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This, Nouri’s book, is a thorough, recent, practical, and refreshing one that 
puts “laser dermatology” into a broader perspective; it is a pleasure to update 
my brief contribution for this edition. Almost immediately after the first laser 
was created in 1960, a handful of visionary physicians recognized the poten-
tial for surgical applications, starting with the organ systems readily accessi-
ble to light. Lasers in laryngology, ophthalmology, and dermatology are so 
fully adopted now that the standards of care have forever been changed. Now, 
light is marching inside the body. Laser lithotripsy is widely practiced all over 
the world. Know-how about lasers and biomedical optics is jumping between 
medical specialties. Optical coherence tomography, a rapid form of live 
microscopy invented for retinal imaging, is starting to impact dermatology 
while making a larger splash for upper GI tract and coronary artery diagnostic 
imaging. Dermatology was the first to figure out how to target individual 
pigmented cells with laser pulses, a capability later adopted into ophthalmol-
ogy for glaucoma treatment. Recently, the various optical nanoparticles 
developed for laser photo-thermal cancer therapy are being used in dermatol-
ogy for acne treatment.

How did we get such a wide, almost dazzling, variety of treatment lasers 
in dermatology? (Because, we need them for different uses in various practice 
settings; lasers are the most tissue-specific surgical tools in existence.) Do we 
really need so many? (Well, we need most all of them. Only a few are inter-
changeable.) Are the mechanistic, clinical, safety, ethical, and practice-related 
chapters of this book worthy of study? (Yes.) Can’t we just learn which but-
tons to push, in courses provided by the more reputable device manufacturers 
just after a laser is purchased? (This approach is foolish beyond words, yet 
such fools exist). Even more foolish are those who purchase a used laser and 
start using it without any training whatsoever.

A great asset of this book is the breadth of its practical, clinical discus-
sions. There is no substitute for hands-on training, which cannot be obtained 
even from this practical book. If you use lasers in practice, talk with your 
colleagues and attend medical laser conferences in which you are free to ask 
questions to faculty who are not trying to sell something. Many laser compa-
nies provide useful information, but are inherently biased. Laser companies 
are restricted from discussing off-label indications. FDA clearance of a device 
for a particular indication cannot be taken as assurance that it will work safely 
and effectively enough to satisfy you and your patients, while lack of FDA 
clearance for a specific indication cannot be taken as assurance that it will not 
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work safely and effectively. Some of the best uses for dermatological lasers 
are not FDA-labeled indications, and probably never will be.

It is remarkable what lasers already can do for our patients, yet this field is 
clearly still in its youth. What comes next? With the advent of fiber laser 
technology, various industries and telecommunications now have extremely 
powerful, efficient, wavelength-versatile lasers that operate reliably for 
decades with little or no maintenance. Those have begun to make their way 
into dermatology, and may ultimately do better what we do now, plus add 
wholly new capabilities. Fractional lasers have taught us how amazingly tol-
erant skin is, to a large volume of micro-injury. Up to 30% of skin can be 
killed or removed in random, full-thickness wounds that heal rapidly without 
scarring. The caveat is that every little wound must be less than about 0.4 mm 
wide. Given that, is it possible to “target” anything in the skin that can be 
localized, regardless of its optical or thermal properties? If we knew where 
various things are in the skin, can’t we just aim at them? Yes, we could! 
Image-guided smart fractional lasers will be used to selectively treat struc-
tures and lesions not now addressed with lasers—and with that, we will have 
software-programmable laser targeting. For example, all three cutaneous 
glands—eccrine, sebaceous, and apocrine—are reasonable targets, as well as 
nerves, lymphatics, sensory end organs, mast cells, antigen-presenting cells, 
and other components of normal skin. Microscopy-driven ablative lasers may 
even rival conventional microscopic margin-controlled tumor surgery, some 
day. When laser microscopy and laser tissue ablation are finally married, sur-
gical oncology in general may be impacted. This new era is coming sooner 
than you think.

