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This book is dedicated to Professor Racquel
Z. LeGeros, who has taught us and
contributed so much in both research and
education for the advancement of calcium
phosphates and biomaterials. She will be
greatly missed.





Tribute to Racquel

I ran across a simple note when cleaning out our offices from someone I really don’t
remember. It goes like this:

Dear Dr Racquel. I really wish to thank you for everything you have done for me to advance
my career. You really did not know me, and I had difficulty understanding why you would
help me until I got to know you and observed that it was your nature to be kind and helpful
to everyone in your path.

John P. LeGeros, Ph.D.

vii





Preface

“Cogito Ergo Sum”
René Descartes 1644

I would like to tell a story that all these years I seldom talked about.
It was on one of those dark sunsets of October 1973 that I found myself wounded

in one of those conflicts that unfortunately never ended.
A number of doctors were busy trying to help me and other wounded soldiers

under the harsh dangers of the front line. These doctors and following surgeries in
hospital helped me to realise how “life was at the edge of a fine line” that separated
our existence from death. In reality this happens in many instances throughout
human history; on one side, humanity tries to exterminate each other and on the
other it tries to save or repair life.

This was my first intimate and personal encounter with the medical field, and I
admire those individuals that sacrificed themselves to help. It opened a new thinking
in my mind to use my knowledge to help to preserve and improve life. It became
a search for solutions to problems within medical science, which opened up new
avenues for future endeavours.

After a few months, I found a number of people–at that time–that were the
backbones of the “biomedical materials field pioneering research” with their new
inventions and ground-breaking research. Dr. Charnley in the UK was one of
those orthopaedic surgeons that understood well both biomechanics and materials
in addition to his surgical skills. He was an excellent inventive thinker and was
experimenting on the total hip joint designs that set the benchmark that we still use
today. Professor Weis was working on the first blade-type titanium dental implants
in the USA.

On the scientific side of the biomaterials field, Drs. Racquel and John LeGeros
were active and initiated the basic chemistry and substitutions of calcium phosphates
for bone regeneration and repair. Dr. Larry Hench was a young inventor with unique
scientific approach to chemistry and ceramic synthesis to introduce the bioglass and
other inventions that motivated generations that followed, and still do. Dr. Samuel
Hulbert and his PhD student Dr. Klawitter postulated that porous ceramics can
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x Preface

be used as scaffolds, and produced a list of materials that till today is the golden
standard of biocompatible materials. Dr. Aoki pioneered and set the synthesis
methods for calcium phosphates that motivated me and others to follow his footsteps
and all these giants mentioned in the field. During the late 1970s and the early
1980s, in Asia and specifically in Japan, Drs. Kawahara, Yamamuro, Oonishi and
Kokubo and in Europe Klaas de Groot, Ducheyne, Rey and Dacusi and others were
experimenting on a range of calcium phosphate bioceramics that further opened new
avenues into which many of us built our research.

My motivation and involvement in bioceramics goes back to these researchers
and their pioneering research efforts mentioned above. I have admired and have
respect for all of the new small steps that many scientists contributed during the
years and having motivated us with their work. I was thrilled when Prof. Min
Wang proposed that I should edit a book on the “Advances in Calcium Phosphate
Biomaterials” for Springer. Immediately, I contacted Prof. Racquel LeGeros to
ask her to share with me the pleasure of partially writing and editing this book.
Although very busy, she graciously agreed. At the Bioceramics 24 meeting last year
in Kyushu, Japan, we prepared the basic structure and the list of authors we aimed
to invite to contribute.

We were interested in calcium phosphate-based biomaterials and specifically
“apatites” that since the early days have taken a role of passive scaffold for bone
regeneration and repair. We were observing that during the last two decades, the
concept has changed from passive participation to active involvement to stimulate
the body to regenerate and repair the tissue. New-generation calcium phosphate
scaffolds are designed to stimulate specific cellular responses in the nanoscale level
utilising biogenic additives such as bone morphogenic proteins and stem cells to
help release the ionic dissolution products and activate the cells in contact with the
biomaterials. With the appropriate microbiological, biochemical and biomechanical
stimulation, the cells produce additional growth factors that in turn stimulate
generation of growing cells to self-assemble to the required tissues. Taking to
account all these factors, we aimed in this book to bring these new concepts,
mechanisms and methods by experienced and well-known and young academics,
clinicians and researchers to forward their knowledge and expertise on calcium
phosphate and related materials and their clinical applications. The general aim was
directed not only to cover the fundamentals but also to open new avenues to meet
the challenges of the future in research and clinical applications. Both Racquel and
I were going to share the responsibility of inviting and co-authoring a few chapters,
but it was not meant to be. A few months after sending invitation letters to authors,
I received the sad, unexpected and hurting news from Prof. Dacusi that Racquel
passed away in France, during her visit, where she usually helped students in their
research efforts on calcium phosphates and related materials.

