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PREFACE

Echocardiography is an integral part of clinical cardiology, with important applications 
in diagnosis, clinical management, and decision making for patients with a wide 
range of cardiovascular diseases. In addition to examinations performed in the 
echocardiography laboratory, ultrasound imaging is now used in many other clinical 
settings, including the emergency department, coronary care unit, intensive care unit, 
operating room, catheterization laboratory, and electrophysiology laboratory, both 
for diagnosis and for monitoring the effects of therapeutic interventions. Echocardio-
graphic applications continue to expand because of the detailed and precise anatomic 
and physiologic information that can be obtained at the bedside with this technique 
at a relatively low cost and with minimal risk to the patient.

This textbook on general clinical echocardiography is intended to be read by 
individuals new to echocardiography and by those interested in updating their knowledge 
in this area. Thus, this book is aimed primarily at cardiology fellows on their basic 
echocardiography rotation but also will be of value to residents and fellows in general 
internal medicine, radiology, anesthesiology, and emergency medicine, as well as to 
cardiac sonography students. For physicians in practice, this textbook provides a 
concise and practical update.

Textbook of Clinical Echocardiography is structured around a clinical approach to 
echocardiographic diagnosis. First, a framework of basic principles is provided 
with chapters on ultrasound physics, normal tomographic transthoracic and trans-
esophageal views, intracardiac flow patterns, indications for echocardiography, and 
evaluation of left ventricular systolic and diastolic function. A chapter on advanced 
echocardiographic modalities summarizes basic concepts for 3D echocardiography, 
myocardial mechanics, contrast echocardiography, and intracardiac echocardiog-
raphy. Clinical use of these modalities is fully integrated into subsequent chap-
ters, organized by disease categories aligned with the current practice of clinical  
cardiology.

Each of these chapters summarizes basic principles, the echocardiographic approach, 
differential diagnosis, technical considerations, and alternate diagnostic approaches. 
Schematic diagrams illustrate core concepts; echocardiographic images and Doppler 
recordings show typical findings for each disease process. Transthoracic and trans-
esophageal images, Doppler data, 3D imaging, and other advanced imaging modalities 
are used throughout the text, reflecting their use in clinical practice. Tables are used 
frequently to summarize studies validating quantitative echocardiographic methods 
and to highlight the clinical correlates for each echocardiographic finding. A selected 
list of annotated references is included at the end of each chapter for those interested 
in reading more about a particular subject.

Some special features of this book that grew out of my experience teaching physicians 
and sonographers include The Echo Exam and Echo Math boxes. The Echo Exam 
consists of concise tables that summarize key concepts at the end of each chapter. 
Echo Math boxes provide examples of the quantitative calculations used in the 
day-to-day clinical practice of echocardiography. My hope is that The Echo Exam 
and Echo Math boxes will serve as quick reference guides in daily practice.

In this sixth edition, each chapter has been revised to reflect advances in the field, 
suggested readings have been updated, and the majority of the figures have been 
replaced with recent examples that more clearly illustrate the disease process. Most 
figures now have a linked video; on your smart device, simply click the video icon 
to see the echo images in motion. Detailed tables for normal reference values and 
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evidence tables summarizing validation of quantitative echocardiographic methods 
are provided in Appendices at the end of the book.

A more advanced discussion of the impact of echocardiographic data in clinical 
medicine is available in a larger reference book, The Practice of Clinical Echocardiography, 
fifth edition (CM Otto [ed], 2017), also published by Elsevier. Additional clinical 
examples, practical tips for data acquisition, and multiple-choice self-assessment questions 
with detailed answers can be found in Echocardiography Review Guide, fourth edition, 
by Freeman, Schwaegler, Linefsky, and Otto (Elsevier, 2018), which exactly parallels 
the chapters in this textbook.