I have been fortunate to play a role in launching many aspects of laser 
dermatology, starting with some fundamental understanding of skin optics, 
the concept of selective photothermolysis, lasers specifically designed for 
dermatological use, permanent laser hair removal, scanning confocal laser 
microscopy, and “fractional” laser treatments. Each of these arose from try-
ing to understand or solve one clinical problem, but now the panoply of clini-
cal laser applications far exceeds the initial effort. For example, fractional 
lasers arose as a safer alternative to fully ablative laser skin resurfacing, a 
safer way to induce skin remodeling. We had no idea that tissue so grossly 
abnormal as a hypertrophic wound scar could be stimulated to normalize 
itself this way. Fractional ablative lasers also offer a new way for delivery of 
topical agents, including very high molecular weight macromolecules, parti-
cles, and even cells. The current widespread and diverse use of lasers in der-
matology attests not so much to new technology, as to the extreme value of 
astute clinical observations made by dedicated dermatologists. Nouri’s text is 
aimed exactly at achieving that. So please be a gourmet laser chef, not a 
short-order cook. Contribute to an amazing and evolving part of 
dermatology.

Thank you, Dr. Nouri and the many authors involved in this text, for your 
excellent contribution.

� R. Rox Anderson 
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Laser technology is quickly evolving with the presence of newer lasers, along 
with new indications, that are constantly being introduced. The use of lasers 
has become a major discipline and is currently practiced in a variety of fields 
of medicine today. This book specifically offers a comprehensive literature 
covering the different ways lasers are being used in the field of dermatology. 
The authors of Lasers in Dermatology and Medicine are well known in their 
respective fields and have attempted to cover each topic in the most compre-
hensive, readable, and understandable format. Each chapter consists of an 
introduction and summary boxes in bulleted formats with up-to-date informa-
tion highlighting the importance of each respective section, enabling the 
reader to have an easy approach towards reading and understanding the vari-
ous topics on lasers. This book has been written with the sincere hope of the 
editors and the authors to serve as a cornerstone of laser usage in dermatol-
ogy, ultimately leading to better patient care and treatments. Lasers in derma-
tology have clearly expanded. The areas or laser treatments include port wine 
stains, vascular anomalies and lesions, pigmented lesions and tattoos, hair 
removal and hair re-growth, acne, facial rejuvenation, psoriasis, hypopig-
mented lesions and vitiligo, and treatment of fat and cellulites, among others. 
The lasers are also being used for treatment and diagnosis of skin cancers.

We anticipate that this book will be of interest to all the physicians in the 
field of dermatology who use or are interested in using lasers in their practice. 
We are extremely grateful to our contributing authors. This book will serve as 
a potential study source for physicians that would like to expand their knowl-
edge in lasers and light devices.

Miami, FL, USA� Keyvan Nouri  
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Abstract
The best gauge of laser interactions is the tis-
sue response, and experiment is the most real-
istic manner to address medical treatment 
challenges. However, theoretical models are 
helpful in planning treatment approaches and 
laser parameters. In this chapter we discuss 
basics of lasers, their non laser counterparts, 
and laser-tissue interactions.

Many physicians choose laser settings out 
of habit (or reading it off of a label attached to 
the side of the machine—a “cheat” sheet with 
skin-type specific parameters), using tissue 
endpoints to confirm the appropriateness of 
the parameters. For example, when treating a 
tattoo with a Q-switched laser, the operator 
looks for immediate frosty whitening. Like 

driving a car (where the operator may have no 
idea about nature of the drive train compo-
nents), successful laser operation does not 
demand a complete understanding of the 
machine or the details of the light-tissue inter-
action. However, a comprehension of first 
principles allows for a logical analysis of final 
clinical outcomes—furthermore, more cre-
ative uses of equipment should follow. For 
example, with an education in laser tissue 
interactions (LTIs) and tissue cooling, one can 
deploy the alexandrite (long pulse) laser either 
as a hair removal device, vascular laser, or to 
remove lentigines.