It was a very difficult decision to continue with the book without her guidance
and support. However, we felt that this was probably what Racquel would have
wanted us to do.



Preface xi

We received 17 chapters, and many others apologised that due to their heavy
academic load they could not meet the timeline. This book is therefore their story
that covers the advances in calcium phosphate materials from its modern character-
isation methods to tissue-biomaterial interactions, from bioglass to biocomposites,
from marine structures to drug delivery and from its history to new orthopaedic and
maxillofacial applications.

To meet various needs of research, education and clinical applications, each
chapter provides clear and fully detailed descriptions, theoretical and experimental
issues, discussions and future considerations. This in-depth, practical coverage
should also assist the recent graduates and the medical professionals in the calcium
phosphate and in general in the biomedical materials field.

Throughout history, science never ceased “advancing”, and I trust that this
reference book conveys the intensity of this fast “advancing calcium phosphate”
field in an enthusiastic way to generate further research and their medical applica-
tions to further help the well-being of humans.

Sydney, NSW, Australia Besim Ben-Nissan, Ph.D.
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Chapter 1
Introduction to Synthetic and Biologic Apatites

Racquel Z. LeGeros and Besim Ben-Nissan

Abstract In the early 1970s, bioceramics were employed to perform singular,
biologically inert roles, such as to provide parts for bone replacement. The
realization that cells and tissues perform many other vital regulatory and metabolic
roles has highlighted the limitations of synthetic materials as tissue substitutes.
Demands of bioceramics have changed from maintaining an essentially physical
function without eliciting a host response to providing a more integrated interaction
with the host. This has been accompanied by increasing demands from medical
devices to improve the quality of life, as well as extend its duration. Bioceramics
especially hydroxyapatite incorporating biologic additives can be used as body
interactive materials, helping the body to heal or promoting regeneration of tissues,
thus restoring physiological functions. The crystallography and characterization of
biologic and synthetic apatites are very complex. This chapter attempts to cover
over four decades of research on one of the most intriguing and fascinating fields of
research.

Keywords Bioceramic • Biologic apatite • Coralline HAp • Biomimetic
• Nanocrystals
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2 R.Z. LeGeros and B. Ben-Nissan

1.1 Introduction

“Apatite” (Gr, to deceive) was the name given first by Werner in 1788 to describe
a group of mineral crystals appearing with various tints (yellow, green, pink, etc.)
that were often confused with more precious minerals or gems such as aquamarine,
amethyst, topaz, etc. These minerals have the general formula M10(PO4)6X2, where
M could be one of several metals (usually calcium, Ca), P is most commonly
phosphorus (P), and X is commonly hydroxide (OH) or a halogen such as fluorine
(F) or chlorine (Cl). Currently, the name “apatite” describes a family of compounds
having similar structure (hexagonal system, space group, P63/m) in spite of a
wide range of compositions [1, 2]. The unit cell of calcium hydroxyapatite (HAp)
contains ten calcium (Ca), six PO4, and two OH groups, arranged as shown in
Fig. 1.1. The OH groups located in the corners of the unit cell are surrounded
by two sets of Ca (II) atoms arranged in a triangular patterns at levels z D 0 and
z D 1/2, by two sets of PO4 tetrahedral also arranged in triangular patterns at levels
z D Y and %, and by a hexagonal array of Ca (I) atoms at a distance [3]. Critical to

Fig. 1.1 The unit cell and simplified arrangement of hydroxyapatite, Ca10(PO4)6(OH)2
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the apatite structure is the network of PO4 groups in tightly packed arrangements
[2]. Substitutions in the apatite structure affect lattice parameters (a- and c-axis
dimensions, infrared absorption characteristics, morphology, dissolution properties,
and thermal stabilities).