It should be emphasized that this textbook (or any book) is only a starting point 
or frame of reference for learning echocardiography. Appropriate training includes 
competency in the acquisition and interpretation of echocardiographic and Doppler 
data in real time. Additional training is needed for performance of stress and trans-
esophageal examinations. As echocardiography continues to evolve and new techniques 
become practical and widely available, practitioners need to update their knowledge. 
Obviously, a textbook cannot replace the experience gained from performing studies 
on patients with a range of disease processes, and selected figures with videos do not 
replace the need for acquisition and review of complete patient examinations. Guidelines 
for training in echocardiography have been published, as referenced in Chapter 5, 
and include recommendations for determining clinical competency. Although this 
textbook is not a substitute for appropriate training and experience, my hope is that 
it will enhance the learning experience of those new to the field and provide a review 
for those currently engaged in the acquisition and interpretation of echocardiography. 
Every patient deserves a clinically appropriate and diagnostically accurate echocar-
diographic examination; each of us needs to continuously strive toward that goal.

Catherine M. Otto, MD
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KEY EQUATIONS

Ultrasound Physics
Frequency f = cycles/s = Hz
Wavelength λ = c / f = 1.54 / f (MHz)
Doppler equation v = c × Δf / [2FT (cosθ)]
Bernoulli equation ΔP = 4V 2

LV Imaging
Stroke volume
Ejection fraction EF(%) = (SV / EDV) × 100%
Wall stress σ = PR / 2Th
Doppler Ventricular Function
Stroke volume SV = CSA × VTI
Rate of pressure rise dP/dt = 32 mmHg / Time from 1 to 3 m/s of MR CW jet(sec)
Myocardial performance index MPI = (IVRT + IVCT) / SEP
Pulmonary Pressures and Resistance
Pulmonary systolic pressure PAPsystolic = 4(VTR)2 + RAP
PAP (when PS is present) PAPsystolic = [4(VTR)2 + RAP] – ΔPRV−PA

Mean PA pressure PAPmean = Mean ΔPRV − RA + RAP
Diastolic PA pressure PAPdiastolic = 4 (VPR)2 + RAP
Pulmonary vascular resistance PVR ≈ 10(VTR) / VTIRVOT

Aortic Stenosis
Maximum pressure gradient (integrate over  

ejection period for mean gradient)
ΔPmax = 4(Vmax)2

Continuity equation valve area AVA(cm2) = [π(LVOTD / 2)2 × VTILVOT] / VTIAS-Jet

Simplified continuity equation AVA(cm2) = [π (LVOTD / 2)2 × VLVOT] / VAS-Jet

Velocity ratio Velocity ratio = VLVOT / VAS-Jet

Mitral Stenosis
Pressure half-time valve area MVADoppler = 220 / T1

2
Aortic Regurgitation
Total stroke volume TSV = SVLVOT = (CSALVOT × VTILVOT)
Forward stroke volume FSV = SVMA = (CSAMA × VTIMA)
Regurgitant volume RVol = TSV − FSV
Regurgitant orifice area ROA = RSV / VTIAR

Mitral Regurgitation
Total stroke volume  

(or 2D or 3D LV stroke volume)
TSV = SVMA = (CSAMA × VTIMA)

Forward stroke volume FSV = SVLVOT = (CSALVOT × VTILVOT)
Regurgitant volume RVol = TSV − FSV
Regurgitant orifice area ROA = RSV / VTIAR

PISA Method
Regurgitant flow rate RFR = 2πr2 × Valiasing

Orifice area (maximum) ROAmax = RFR / VMR

Regurgitant volume RV = ROA × VTIMR

Aortic Dilation
Predicted sinus diameter
  Children (<18 years): Predicted sinus dimension = 1.02 + (0.98 BSA)
  Adults (18–40 years): Predicted sinus dimension = 0.97 + (1.12 BSA)
  Adults (>40 years): Predicted sinus dimension = 1.92 + (0.74 BSA)
  Ratio = Measured maximum diameter / Predicted maximum diameter
Pulmonary (Qp) to Systemic (Qs) Shunt Ratio
Q p:Q s = [CSAPA × VTIPA] / [CSALVOT × VTILVOT]
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Scattering
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ULTRASOUND IMAGING MODALITIES
M-Mode
Two-Dimensional Echocardiography