The reader should note that although the 
title of this chapter is “Laser Tissue 
Interactions”, the introduction of many new 
and diverse technologies make the term some-
what obsolete. We will continue to use the 
term, but a more appropriate term is “energy–
tissue interactions.” As both radiofrequency 
and ultrasound are increasingly applied in 
medicine. We will use both terms interchange-
ably in the remainder of the text.
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�Introduction

	1.	 Light represents one portion of a broader elec-
tromagnetic spectrum.

	2.	 Light-tissue interactions involve the complex 
topics of tissue optics, absorption, heat gen-
eration, and heat diffusion

	3.	 Lasers are a special type of light with the char-
acteristics of monochromaticity, directional-
ity, and coherence.

	4.	 Coagulation/denaturation is time and temper-
ature dependent

	5.	 Proper selection of light parameters is based 
on the color, size, and geometry of the target

	6.	 Wound healing is the final but not least impor-
tant part of the laser tissue sequence (the 
epilogue)

	7.	 Laser-tissue interactions are fluid—the opera-
tor should closely examine the skin surface 
during all aspects of the procedure

	8.	 Pulse duration and light doses are often as 
important as wavelength in predicting tissue 
responses to laser to irradiation

The best gauge of laser interactions is the tis-
sue response, and experiment is the most realistic 
manner to address medical treatment challenges. 
However, theoretical models are helpful in plan-
ning treatment approaches and laser parameters. 
In this chapter we discuss basics of lasers, their 
non-laser counterparts, and laser-tissue interac-
tions [1].

Many physicians choose laser settings out of 
habit (or reading it off of a label attached to the 
side of the machine—a “cheat” sheet with skin-
type specific parameters), using tissue endpoints 
to confirm the appropriateness of the parameters. 
For example, when treating a tattoo with a 
Q-switched laser, the operator looks for immedi-
ate frosty whitening. Like driving a car (where 
the operator may have no idea about nature of the 
drive train components), successful laser opera-
tion does not demand a complete understanding 
of the machine or the details of the light-tissue 
interaction. However, a comprehension of first 
principles allows for a logical analysis of final 
clinical outcomes—furthermore, more creative 
uses of equipment should follow. For example, 

with an education in laser tissue interactions 
(LTIs) and tissue cooling, one can deploy the 
alexandrite (long pulse) laser either as a hair 
removal device, vascular laser, or to remove len-
tigines [2].

The reader should note that although the title 
of this chapter is “Laser Tissue Interactions”, the 
introduction of many new and diverse technolo-
gies make the term somewhat obsolete. We will 
continue to use the term, but a more appropriate 
term is “energy–tissue interactions.” As both 
radiofrequency and ultrasound are increasingly 
applied in medicine. We will use both terms 
interchangeably in the remainder of the text.

�Light

Light represents one portion of a much broader 
electromagnetic spectrum. Light can be divided 
into the UV (200–400 nm), VIS (400–700 nm), 
NIR “I” (755–810 nm), NIR “II” (940–1064 nm), 
MIR (1.3–3 μm), and Far IR (3 μm and beyond). 
On a macroscopic level, light is adequately char-
acterized as waves. The amplitude of the wave is 
perpendicular to the propagation direction. Light 
waves behave according to our “eyeball” obser-
vations in day-to-day life. For example, we are 
familiar with refraction and reflection. The sur-
face of a pond is a partial mirror (reflection); a 
fish seen in the pond is actually deeper than it 
appears (refraction) [3]. Normally, the percent-
age of incident light reflected from the skin sur-
face is determined by the index of refraction 
difference between the skin surface (stratum cor-
neum n = 1.55) and air (n = 1) [4]. This regular 
reflectance is about 4–7% for light incident at 
right angles to the skin [3, 5]. The angle between 
the light beam and the skin surface determines 
the % of reflected light. More light is reflected at 
“grazing” angles of incidence. It follows that, to 
minimize surface losses, in most laser applica-
tions, one should deliver light approximately per-
pendicular to the skin [3, 6]. One can deliberately 
angle the beam, on the other hand, to decrease 
penetration depth and also attenuate the surface 
fluence by “spreading” the beam. One can reduce 
interface losses by applying an alcohol solution 

A. A. Lloyd et al.



3

(n = 1.4), water (n = 1.33), or a sapphire crystal 
(n = 1.55 μm). This allows for optical coupling 
(vide infra). On the other hand, the surface of dry 
skin reflects more light because of multiple skin–
air interfaces (hence the white appearance of a 
psoriasis plaque).