Biologic apatites are the inorganic phases of calcified tissues (teeth and bones).
Similarity in composition of calcined bone to the apatite mineral was proposed
by Proust and Klaproth in 1788 [4], and similarity in the X-ray diffraction
patterns of bone and mineral apatites (HAp and fluorapatite (FA)) and similarity
in composition (principally calcium and phosphate ions) led to the conclusion
that the inorganic phases of bones and teeth are basically calcium hydroxyap-
atite [5–7]. Detection of carbonate associated with biologic apatites led to the
speculation that these mineral phases are carbonate-containing apatites similar to
the minerals dahllite (carbonate-containing apatite) or staffellite (carbonate- and
fluoridecontaining apatite) [8]. Studies on synthetic carbonate-substituted apatites
demonstrated that carbonate substitution in the apatite structure can proceed in
two ways: CO3-for-OH or type A [9, 10] and CO3-for-PO4 or type B, coupled
with Na-for-Ca [11, 12], and combined analyses of synthetic and biologic apatites
using X-ray diffraction, infrared spectroscopy, and chemical analyses demon-
strated that biologic apatites are carbonate apatites approximated by the formula
(Ca,Mg,Na)10(PO4,CO3,HPO4)6(CO3,OH)2 [12–14]. For example, the following
formula Ca8.856Mg0.088Na0.292K0.010(PO4)5.312(HPO4)0.280(CO3)0.407(OH)0.702Cl0.078

(CO3)0.050 was proposed to describe the chemical composition of the inorganic part
of dental enamel.

Early studies on synthetic apatites and related calcium phosphates were made to
gain a better understanding of the structure, composition, and properties of biologic
apatites, especially of human enamel apatites. However, studies on synthetic apatites
in the last 30 years had focused on their preparation, their applications in medicine
and dentistry, and their use as scaffolds for bone and teeth regeneration. Current
commercial synthetic calcium phosphate biomaterials classified on the basis of com-
position include HAp, Ca10(PO4)6(OH)2; ’- and “-tricalcium phosphates (’-TCP,
“-TCP), Ca3(PO4)2; and biphasic calcium phosphate (BCP), an intimate mixture
of HAp and “-TCP with varying HAp/“-TCP ratios [15–19]. Other commercial
HAp biomaterials are derived from biologic materials (e.g., processed human bone,
bovine bone derived, hydrothermally converted coral or derived from marine algae)
[20–22].

This chapter is a brief review of biologic and synthetic apatites used as
biomaterials, updating reviews published earlier by the authors [13, 20, 23, 24].

1.2 Biogenic Apatites

Normal and pathologic calcified tissues are composites of organic and inorganic
phases. For bone, dentin, and cementum, the organic phase is principally collagen
(about 25 % by weight) with smaller amounts of non-collageneous proteins [25].
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On the other hand, the main organic phase in enamel is a non-collageneous
protein (amelogenin) comprising about 1 % by weight of the enamel. In nor-
mal calcified tissues, such as in teeth and bones, in fish enameloids (teeth or
calcified scales of some species), and in some species of shells, only carbonate
(carbonate hydroxyapatite, CHA)- or carbonate- and fluoridecontaining apatite
(CFA) occurs as the principal inorganic phase [13, 24, 26, 27]. In pathologic
calcifications (dental calculus, urinary stones, vascular calcification, and other soft-
tissue calcifications), biologic apatite may occur as one of the mineral phases
that include other calcium phosphates, e.g., amorphous calcium phosphate (ACP),
Cax(PO4)y; dicalcium phosphate dehydrate (DCPD), CaHPO4•2H2O; octacalcium
phosphate (OCP), Ca8H2(PO4)6•5H2O; magnesium-substituted tricalcium phos-
phate (“-TCMP, (Ca,Mg)3(PO4)2); and calcium pyrophosphate dihydrate (CPPD),
Ca2P2O7•2H2O [24, 28].

1.3 Enamel, Dentin, and Bone Apatite

Enamel, dentin, and bone apatite differ in crystallinity, reflecting crystal size
(Fig. 1.2) and concentrations of minor constituents, mainly Mg and CO3 (Fig. 1.3a,
Table 1.1) [13, 24, 29]. Enamel apatite contains the lowest concentrations of
these ions and the highest crystallinity (larger crystals) compared to either dentin
or bone apatite that shows much lower crystallinity (smaller crystals) or greater
concentrations of Mg and CO3 (Table 1.1). These apatites also differ in solubility,
decreasing in the order bone> dentin >> enamel.