Image Production
Instrument Settings
Imaging Artifacts

Three-Dimensional Echocardiography
Echocardiographic Imaging Measurements

DOPPLER ECHOCARDIOGRAPHY
Doppler Velocity Data

Doppler Equation
Spectral Analysis
Continuous-Wave Doppler Ultrasound
Pulsed Doppler Ultrasound
Doppler Velocity Instrument Controls
Doppler Velocity Data Artifacts

Color Doppler Flow Imaging
Principles
Color Doppler Instrument Controls
Color Doppler Imaging Artifacts

Tissue Doppler

BIOEFFECTS AND SAFETY
Bioeffects
Safety

THE ECHO EXAM

SUGGESTED READING

1  Principles of Echocardiographic 
Image Acquisition and Doppler 
Analysis

n understanding of the basic principles of 
ultrasound imaging and Doppler echocardiog-
raphy is essential both during data acquisition 

and for correct interpretation of the ultrasound 
information. Although, at times, current instruments 
provide instantaneous images so clear and detailed 
that it seems as if we can “see” the heart and blood 
flow directly, in actuality we always are looking at 
images and flow data generated by complex analyses 
of ultrasound waves reflected and backscattered from 
the patient’s body. Knowledge of the strengths, and 
more importantly the limitations, of this technique is 
critical for correct clinical diagnosis and patient 
management. On the one hand, echocardiography 
can be used for decision making with a high degree 
of accuracy in a variety of clinical settings. On the 
other hand, if an ultrasound artifact is mistaken for 
an anatomic abnormality, a patient could undergo 
other needless, expensive, and potentially risky diag-
nostic tests or therapeutic interventions.

In this chapter, a brief (and necessarily simplified) 
overview of the basic principles of cardiac ultrasound 

A
imaging and flow analysis is presented. The reader is 
referred to the Suggested Reading at the end of the 
chapter for more information on these subjects. Because 
the details of image processing, artifact formation, and 
Doppler physics become more meaningful with experi-
ence, some readers may choose to return to this chapter 
after reading other sections of this book and after 
participating in some echocardiographic examinations.

ULTRASOUND WAVES

Sound waves are mechanical vibrations that induce 
alternate refraction and compression of any physical 
medium through which they pass (Fig. 1.1). Like 
other waves, sound waves are described in terms of 
(Table 1.1):

■	 Frequency: cycles per second, or hertz (Hz)
■	 Velocity of propagation
■	 Wavelength: millimeters (mm)
■	 Amplitude: decibels (dB)
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for each type of tissue. For example, the velocity of 
propagation in bone is much faster (about 3000 m/s) 
than in lung tissue (about 700 m/s). However, the 
velocity of propagation in soft tissues, including 
myocardium, valves, blood vessels, and blood, is rela-
tively uniform, averaging about 1540 m/s.

Frequency (f) is the number of ultrasound waves in 
a 1-second interval. The units of measurement are 
hertz, abbreviated Hz, which simply means cycles 
per second. A frequency of 1000 cycles/s is 1 kilohertz 
(kHz), and 1 million cycles/s is 1 megahertz (MHz). 
Humans can hear sound waves with frequencies 
between 20 Hz and 20 kHz; frequencies higher than 
this range are termed ultrasound. Diagnostic medical 
ultrasound typically uses transducers with a frequency 
between 1 and 20 MHz.

The speed that a sound wave moves through the 
body, called the velocity of propagation (c), is different 

Wavelength

1 s
cycles/s = Hz

A
m

pl
itu

de
 (

dB
)

Propagation velocity (m/s)

λ

Fig. 1.1  Schematic diagram of an ultrasound wave. 

TABLE 1.1  Ultrasound Waves

Definition Examples Clinical Implications

Frequency (f) The number of cycles per 
second in an ultrasound 
wave

f = cycles/s = Hz

Transducer frequencies are 
measured in MHz 
(1,000,000 cycles/s).

Doppler signal frequencies are 
measured in kHz (1000 
cycles/s).

Different transducer frequencies 
are used for specific clinical 
applications because the 
transmitted frequency affects 
ultrasound tissue penetration, 
image resolution, and the 
Doppler signal.

