also an SHF-derived mesenchymal component, the dorsal mesenchymal protrusion (DMP), is incorporated, being essential for AV septation.41 The SHF also gives rise to the
Fetal Cardiology

The neural crest

A contributing population to the developing heart are the neural crest cells (NCCs) migrating from the crest of the neural tube through the splanchnic mesoderm-derived SHF (Figures 1.1d, 1.2, and 1.5). The relevance of cardiac NCC was first studied in the avian embryo, and its distribution has initially been detected by quail chick-chimera experiments and confirmed by retroviral reporter gene transfer showing the deposition of NCC in the arterial outflow tract as well as the differentiation into smooth muscle cells of part of the wall of the great arteries and aortic arch tributaries. At both the proepicardial organ (Figure 1.1d), which is described in more detail in the section “Epicardium.”

Figure 1.1
Stages of cardiac development. (a) The primary heart tube in an early phase of dextral looping lined on the inside by cardiac jelly (CJ). (b) A more advanced stage of development, depicted for clarity in one plane with the unseptated aortic sac (AoS) and common atrium (A) in a side-to-side position. The entrance of the common pulmonary vein (PV) is on the left side of the atrium and the entrance of the sinus venosus, flanked by the right (RVV) and left (LVV) valves, on the right side. First (pink) and second heart field (SHF, yellow) derived myocardium is indicated. AV canal (AVC) and outflow tract (OFT) carry the respective endocardial cushions (EC) in blue. The AoS connects to a symmetric set of pharyngeal arch arteries. LCV left cardinal vein, “LV” primitive left ventricle, RC right cardinal vein, “RV” primitive right ventricle. (c) Fully formed four-chambered heart. The interventricular septum is derived from both first and second heart field derived cells. Ao aorta, DA ductus arteriosus, ICV inferior caval vein, LA left atrium, LV left ventricle, PT pulmonary trunk, RA right atrium, RV right ventricle, SCV superior caval vein. (d) Sagittal section of a stage comparable to (b). Migrating neural crest cells (NCCs, green) are depicted, mainly reaching the OFT with few cells to the AV cushions. The proepicardial organ at the venous pole (vPEO) and the smaller one at arterial pole (aPEO) are indicated, although the latter emerges slightly later in development. (CV, common cardinal vein; PAA, pharyngeal arch arteries.) (Modified after Gittenberger de Groot AC et al. In: Moller JH, Hoffmann JIE, eds. Pediatric Cardiovascular Medicine, 2nd edn. Wiley-Blackwell; Hoboken, New Jersey, 2012:1–22.)
inflow and outflow tract, NCCs (Figure 1.5a) contribute to the sympathetic and parasympathetic innervation, including a marked ring around the pulmonary venous anlage. Based on NCC ablation experiments, topical deficiency of this cell type was held responsible for many cardiac outflow tract malformations such as common arterial trunk (CAT), pulmonary stenosis and atresia, tetralogy of Fallot, double-outlet right ventricle, and aortic arch malformations. This spectrum is ideally exemplified in the human 22q11 deletion syndrome that also shows other neural crest cell-influenced abnormalities in, for example, the face and thy¬mus. The most essential gene in the 22q11 deletion syndrome, however, is Tbx1 that is not expressed in the NCCs but in the SHF mesenchyme providing cells to the arterial pole and, as was recently shown, also to the venous pole. This leads to the important conclusion that it is the disturbed interaction of SHF and NCCs at various levels that is essential for the spectrum of cardiac malformations. It explains also that mutations in a great number of genes expressed in either cell population can evoke comparable malformations, broadening immensely our scope of understanding of the pathomorphogenesis of outflow tract anomalies.

Epicardium

Epicardial cells derive from the posterior SHF and its covering coelomic wall mesothelium (Figure 1.1d). These mesothelial cells not only differentiate into the already described sinus venosus myocardium but also form an epithelial structure at the venous pole next to the sinus venosus referred to as the proepicardial organ (PEO). Epicardial cells detach from the PEO and migrate over the initially naked myocardial heart tube. After covering the heart, the epicardial cells undergo EMT migrating into a mesenchymal subepicardial layer as epicardium-derived cells (EPDCs). Subsequently, these EPDCs migrate between the atrial and ventricular cardiomyocytes to form the interstitial fibroblasts and even take up a subendocardial position. A second wave of epicardial EMT is seen when the coronary capillary plexus is remodeled into an arterial and venous system in which the EPDCs are the source of smooth muscle cells and periarterial (adventitial) fibroblasts. At this stage, the EPDCs are also essential in dissociating the...
Figure 1.3
(a) Exploded view of the outflow tract with a still unseptated aorta (Ao) and pulmonary trunk (PT). The green ring represents the saddle-shaped semilunar valve level; note that the pulmonary part is more cranial than the aortic part. The curved double-headed arrow represents the pulmonary push. The semilunar valve level is located ventral to the atroventricular canal (blue) with the mitral (MO) and tricuspid (TO) orifices. The yellow band represents the primary ring, mainly the border between first and second heart field myocardial derivatives. In the right ventricle (RV), the primary ring has expanded to allow formation of the inlet septum (IS) of which the septal band (SB) is the visible representative. The interventricular communication is indicated (small double-headed arrow). (LV, left ventricle; TS, trabecular septum.) (b) Section of the cardiac outflow tract (OFT) of a mouse embryo stained for expression of NKx2.5. The nuclear staining is encountered in differentiated myocardial cells as well as in its second heart field precursors (asterisk) showing a clear asymmetry with a marked preference for the pulmonary side (closed arrow head) as opposed to the aortic side (open arrow head). The pulmonary side is relevant for the pulmonary push.

Figure 1.4
(a) Three-dimensional reconstruction of a mouse embryo heart viewed from dorsal. The NKx2.5 negative myocardium (green) is seen as a U-shaped part of the mesoderm connecting and covering the left (LCV) and right (RCV) cardinal veins and encircling the pulmonary vein (PV). At this site, a transient left sinoatrial node (arrow) is seen, while at the right side this is a far larger area that will persist as the definitive right-sided sinoatrial node (SAN). Color codes: right (RA) and left (LA) atria are in brown, the LCV and the RCV in blue, and the PV in pink. (b,c) (magnification) A MLC2a stained section incorporating both NKx2.5 positive and negative myocardium showing the SAN at the entrance of the RCV into the RA. Note that this segment of the cardinal vein also expresses the atrial myocardial light-chain protein (MLC2a staining) marking it as myocardium. (Modified after Gittenberger-de Groot AC et al. Anat Rec 2007;290:115–22.)