Light penetrates into the epidermis according 
to wavelength dependent absorption and scatter-
ing (vide infra) [1, 6–8]. Because of scattering, 
much incident light is remitted (remittance refers 
to the total light returned to the environment due 
to multiple scattering in the epidermis and der-
mis, as well as the regular reflection from the sur-
face). In laser surgery, light reflected from the 
surface is typically “wasted”. This “lost” energy 
varies from 15% to as much as 70% depending 
on wavelength and skin type. For example, for 
1064 nm, 60% of an incident laser beam may be 
remitted. One can easily verify this by holding a 
finger just adjacent to the beam near the skin sur-
face. Warmth can be felt from the remitted por-
tion of the beam.

To describe laser tissue interactions at the 
molecular/microscopic level, light is considered 
as a stream of “particles” called photons, where 
the photon energy depends on the wavelength of 
light.

	
E hcphoton = / l

	
(1.1)

Where h is Plank’s constant (6.6 × 10−34 J -s), 
and c is the speed of light (3 × 1010 cm/s) [9].

�Types of Light Devices

In principle, many non-laser devices could be 
used for heating skin [9]. Most properties of laser 
light (i.e., coherence) are unimportant insofar as 
the way light interacts with tissue in therapeutic 
applications. And although collimation (lack of 
divergence) of the incident beam might increase 
the % of transmitted light with laser versus IPL, 
the increasing use of filtered flash lamps in der-
matology suggests that losses from IPL beam 
divergence are not critical. In lieu of lasers, some 
thermal sources can be used in skin surgery (i.e., 
nitrogen plasma device) for resurfacing (Portrait, 
Rhytec, MA). The critical features of any device 

are controlling the device–tissue interaction time 
to allow for precise heating (vide infra).

Lasers are useful because they allow for pre-
cise control of where and how much one heats 
[10]. There are four properties that are common 
to all laser types (1) Beam directionality (colli-
mation), (2) Monochromaticity, (3) Spatial and 
temporal coherence of the beam, and (4) High 
intensity of the beam [11]. The intensity, direc-
tionality, and monochromaticity of laser light 
allow the beam to be expanded, or focused quite 
easily. With non-laser sources like flashlamps 
directed toward the skin surface, the light inten-
sity at the skin surface cannot exceed the bright-
ness of the source lamp. With many lasers, a lamp 
similar to the intense pulsed light (IPL) flashlamp 
pumps the laser cavity [12]. The amplification of 
light within the laser cavity sets laser light apart 
from other sources.

For most visible light applications, laser rep-
resents a conversion from lamplight to an ampli-
fied monochromatic form [13]. The high power 
possible with lasers (especially peak power) is 
achieved through resonance in the laser cavity. 
For many dermatology applications requiring ms 
or longer pulses delivered to large skin areas, 
IPLs are either adequate or preferable to lasers. 
The scientific principle on which lasers are based 
is stimulated emission. With spontaneous emis-
sion, electrons transition to the lower level in a 
random process. With stimulated emission, the 
emission occurs only in the presence of photons 
of a certain energy. The critical point is maintain-
ing a condition where the population of photons 
in a higher state is larger than that in the lower 
state. To create this population inversion, a pump-
ing energy must be directed either with electric-
ity, light, or chemical energy.

All lasers contain four main components, the 
lasing medium, the excitation source, feedback 
apparatus, and an output coupler. With respect to 
lasing media, there are diode lasers, solid-state 
lasers, dye, and gas lasers. Most solid state and 
dye lasers use optical exciters (lamps), whereas 
gas and diode lasers use electrical excitation (i.e., 
CO2 and RF). The feedback mechanism consists 
of mirrors where one mirror reflects 100% and 
the other transmits a small fraction of light [14]. 