Velocity of 
propagation (c)

The speed that ultrasound 
travels through tissue

The average velocity of 
ultrasound in soft tissue is 
≈1540 m/s.

The velocity of propagation is 
similar in different soft 
tissues (e.g., blood, 
myocardium, liver, fat) but is 
much lower in lung and much 
higher in bone.

Wavelength (λ) The distance between 
ultrasound waves:

λ = c/f = 1.54 / f (MHz)

Wavelength is shorter with a 
higher-frequency transducer 
and longer with a lower-
frequency transducer.

Image resolution is greatest 
(≈1 mm) with a shorter 
wavelength (higher 
frequency).

Depth of tissue penetration is 
greatest with a longer 
wavelength (lower 
frequency).

Amplitude (dB) Height of the ultrasound 
wave or “loudness” 
measured in decibels 
(dB)

A log scale is used for dB.
On the dB scale, 80 dB 

represents a 10,000-fold and 
40 dB indicates a 100-fold 
increase in amplitude.

A very wide range of amplitudes 
can be displayed using a 
gray-scale display for both 
imaging and spectral Doppler.

Wavelength (λ) is the distance from peak to peak of 
an ultrasound wave. Wavelength can be calculated 
by dividing the frequency (f in Hz) by the propagation 
velocity (c in m/s):

	 λ = c f 	 (Eq. 1.1)

Because the propagation velocity in the heart is 
constant at 1540 m/s, the wavelength for any 
transducer frequency can be calculated (Fig. 1.2) as:

λ ( ) [ ( )]mm m s Hz mm m= 1540 1000f

or

λ ( ) .mm =1 54 f

For example, the wavelength emitted by a 5-MHz 
transducer can be calculated as:

λ = =
=

1540 5 000 000 0 000308
0 308

m s cycle s
m mm

, , .
.

ECHO MATH: Wavelength
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Wavelength is important in diagnostic applications 
for at least two reasons:

■	 Image resolution is no greater than 1 to 2 
wavelengths (typically about 1 mm).

■	 The depth of penetration of the ultrasound 
wave into the body is directly related to wave-
length; shorter wavelengths penetrate a shorter 
distance than longer wavelengths.

Thus there is an obvious trade-off between image 
resolution (shorter wavelength or higher frequency 
preferable) and depth penetration (longer wavelength 
or lower frequency preferable).

The acoustic pressure, or amplitude, of an ultra-
sound wave indicates the energy of the ultrasound 
signal. Power is the amount of energy per unit time. 
Intensity (I) is the amount of power per unit area:

	 Intensity I Power( ) = 2 	 (Eq. 1.2)

This relationship shows that if ultrasound power is 
doubled, intensity is quadruped. Instead of using direct 
measures of pressure energy, ultrasound amplitude is 
described relative to a reference value using the decibel 
scale. Decibels (dB) are familiar to all of us as the 
standard description of the loudness of a sound.
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Fig. 1.2  Transducer frequency versus 
wavelength and penetration of the ultra-
sound signal in soft tissue. Wavelength has 
been plotted inversely to show that resolu-
tion increases with increasing transducer 
frequency while penetration decreases. The 
specific wavelengths for transducer frequen-
cies of 1, 2.5, 3.5, 5, and 7.5 MHz are shown. 

ECHO MATH: Decibels
Decibels are logarithmic units based on a ratio of 
the measured amplitude (A2) to a reference amplitude 
(A1) such that:

	 dB A A= 20 2 1log ( ) 	 (Eq. 1.3)

Thus a ratio of 1000 to 1 is

20 1000 20 3 60× = × =log ( ) dB

a ratio of 100 to 1 is

20 100 20 2 40× = × =log ( ) dB

and a ratio of 2 to 1 is

20 2 20 0 3 6× = × =log ( ) . dB

A simple rule to remember is that a 6-dB change 
represents a doubling or halving of the signal ampli-
tude or that a 40-dB change represents a 100 times 
difference in amplitude (Fig. 1.3).