These differences in crystallinity (crystal size) and solubility may be attributed
to the differences in the concentrations of the minor constituents (e.g., Mg, N,
CO3, HPO4). Studies on the effect of Mg and CO3 ions on the properties of
synthetic apatites demonstrated that incorporation of these ions independently and

Fig. 1.2 X-ray diffraction
profiles of biologic apatites
from adult human enamel (a),
dentin (b), and bone (c)
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Fig. 1.3 (a) FTIR spectra of biologic apatites from adult human enamel, dentin, and bone. Note
the higher resolution of the P–O (for PO4 groups) absorption spectra of enamel (C), compared to
those of dentin (B) and bone (A) apatites. (b) FTIR spectra comparing the characteristic C–O (for
CO3 groups) absorption bands in human enamel apatite compared to those in synthetic apatite with
type A (CO3-for-OH) substitution (syn A) and with type B (CO3-for-PO4) substitution (syn B)
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Table 1.1 Composition (%) and physical properties of apatites in adult human enamel,
dentin, and bone

Enamel Dentin Bone

Composition
Calcium, Ca2C 36.5 35.1 34.8
Phosphorus, P 17.7 16.2 15.6
Ca/P (molar) 1.63 1.63 1.71
Sodium, NaC 0.5 0.6 0.9
Magnesium, Mg2C 0.34 1.23 0.72
Potassium, KC 0.06 0.05 0.03
Carbonate, CO3

2� 3.5 5.6 7.4
Fluoride, F� 0.01 0.06 0.03
Chloride, Cl 0.30 0.01 0.13
Pyrophosphate 0.02 0.10 0.07

Total inorganic (mineral) 97.0 70.0 65.0
Total organic 1.5 20.0 25.5
Absorbed H2O % 1.5 10.0 10.0
Trace elements: Zn, Cu, Fe, Sr, etc.

Crystallographic properties
Lattice parameters
a-axis (C 0.0003 nm) 0.9441
c-axis (C 0.0003 nm) 0.6880

Crystallite size (nm, avg.) 33 � 3 2 � 0.4 2.5 � 0.3
Crystallinity index, b 70–75 33–37 33–37
Ignition products (800 ºC) HAp C “-TCMP HAp C “-TCMP HAp

HAp, Ca10(PO4)6(OH)2

a-axis D 0.9422 nm,
c-axis D 0.6882 nm
Crystallinity index D 100

Composition: Ca, P, OH

synergistically causes the growth of smaller and more soluble apatite crystals [13,
24, 29–32]. The effects of CO3 incorporation on apatite crystal size and morphology
and on dissolution properties are much more pronounced than that of Mg [13, 24,
32]. Proteins [25] and/or other ions (e.g., pyrophosphate, citrate) [12, 24] may also
inhibit the crystal growth of biologic apatites.

Biologic apatites are usually calcium-deficient (i.e., with Ca/P molar ratio less
than the stoichiometric value of 1.67 obtained for pure HAp, Ca10(PO4)6(OH)2).
Calcining above 900 ıC of human enamel and dentin apatite results in the loss of
the CO3 constituent and formation of HAp and “-TCMP [13, 24]. Calcining of bone
(human or bovine) above 900 ıC results in the loss of CO3 and formation of mostly
HAp with small amounts of calcium oxide, CaO [13, 24].

Partial dissolution of biologic apatites and precipitation of other calcium phos-
phates (DCPD, OCP, “-TCMP) are believed to occur in human enamel and dentin
caries, characterized by the dissolution of the tooth mineral (carbonate apatite)
by acids produced by oral bacteria [33, 34]. The non-apatitic calcium phosphates
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(e.g., DCPD, OCP) may, in turn, transform to apatites by hydrolysis or by
dissolution and reprecipitation processes [13, 24, 34].

Biologic apatites have been idealized as calcium HAp, Ca10(PO4)6(OH)2 [5–8].
However, the difference in lattice parameters: a-axis for enamel, 0.9442 nm vs.
0.9422 nm for HAp. Ca/P stoichiometry (e.g., about 1.63 for enamel or dentin
apatite vs. 1.67 for HAp) and the association of other ions, notably magnesium (Mg)
and carbonate (CO3) with biologic apatites (Table 1.1), have caused many years of
disagreements and research on the structure and composition of biologic apatites
[8, 9, 13, 35].