1  Laser-Tissue Interactions
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An example of a solid-state laser is the alexan-
drite laser. A solid-state laser consists of a rod 
that is pumped by a flashlamp. The lamp pumps 
the rod for stimulated emission. The rod and 
lamp assembly must also be designed for ade-
quate cooling. Lasers typically are finicky 
because all of the components are driven near 
their damage thresholds (like redlining your car 
all the time). As an example of this concept, con-
sider the pulsed dye laser (PDL). As the dye 
degrades, the lamps must work harder to generate 
higher pulse energies from the dye. Also, mirrors 
become contaminated over time such that the 
lamps must work harder and harder. These 
demands stress the power supply. Thus, eventu-
ally, the dye kit, the power supply, lamps, and dye 
are all working at their maximal output. Often 
people speak of a tunable dye laser. In fact many 
dye lasers are tunable; the manufacturers have 
simply chosen one wavelength. An example of a 
tunable laser was the Sclero-plus pulsed dye laser 
(tunable from 585 to 600 nm in 5 nm increments) 
from Candela (Candela, Wayland, MA).

Laser systems differ with regard to duration 
and power of the emitted laser radiation. In con-
tinuous wave lasers (CW mode) with power out-
puts of up to 103 W, the lasing medium is excited 
continuously. With pulsed lasers, excitation is 
effected in a single pulse or in on-line pulses 
(free-running mode). Peak powers of 105 W can 
be developed for a duration of 100  μs–10  ms. 
Storing the excitation energy and releasing it sud-
denly (Q-switch mode or mode-locking) leads to 
a peak power increase of up to 1010–1012 W, and a 
pulse duration of 10 ps–100 ns [13].

Light emitting diodes (LEDs) are becoming 
commonplace in dermatology (Fig. 1.1). Primarily 
used as a PDT light source, they are also used in 
biostimulation. LEDs are similar to semiconduc-
tor (aka diode) lasers in that they use electrical 
current placed between two types of semiconduc-
tors. However, they lack an amplification process 
(no mirrors). LEDs do not produce coherent 
beams but can produce monochromatic light. 
Semiconductor (diode) lasers contain an LED as 
the active gain medium. A current passes through 
a sandwich of two layers consisting of compounds 
(called p type and n type). Below threshold, there 

is no oscillation and the semiconductor LASER 
acts like an LED. This emission is very similar to 
the visible emission of light emitting diodes. If 
one adds mirrors it operates as a tiny laser instead 
of an LED. The overall efficiency of semiconduc-
tor lasers is quite high, approximately 30% and 
among the highest available  for any laser types. 
Most semiconductor (diode) lasers are operated in 
CW mode but can be pulsed. New visible 
light semiconductor lasers are available, and also 
laser diode arrays are available where scientists 
have created large numbers of semiconductor 
lasers on one substrate. Some diode lasers are 
housed separate from the handpiece and delivered 
by fiber optics. Others are configured with the 
laser diodes in the handpiece as arrays. Modern 
diode lasers achieve higher powers than in the 
past, but their peak powers are still lag behind 
most pulsed solidstate lasers [14].

Excimer lasers emit UV light and are used for 
photomodulation of the immune system. They 
have also been used in surgery. The possible muta-
genicity of these lasers has not been well studied. 
Materials such as the KTP crystal can be used to 
generate harmonics with lasers. The KTP crystal is 
used to convert 1064  nm radiation to 532 green 
light. Also quality (Q) switching is used for gener-
ating short pulses. Much of the electrical energy 
used to create laser emissions is wasted as heat, 
which is why water is used for cooling most lasers. 
Air cooling is used for some high-powered flash 
lamps and many diode lasers. In the future, free 
electron lasers might be useful but presently they 
are too cumbersome and only generate small 
amounts of energy per unit wavelength.

Fig. 1.1  A red LED (OmniLux, Phototherapeutics, Inc.)

A. A. Lloyd et al.
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Intense pulsed light devices are becoming 
increasingly comparable to lasers that emit ms 
domain pulses [15]. Absorption spectra of skin 
chromophores show multiple peaks (HgB) or can 
be broad (melanin) [16], and therefore a broad-
band light source is a logical alternative to lasers. 
Proper filtration of a xenon lamp tailors the out-
put spectrum for a particular application. Some 
concessions are made with direct use of lamp-
light. For example, rapid beam divergence 
obliges that the lamp source be near the skin sur-
face. This subsequent requirement makes for a 
typically heavier handpiece compared with most 
lasers (Fig. 1.2) (the exception being some diode 
arrays where the light source is also housed in the 
handpiece-(i.e., Light Sheer, Lumenis, CA)). 
Also IPL cannot be adapted to fibers for subsur-
face delivery. High energy short pulses 
(Q-switched ns pulses) are not possible with 
flashlamps. They can, however, be used to pump 
a laser, and some modern IPLs feature a laser 
attachment where the flashlamp and laser rod are 
in the handpiece. In general, the size, weight, and 

cost of both laser and flashlamp technology are 
steadily decreasing.