6 20 40 60 800 100

100,000

10,000

1000

100

10

1

0

2

Decibels

A
m

pl
itu

de
 r

at
io

Fig. 1.3  Graph of the decibel scale. The logarithmic 
relationship between the decibel scale (horizontal 
axis) and the amplitude ratio (vertical axis) is seen. 
A doubling or halving of the amplitude ratio corre-
sponds to a 6-dB change, and a 100-fold difference 
in amplitude corresponds to a 20-dB change. 
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Acoustic impedance (Z) depends on tissue density 
(ρ) and on the propagation velocity in that tissue (c):

	 Z c= ρ 	 (Eq. 1.4)

Although the velocity of propagation differs among 
tissues, tissue density is the primary determinant of 
acoustic impedance for diagnostic ultrasound. Lung 
tissue has a very low density compared with bone, 
which has a very high density. Soft tissues, such as 
blood and myocardium, have much smaller differences 
in tissue density and acoustic impedance. Acoustic 
impedance determines the transmission of ultrasound 
waves through a tissue; differences in acoustic impedance 
result in reflection of ultrasound waves at tissue 
boundaries.

The interaction of ultrasound waves with the organs 
and tissues of the body can be described in terms of 
(Fig. 1.4):

■	 Reflection
■	 Scattering
■	 Refraction
■	 Attenuation

If acoustic intensity is used instead of amplitude, 
the constant 10 replaces 20 in the equation so that 
a 3-dB change represents doubling, and a 20-dB 
change indicates a 100-fold difference in amplitude. 
Both these decibel scales are used to refer to transmit-
ted or received ultrasound waves or to describe 
attenuation effects. The advantages of the decibel 
scale are that a very large range can be compressed 
into a smaller number of values and that low-amplitude 
(weak) signals can be displayed alongside very high-
amplitude (strong) signals. In an echocardiographic 
image, amplitudes typically range from 1 to 120 dB. 
The decibel scale is the standard format both for 
echocardiographic image display and for the Doppler 
spectral display, although other amplitude scales are 
sometimes available.

ULTRASOUND TISSUE INTERACTION

Propagation of ultrasound waves in the body to gener-
ate ultrasound images and Doppler data depends on 
a tissue property called acoustic impedance (Table 1.2).  

TABLE 1.2  Ultrasound Tissue Interaction

Definition Examples Clinical Implications

Acoustic 
impedance (Z)

A characteristic of each 
tissue defined by 
tissue density (ρ) and 
propagation of velocity 
(c) as:

Z = ρ × c

Lung has a low density and 
slow propagation velocity, 
whereas bone has a high 
density and fast 
propagation velocity.

Soft tissues have smaller 
differences in tissue 
density and acoustic 
impedance.

Ultrasound is reflected from 
boundaries between 
tissues with differences in 
acoustic impedance (e.g., 
blood vs. myocardium).

Reflection Return of ultrasound 
signal to the transducer 
from a smooth tissue 
boundary

Reflection is used to generate 
2D cardiac images.

Reflection is greatest with 
the ultrasound beam in 
perpendicular to the tissue 
interface.

Scattering Radiation of ultrasound in 
multiple directions 
from a small structure 
(e.g., blood cells)

The change in frequency of 
signals scattered from 
moving blood cells is the 
basis of Doppler ultrasound.

The amplitude of scattered 
signals is 100 to 1000 
times less than reflected 
signals.

Refraction Deflection of ultrasound 
waves from a straight 
path due to differences 
in acoustic impedance

Refraction is used in 
transducer design to focus 
the ultrasound beam.

Refraction in tissues results 
in double image artifacts.

Attenuation Loss in signal strength 
due to absorption of 
ultrasound energy by 
tissues

Attenuation is frequency 
dependent with greater 
attenuation (less 
penetration) at higher 
frequencies.

A lower-frequency transducer 
is needed for apical views 
or in larger patients on 
transthoracic imaging.

Resolution The smallest resolvable 
distance between two 
specular reflectors on 
an ultrasound image

Resolution has three 
dimensions: along the 
length of the beam (axial), 
lateral across the image 
(azimuthal), and in the 
elevational plane.