The nature of CO3 incorporation in biologic apatites, especially in human
enamel apatite, had been a preoccupation of several researchers. The larger a-axis
dimension of human enamel apatite compared to pure or mineral HAp was first
attributed to the CO3-for-OH substitution (type A) in these apatites [9]. Such type of
substitution was observed in synthetic carbonate apatites prepared by diffusing CO2

into HAp at 1,000 ıC under very dry conditions, resulting in an expanded a-axis and
contracted c-axis dimension B compared to pure HAp [9, 10]. However, studies on
synthetic apatites prepared at much lower temperatures (60–95 ıC) by precipitation
or hydrolysis methods showed a partial CO3-for-PO4 substitution (type B) coupled
with a partial Na-for-Ca substitution, resulting in a contracted a-axis and expanded
c-axis dimension compared to CO3-free apatites [11–13]. The observed expanded
a-axis of enamel apatite may be attributed to partial Cl-for-OH substitution [36]
and HPO4-for-PO4 substitution [37] rather than the CO3-for-OH substitution in the
apatite.

A possible H3O-for-OH was also offered as a possible cause for the expanded
a-axis dimension [8]. Additional evidence for the dominant partial CO3-for-PO4

substitution in enamel and all biologic apatites is the similarity of the characteristic
CO3 absorption bands between the IR spectra of enamel apatite with those of
synthetic apatites exhibiting CO3-for- PO4 substitution as shown in Fig. 1.3b
[13, 24, 38].

Studies in synthetic systems also showed that F incorporation (F-for-OH substitu-
tion) has the following effects: contraction in the a-axis dimension and no significant
effect on the c-axis dimension compared to F-free apatites [13, 24], growth of larger
and less soluble apatite crystals [13, 24, 39], and greater structural stability [3].
Such studies elucidated the nature of fluoride (F) incorporation in some biologic
apatites (from modern and fossil teeth and bones). For example, the smaller a-
axis dimension of shark enameloid compared to HAp or human enamel apatite is
due to the high fluoride (F) concentration in shark enameloid (Table 1.1) [13, 27,
40]. The therapeutic use of fluoride in dentistry (sealants, topical gels, tablets) was
based on the observation of low caries in areas of fluoridated water (1 ppm F) [41].
Fluoride treatment (topically or by the use of fluoridated dentifrices) of enamel and
dentin leads to the formation of partially substituted (F, OH) apatite that is more
resistant to acid dissolution, i.e., dental caries [29, 33, 34, 39]. Administration of
F in the drinking water was shown to increase the crystal size and decrease the
extent of dissolution of rat bones [42] and increase crystal thickness of enamel
apatite [43]. Fluoride therapy (as NaF) has been recommended for the management
of osteoporosis to increase bone density [44, 45].
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1.4 Synthetic Apatites

Earlier extensive studies on synthetic apatites were made to gain a better under-
standing of biologic apatites and their properties. Because biologic apatite was
idealized as HAp, most of the studies centered on HAp preparation and evaluation
of HAp properties. Studies on synthetic apatites in the last 30 years were motivated
by development of calcium phosphate-based biomaterials (principally HAp, TCP,
or biphasic) for bone repair, substitution, and augmentation and as scaffolds for
tissue engineering in bone and teeth regeneration. The rationale for developing HAp
biomaterials was their similarity in composition to the bone mineral.

Synthetic HAp can be made by solid-state reactions or by precipitation or
hydrolysis methods and subsequent sintering at high temperatures, usually 1,000 ıC
and above. Synthetic apatites can also be prepared using hydrothermal [46, 47],
microwave [48, 49] or sol-gel [50, 51] methods. Apatite nanocrystals are obtained
when prepared by precipitation or hydrolysis at lower temperatures (25–60 ıC).
Synthetic apatite crystals approximating the size of human enamel apatite may
be obtained by precipitation or hydrolysis methods with reaction temperature,
80–95 ıC (Fig. 1.4). Apatites may also be prepared in sol-gel systems [52], by
electrodeposition [53, 54] or biomimetic precipitation on metallic or polymeric [55,
56] substrates.