�Light Device Terminology

Basic parameters for light sources are power, 
time, and spot size for continuous wave lasers, 
and for pulsed sources, the energy per pulse, 
pulse duration, spot size, fluence, repetition rate, 
and the total number of pulses [17]. Energy is 
measured in joules (J). The amount of energy 
delivered per unit area is the fluence, sometimes 
called the dose or radiant exposure, given in  
J/cm2. The rate of energy delivery is called power, 
measured in watts (W). One watt is one joule per 
second (W = J/s). The power delivered per unit 
area is called the irradiance or power density, 
usually given in W/cm2. Laser exposure duration 
(called pulse width for pulsed lasers) is the time 
over which energy is delivered. Fluence is equal 
to the irradiance times the exposure duration 
[10]. Power density is a critical parameter, for it 

a

b

Fig. 1.2  IPL and green light laser—note smaller size of laser handpiece

1  Laser-Tissue Interactions
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often determines the action mechanism in cuta-
neous applications. For example, a very low irra-
diance emission (typical range of 2–10 mW/cm2) 
does not heat tissue and is associated with diag-
nostic applications, photochemical processes, 
and biostimulation. On the other extreme, a very 
short ns pulse can generate high peak power den-
sities associated with shock waves and even 
plasma formation [18]. Plasma is a “spark” due 
to ionization of matter.

Another factor is the laser exposure spot size 
(which can greatly affect the beam strength inside 
the skin). Other characteristics of importance are 
whether the incident light is convergent, diver-
gent, or diffuse, and the uniformity of irradiance 
over the exposure area (spatial beam profile). The 
pulse profile, that is, the character of the pulse 
shapes in time (instantaneous power versus time) 
also affects the tissue response [19].

Many lasers in dermatology are pulsed, and 
the user interface shows pulse duration, fluence, 
spot size and fluence. Some multi-wavelength 
lasers also allow for wavelength selection. Some 
older lasers, for example a popular CO2 laser, 
showed only the pulse energy on the instrument 
panel, or in continuous wave (CW) mode, the 
number of watts. In these cases one uses the 
exposure area and exposure time to calculate the 
total light dose (fluence).

	
Fluence

Power time

area
=

´

	
(1.2)

With the exception of PDT sources and CW 
CO2 lasers, most aesthetic lasers create pulsed 
light. In many CW applications (i.e., wart treat-
ment with a CO2 laser), the fluence is not of great 
importance in characterizing the overall tissue 
effect. A more important parameter is power den-
sity (where higher power densities achieve abla-
tion and lower power densities cause charring), 
and the physician stops the procedure when an 
appropriate endpoint is reached. On the other 
hand, in PDT applications with CW light where 
the clinical endpoint might be delayed, the total 
fluence and power density are important predic-
tors of the tissue response.

In CW mode, CO2 lasers are used with a 
focusing (noncollimated) handpiece such that the 

physician can control spot size and tissue effects 
simply by moving the handpiece tip toward or 
away from the skin. The subsequent rapid 
changes in power density offer “on the fly” flexi-
bility and control.