Axial resolution is most 
precise (as small as 1 mm), 
so imaging measurements 
are best made along the 
length of the ultrasound 
beam.
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ultrasound energy radiates in all directions. Only a 
small amount of the scattered signal reaches the 
receiving transducer, and the amplitude of a scattered 
signal is 100 to 1000 times (40–60 dB) less than the 
amplitude of the returned signal from a specular 
reflector. Scattering of ultrasound from moving blood 
cells is the basis of Doppler echocardiography.

The extent of scattering depends on:

■	 Particle size (red blood cells)
■	 Number of particles (hematocrit)
■	 Ultrasound transducer frequency
■	 Compressibility of blood cells and plasma

Although experimental studies show differences in 
backscattering with changes in hematocrit, variation 
over the clinical range has little effect on the Doppler 
signal. Similarly, the size of red blood cells and the 
compressibility of blood cells and plasma do not 
change significantly. Thus the primary determinant 
of scattering is transducer frequency.

Scattering also occurs within tissues, such as the 
myocardium, from interference of backscattered signals 
from tissue interfaces smaller than the ultrasound 
wavelength. Tissue scattering results in a pattern of 
speckles; tissue motion can be measured by tracking 
these speckles from frame to frame, as discussed in 
Chapter 4.

Refraction
Ultrasound waves can be refracted—deflected from a 
straight path—as they pass through a medium with 
a different acoustic impedance. Refraction of an 
ultrasound beam is analogous to refraction of light 
waves as they pass through a curved glass lens (e.g., 
prescription eyeglasses). Refraction allows enhanced 
image quality by using acoustic “lenses” to focus the 
ultrasound beam. However, refraction also occurs in 
unplanned ways during image formation, with resulting 
ultrasound artifacts, most notably the “double-image” 
artifact.

Attenuation
Attenuation is the loss of signal strength as ultrasound 
interacts with tissue. As ultrasound penetrates into 
the body, signal strength is progressively attenuated 
because of absorption of the ultrasound energy by 
conversion to heat, as well as by reflection and scat-
tering. The degree of attenuation is related to several 
factors, including the:

■	 Attenuation coefficient of the tissue
■	 Transducer frequency
■	 Distance from the transducer
■	 Ultrasound intensity (or power)

The attenuation coefficient (α) for each tissue is 
related the decrease in ultrasound intensity (measured 

Reflection
The basis of ultrasound imaging is reflection of the 
transmitted ultrasound signal from internal structures. 
Ultrasound is reflected at tissue boundaries and 
interfaces, with the amount of ultrasound reflected 
dependent on the:

■	 Difference in acoustic impedance between the 
two tissues

■	 Angle of reflection

Smooth tissue boundaries with a lateral dimension 
greater than the wavelength of the ultrasound beam 
act as specular, or “mirror-like,” reflectors. The amount 
of ultrasound reflected is constant for a given interface, 
although the amount received back at the transducer 
varies with angle because (like light reflected from a 
mirror) the angle of incidence and reflection is equal. 
Thus optimal return of reflected ultrasound occurs 
at a perpendicular angle (90°). Remembering this 
fact is crucial for obtaining diagnostic ultrasound 
images. It also accounts for ultrasound “dropout” in 
a two-dimensional (2D) or three-dimensional (3D) 
image when too little or no reflected ultrasound reaches 
the transducer resulting from a parallel alignment 
between the ultrasound beam and tissue interface.