Apatites obtained by precipitation involve the reaction of calcium salts
(e.g., CaNO3, Ca(OH)2, CaCl2, Ca(Ac)2) and phosphate salts (Na�, NH4�, or
K� phosphates) [24, 57]. Hydrolysis of non-apatitic calcium phosphates (e.g., ACP,

Fig. 1.4 X-ray diffraction
profiles of precipitated
apatites obtained at different
reaction temperatures. The
nanoapatite crystals similar to
bone apatite are prepared at
37 ıC (a) or at room
temperature. The narrowing
of diffraction peaks reflects
increased crystallinity; the
broader the diffraction peak,
the smaller the crystals
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DCPD, DCPA, OCP, “-TCP, ’-TCP) or calcium compounds (e.g., CaCO3,
CaMg(CO3)2, CaF2) in solutions containing OH, CO3, or F results in the formation
of apatite, CO3� or F� containing apatites [24, 32, 36, 58]. Apatites prepared by
precipitation or hydrolysis methods when prepared at pH between 5 and 9 are
calcium-deficient apatites (CDA), and subsequent sintering results in the formation
of BCP [59]. Sintering or firing of synthetic apatites results in an increase in crystal
size and decrease in microporosity.

Sintering of HAp at temperatures above 1,200 ıC results in thermal decom-
position of apatite forming other calcium phosphates such as “-TCP and ’-TCP
and possibly even mixed with ACP. The combination of calcium phosphates (e.g.,
ACP, DCPA, DCPD, CDA, ’-TCP, “-TCP) with other calcium compounds (CaO,
Ca(OH)2, CaCO3), mixed with phosphate solutions or organic acids, results in the
formation of apatitic calcium phosphate cements [60, 61].

Studies on synthetic apatites showed that substitutions for Ca, PO4, or OH
ions in the apatite structure result in changes in lattice parameters (Table 1.2)
and crystallinity (reflecting crystal size and/or strain) and dissolution properties.
For example, CO3-for-PO4 coupled with Na-for-Ca substitution has the following
effects on apatite properties:

(a) Smaller a- and larger c-axis dimensions compared to CO3-free apatites
(b) Change from needlelike to rodlike to platelike with increasing CO3 incorpora-

tion
(c) Lower resolution of the P-O (for PO4) absorption bands in the IR spectra
(d) Higher solubility
(e) Lower thermal stability [11–13, 24, 31, 32, 38]

Such studies helped explain the contributions of some ions associated with bio-
logic apatites as well as led to the development of some therapies and manufacture
of calcium phosphate-based biomaterials.

1.5 Synthetic Apatites as Bone-Substitute Materials

The first successful use of a calcium phosphate reagent in bone repair was
reported by Albee in 1920 [62], followed more than 50 years later by the first
clinical study by Nery et al. [63] on periodontal bony defects using porous
calcium phosphate identified by the authors as “TCP.” X-ray diffraction analysis
of Nery’s material years later revealed that the “TCP” consisted of a mixture of
HAp and “-TCP with a “-TCP/HAp ratio of 20/80 [20] and was thus renamed
“BCP” [64]. Similarity in composition of the synthetic apatite to biologic apatite
was the rationale for the development of calcium-phosphate-based biomaterials
for bone repair, substitution, and augmentation and as scaffolds for bone and
tooth regeneration. These calcium phosphate bioceramics include HAp, “-TCP,
BCP, bovine bone-derived apatites (unsintered and sintered), and coral-transformed
apatite (Fig. 1.5). Commercialization of HAp as bone graft materials was largely
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Table 1.2 Lattice parameters of mineral and synthetic apatites compared to biologic apatite

Lattice parameters (C0.0003 nm)

Apatite Substituent a-axis c-axis

Mineral
OH apatite (Holly Springs) – 0.9422 0.6880
F apatite (Durango, Mexico) F-for-OH 0.9375 0.6880
Dahllite (Wyoming, USA) CO3-for-PO4 0.9380 0.6885
Staffelite (Staffel, Germany) CO3-for-PO4 and F-for-OH 0.9345 0.6880
Marine phosphorite (USA) CO3-for-PO4 and F-for-OH 0.9322 0.6882
Synthetic (nonaqueous)a