A thorough knowledge of a specific laser’s 
operation and quirks is imperative for optimal and 
“safe” lasering. Vendors are creating lasers that 
are more intuitive to operate. Increasingly, manu-
facturers have added touch screen interfaces with 
application-driven menus and skin-type specific 
preset parameters. Some devices permit patient 
laser parameters to be stored for future reference. 
Most lasers are designed such that the handpiece 
and instrument panels are electronically inter-
faced. It follows that the laser control module 
“knows” what spot size is being used. Typically 
this “handshake” occurs when one inserts the 
handpiece into the calibration port, or through a 
control cable from the handpiece to the laser 
“main frame”. With others, one selects the spot-
size on the display, and the laser calculates the flu-
ence accordingly. For example, one of our erbium 
YAG lasers possesses interchangeable lenses for 
1, 3, 5, and 7 mm spots. However, there is no feed-
back from the handpiece to the laser control 
board. The user “tells” the laser which lens cell is 
inserted, and the laser calculates the fluence based 
on the selected spot and selected pulse energy. In 
this case, if one changes the spot size (for exam-
ple, by exchanging the 7 mm for the 3 mm lens 
cell), the laser still “thinks” the 7 mm spot is being 
used, and the actual surface fluence is now ~5× 
the fluence on the panel. The resulting impact on 
the skin surface (the wound depth and diameter) 
should alert the enlightened user to reassess his 
parameter selection.

Most lasers calibrate through a system where 
the end of the handpiece is placed in a portal on 
the base unit (Fig. 1.3). This configuration allows 
for interrogation of the entire system, from the 
“pumping” lamps to the fiber/articulated arm to 
the handpiece optics. For example, if a fiber is 
damaged, the laser will fail calibration, and an 
error message appears. Other systems measure 
the output within the distal end of the handpiece 
using a small calibration module that “picks off” 
a portion of the beam.

A. A. Lloyd et al.
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There are some simple ways to interrogate for 
system integrity. One can examine the aiming 
beam as it illuminates a piece of white paper, 
checking that the beam edges are sharp—this 
suggests that the treatment beam is also sharp and 
the profile is according to the manufacturer’s 
specifications. Also, burn paper can be used—
here the laser is used with a low energy and the 
spot is checked for uniformity from beam edge to 
edge. By checking the impact pattern, one can 
uncover damaged mirrors in the knuckle of the 
articulated arm, or a damaged focusing lens that 
renders the laser unstable or unsafe. Likewise, for 
scanners, one can ensure that skin coverage will 
be uniform.

	1.	 LEDs are becoming commonplace in biomed-
ical applications

	2.	 Solid state lasers generally achieve the largest 
peak powers among laser types

	3.	 The laser operator should know every nook 
and cranny of a laser’s features to optimize 
patient outcomes and safety

	4.	 Power density determines the mechanism for 
many LTIs

�Beam Profiles: Top Hat Versus 
Gaussian

Laser beam profiles vary based on intercavity 
design, lasing medium, and the delivery system. 
A common profile is Gaussian or bell-shaped. 
For many lasers, this profile represents the fun-

damental optimized “mode” of the laser. This 
shape is usually observed when the beam has 
been delivered through an articulated arm. For 
some wavelengths, this is an effective way to 
deliver energy (CO2 and erbium). The disadvan-
tage of the rigid arm is limited flexibility, the 
typically short arm length, the possibility of mis-
alignment from even minor impact, and a ten-
dency for non-uniform heating across the spot 
[20]. For example, in treating a lentigo with a 
Q-switched alexandrite laser equipped with a 
rigid articulated arm, one may observe complete 
ablation of the epidermis at the center of the 
“spot”, but only whitening at the periphery. On 
the other hand, sometimes a bell-shaped profile 
is desirable, for example, when applying a small 
spot FIR beam with a scanner. In this scenario, 
the wings of the beam allows for some overlap 
without delivering “too much” energy at points 
of overlap.

The Gaussian profile can be modified outside 
the cavity, which is desirable in many applica-
tions. With a fiber equipped delivery system, the 
beam is mixed within the fiber and can be shaped 
to be more flat-topped. The lentigo then is more 
likely to be uniformly heated (so long as the 
lesion itself if uniformly colored!). Although 
fiber delivery systems are usually preferred by 
physicians, some laser beams are difficult to 
deliver through a fiber. Examples include far IR 
wavelengths and very short pulses (i.e., few ns 
with typical Q switched Nd YAG lasers whose 
high peak power exceeds the damage threshold 
of most fibers).

a b

Calibration port
Handpiece
tip

Fig. 1.3  Figures show handpiece before and during insertion into calibration port of a Q switched alexandrite laser
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