Scattering
Scattering of the ultrasound signal, instead of reflection, 
occurs with small structures, such as red blood cells 
suspended in fluid, because the radius of the cell 
(about 4 µm) is smaller than the wavelength of the 
ultrasound signal. Unlike a reflected beam, scattered 

Transducers

Refraction
Attenuation

Reflection

Scattering from 
moving blood cells

Specular
reflector

Fig. 1.4  Diagram of the interaction between ultrasound and body tissues. 
Doppler analysis is based on the scattering of ultrasound in all directions 
from moving blood cells with a resulting change in frequency of the 
ultrasound received at the transducer. 2D imaging is based on reflection 
of ultrasound from tissue interfaces (specular reflectors). Attenuation 
limits the depth of ultrasound penetration. Refraction, a change in direction 
of the ultrasound wave, results in imaging artifacts. 
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particles perpendicular to the face of the crystal with 
consequent expansion of crystal size. When an alternat-
ing electric current is applied, the crystal alternately 
compresses and expands, generating an ultrasound 
wave. The frequency that a transducer emits depends 
on the nature and thickness of the piezoelectric 
material.

Conversely, when an ultrasound wave strikes the 
piezoelectric crystal, an electric current is generated. 
Thus the crystal can serve both as a “receiver” and 
as a “transmitter.” Basically, the ultrasound transducer 
transmits a brief burst of ultrasound and then switches 
to the “receive mode” to await the reflected ultra-
sound signals from the intracardiac acoustic interfaces. 
This cycle is repeated temporally and spatially to 
generate ultrasound images. Image formation is based 
on the time delay between ultrasound transmission and 
return of the reflected signal. Deeper structures have 
a longer time of flight than shallower structures, with 
the exact depth calculated based on the speed of 
sound in blood and the time interval between the 
transmitted burst of ultrasound and return of the 
reflected signal.

The burst, or pulse, of ultrasound generated by 
the piezoelectric crystal is very brief, typically 1 to 
6 µs, because a short pulse length results in improved 
axial (along the length of the beam) resolution. 
Damping material is used to control the ring-down 
time of the crystal and hence the pulse length. Pulse 
length also is determined by frequency because a 
shorter time is needed for the same number of cycles 
at higher frequencies. The number of ultrasound 
pulses per second is called the pulse repetition frequency 

in dB) from one point (I1) to a second point (I2)  
separated by a distance (l) as described by the 
equation:

	 I I e l
2 1

2= − α 	 (Eq. 1.5)

The attenuation coefficient for air is very high 
(about 1000×) compared with soft tissue so that any 
air between the transducer and heart results in 
substantial signal attenuation. This is avoided on 
transthoracic examinations by use of a water-soluble 
gel to form an airless contact between the transducer 
and the skin; on transesophageal echocardiography 
(TEE) examination, attenuation is avoided by maintain-
ing close contact between the transducer and esopha-
geal wall. The air-filled lungs are avoided by careful 
patient positioning and the use of acoustic “windows” 
that allow access of the ultrasound beam to the cardiac 
structures without intervening lung tissue. Other 
intrathoracic air (e.g., pneumomediastinum, residual 
air after cardiac surgery) also results in poor ultrasound 
tissue penetration because of attenuation, resulting in 
suboptimal image quality.

The power output of the transducer is directly 
related to the overall degree of attenuation. However, 
an increase in power output causes thermal and 
mechanical bioeffects as discussed in “Bioeffects and 
Safety,” p. 27.

Overall attenuation is frequency dependent such 
that lower ultrasound frequencies penetrate deeper 
into the body than higher frequencies. The depth of 
penetration for adequate imaging tends to be limited 
to approximately 200 wavelengths. This translates 
roughly into a penetration depth of 30 cm for a 
1-MHz transducer, 6 cm for a 5-MHz transducer, 
and 1.5 cm for a 20-MHz transducer, although 
diagnostic images at depths greater than these pos-
tulated limits can be obtained with state-of-the-art 
equipment. Thus attenuation, as much as resolution, 
dictates the need for a particular transducer frequency 
in a specific clinical setting. For example, visualization 
of distal structures from the apical approach in a 
large adult patient often requires a low-frequency 
transducer. From a TEE approach, the same structures 
can be imaged (at better resolution) with a higher-
frequency transducer. The effects of attenuation are 
minimized on displayed images by using different 
gain settings at each depth, an instrument control 
called time-gain (or depth-gain) compensation.