OH apatite – 0.9422 0.6882
F apatite F-for-OH 0.9375 0.6880
Cl apatite Cl-for-OH 0.9646 0.6771
CO3 apatite CO3-for-OH 0.9544 0.6859
Synthetic (aqueous)b

OH apatite – 0.9438 0.6882
OH apatite HPO4-for-PO4 0.9462 0.6879
F apatite F-for-OH 0.9382 0.6880
(Cl, OH) apatite *CI-for-OH 0.9515 0.6858
CO3-OH apatite *CO3-for-PO4 0.9298 0.6924
CO3-F apatite *CO3-for-PO4 and F-for-OH 0.9268 0.6924
Sr apatite Sr-for-Ca 0.9739 0.6913
Pb apatite Pb-for-Ca 0.9894 0.7422
Ba apatite Ba-for-Ca 1.0161 0.7722
Biologic apatite
Human enamel (CO3,HPO4)-for-PO4,

(Na,Mg)-for-Ca, and
Cl-for-OH

0.9441 0.6882

Shark enameloid F-for-OH, Mg-for-Ca, and
(CO3,HPO4)-for-PO4

0.9382 0.6880

aPrepared at high temperature (1,000 ºC) by solid-state reaction or diffusion [3, 9]
bPrepared at 95 ıC either by precipitation or by hydrolysis of CaHPO4 in solutions containing the
desired substituent [13, 24, 58]

due to the independent efforts of Jarcho [15], deGroot [16], and Aoki [17]. Basic
studies on BCP led to its commercialization and popularity as bone graft materials
and as scaffolds for tissue engineering [18, 59, 64–69].

Commercial HA biomaterials are usually prepared by precipitation at high pH
and subsequent sintering at about 1,000–1,100 ıC [15–17]. Coral-derived HAp or
coralline HAp is prepared by the hydrothermal reaction of coral (CaCO3) with
ammonium phosphate [70]. Bovine bone-derived HAp is prepared by removing
the organic phase (resulting in bone apatite) or removing the organic phase and
sintering at high temperatures. These different preparations and origin (synthetic vs.
biologic) are reflected in the difference in their initial crystallinity reflecting crystal
size (Fig. 1.6) and their dissolution rates [71], increasing in the order

HAp<< coralline HAp< bovine bone apatite (sintered)<< bovine bone apatite
(unsintered) HAp << BCP << “-TCP.
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Fig. 1.5 Scanning electron micrograph of coralline apatite

Fig. 1.6 X-ray diffraction profiles of apatite biomaterials (A, B, C). (A) Ceramic HAp (Calci-
tite™), (B) coralline HAp (lnterpore™), (C) unsintered apatite, calcium deficient (Osteogen™).
The arrow on (b) indicates presence of “-TCMP
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1.6 Synthetic HAp in Implant Surfaces and Coatings

Porous HAp and related calcium phosphates, in spite of their many desirable prop-
erties, are not strong enough to be used in load-bearing areas [15, 16]. The rationale
for the development of “HAp”-coated orthopedic and dental implants is to combine
the strength of the metal (usually titanium or titanium alloy) and the bioactive
properties of HAp and other calcium phosphates. Dense HAp particles are used
as the source material for depositing implant coating by the plasma-spray technique
[15, 16, 72]. The high temperatures and other variable parameters involved in the
plasma-spray process (e.g., velocity of feeding the HAp powder, distance of the gun
from the metal substrate) result in the partial transformation of the original HAp
into ACP and minor amounts of ’-TCP, “-TCP, and tetracalcium phosphate (TTCP,
Ca4P2O9) [73]. Plasma-sprayed “HAp” coatings have nonhomogenous composition
(principally ACP/HAp ratio), varying from the layer closest to the metal substrate to
the outermost layer and varying from one manufacturer to another [73]. Alternatives
to the plasma-spray method are nanocoating, electrochemical deposition [53, 54],
and precipitation or chemical deposition [55, 56], the latter method being also
applicable to nonmetallic substrates [56]. These other methods provide homogenous
implant coating of the desired composition, e.g., HAp, FA, CHA, and OCP [53–56,
74], and allow coating deposition at much lower temperatures, thus permitting the
incorporation of bioactive molecules and growth factors.

During the last decade, HAp or BCP has been used as an abrasive material for
grit blasting to roughen the surface and provide a more bioactive surface (compared
to alumina or silica abrasive), thus enhancing osseointegration of the implant [75].

1.7 Synthetic HAp in Composites

HAp and related calcium phosphates are used as the inorganic component in
composites with natural (e.g., collagen, chitosan) or synthetic (polylactic acid
or polylacticglycolic acid, PLA or PLGA, high-molecular-weight polyethylene)
polymers [76, 77]. The rationale for developing composite biomaterials is the fact
that bone is a composite of a biologic polymer (collagen) and inorganic phase
(carbonate apatite).

1.8 Synthetic HAp and BCP as Scaffolds for Tissue
Engineering

Several investigators have reported that mesenchymal stem cells (MSC) from bone
marrow can be cultured in porous calcium phosphate biomaterials (ceramic HAp,
coralline HAp, BCP ceramic) in vitro and implanted as a tissue-engineered material
for bone regeneration [78, 79].
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1.8.1 Critical Properties of Synthetic HAp and Related
Calcium Phosphates

Porosity (interconnecting macroporosity) is an important property of biomaterials
to allow bony ingrowth and vascularization [80, 81]. Macroporosity is introduced
in HAp and other calcium phosphates by the incorporation of porogens such as
naphthalene [82], H2O2, or sugar molecules. Biocompatibility of a material is
determined in vitro from the cell response (proliferation, attachment, phenotypic
expression) to the material. Material surface composition and surface roughness or
topography influence cell response [83]. Bioactivity is defined as the property of
the material to develop a direct, adherent, and strong bonding and interface with the
bone tissue [84, 85]. Bioactivity is demonstrated in vitro and in vivo by the ability
of the material to form carbonate apatite on the surface from the simulated body
fluid in vitro [56] or biologic fluid in vivo in osseous or non-osseous sites [65, 66,
86, 87].

Osteoconductivity is the property of the material that allows attachment, prolif-
eration, migration, and phenotypic expression of bone cells leading to the formation
of new bone in direct opposition to the biomaterial [84]. Osteoinductivity is the
property of the material that allows osteoprogenitor cell growth and development
for bone formation to occur [88] and is usually determined by the formation of bone
in non-bone-forming sites, e.g., under the skin or in the muscle. HAp and related
calcium phosphates are generally considered to have all the above properties except
osteoinductivity. However, although controversial, it has been reported that with the
appropriate composition, geometry, and architecture, osteoinductive properties can
be promoted [89, 90].

1.9 Conclusions

The total analysis of the results obtained over four decades of research in this
fascinating field of science suggests that with newer scientific tools and with
further refinement, we will succeed to address problems relating to the structure,
morphology, and analysis of the biologic materials and produce synthetic apatites
or composites that will emulate the structure and characteristics of natural soft and
hard tissues.
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Chapter 2
Clinical Applications of Hydroxyapatite
in Orthopedics

Hiroyuki Oonishi Jr., Hironobu Oonishi, Hirotsugu Ohashi, Ikuo Kawahara,
Yoshifumi Hanaoka, Ryoko Iwata, and Larry L. Hench

Abstract This chapter describes since 1982 the use of porous synthetic hydroxya-
patite (HA) granules (0.1 to approximately 1.5 mm) interposed at the cement-bone
interface to enhance bone bonding, a surgical procedure labeled interface bioactive
bone cement (IBBC). HA granules were smeared on the bone surface just before
cementing. Because the HA granules used in IBBC were pure polycrystalline
HA, they were scarcely absorbed and their osteoconductive activity can continue
indefinitely even after the onset of osteoporosis due to aging and even in conditions
of extremely low pathological activity of bone. The appearance rate of radiolucent
lines and osteolysis was extremely low even over 30 years when IBBC was used.
Since 1986, in an attempt to fill the massive bony defect in the acetabulum at revision
surgery of total hip arthroplasty, a mixture of HA granules with a size between
0.9�1.2 mm and 3.0�5.0 mm was placed densely and firmly into the bone defects.
Bone ingrowth was measured to be over 2.5 cm in full depth and the new bone was
very stable. Long-term clinical results over 26 years were excellent. On the weight-
bearing area, bone ingrowth over 2.5 cm in full depth can be expected. However, on
non-weight-bearing area, bone ingrowth is only 0.5 cm in depth. In large cavities
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