TRANSDUCERS

Piezoelectric Crystal
Ultrasound transducers use a piezoelectric crystal both 
to generate and to receive ultrasound waves (Fig. 
1.5). A piezoelectric crystal is a material (e.g., quartz 
or a titanate ceramic) with the property that an 
applied electric current results in alignment of polarized 

Cable

Piezoelectric
crystal

Damping
material

Acoustic
lens

Pulse
length

Impedance
matching

Transducer Ultrasound
Pulse

λ

Fig. 1.5  Schematic diagram of an ultrasound transducer. The piezoelectric 
crystal both produces and receives ultrasound signals, with the electric 
input-output transmitted to the instrument via the cable. Damping material 
allows a short pulse length (improved resolution). The shape of the 
piezoelectric crystal, an acoustic lens, or electronic focusing (with a 
phased-array transducer) is used to modify beam geometry. The material 
of the transducer surface provides impedance matching with the skin. 
The ultrasound pulse length for 2D imaging is short (1–6 ms), typically 
consisting of two wavelengths (λ). “Ring down”—the decrease in frequency 
and amplitude in the pulse—depends on damping and determines 
bandwidth (the range of frequencies in the signal). 
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transmitting and the other continuously receiving the 
ultrasound waves) is recommended when accurate 
high-velocity recordings are needed. The final con-
figuration of a transducer depends on transducer 
frequency (higher-frequency transducers are smaller) 
and beam focusing, as well as the intended clinical 
use, for example, transthoracic versus TEE imaging.

Beam Shape and Focusing
An unfocused ultrasound beam is shaped like the 
light from a flashlight, with a tubular beam for a 
short distance that then diverges into a broad cone 
of light (Fig. 1.6). Even with current focused transduc-
ers, ultrasound beams have a 3D shape that affects 
measurement accuracy and contributes to imaging 
artifacts. Beam shape and size depend on several 
factors, including:

■	 Transducer frequency
■	 Distance from the transducer
■	 Aperture size and shape
■	 Beam focusing

Aperture size and shape and beam focusing can 
be manipulated in the design of the transducer, but 
the effects of frequency and depth are inherent to 
ultrasound physics. For an unfocused beam, the initial 
segment of the beam is columnar in shape (near-field 
Fn) with a length dependent on the diameter (D) of 
the transducer face and wavelength (λ):

	 Fn = D2 4λ 	 (Eq. 1.6)

For a 3.5-MHz transducer with a 5-mm diameter 
aperture, this corresponds to a columnar length of 
1.4 cm. Beyond this region, the ultrasound beam 
diverges (far field), with the angle of divergence θ 
determined as:

	 sin .θ = 1 22λ D	 (Eq. 1.7)

This equation indicates a divergence angle of 6° 
beyond the near field, resulting in an ultrasound 
beam width of about 4.4 cm at a depth of 20 cm 
for this 3.5-MHz transducer. With a 10-mm diameter 
aperture, Fn would be 5.7 cm, and beam width at 
20 cm would be about 2.5 cm (Fig. 1.7).

The shape and focal depth (narrowest point) of 
the primary beam can be altered by making the 
surface of the piezoelectric crystal concave or by the 
addition of an acoustic lens. This allows generation 
of a beam with optimal characteristics at the depth 
of most cardiac structures, but again, divergence of 
the beam beyond the focal zone occurs. Some 
transducers allow manipulation of the focal zone during 
the examination. Even with focusing, the ultrasound 
beam generated by each transducer has a lateral and 
an elevational dimension that depends on the trans-
ducer aperture, frequency, and focusing. Beam 
geometry for phased-array transducers also depends 

(PRF). The total time interval from pulse to pulse is 
called the cycle length, with the percentage of the cycle 
length used for ultrasound transmission called the 
duty factor. Ultrasound imaging has a duty factor of 
about 1% compared with 5% for pulsed Doppler 
and 100% for continuous-wave (CW) Doppler. The 
duty factor is a key element in the patient’s total 
ultrasound exposure.

The range of frequencies contained in the pulse is 
described as its frequency bandwidth. A wider bandwidth 
allows better axial resolution because of the ability of 
the system to produce a narrow pulse. Transducer 
bandwidth also affects the range of frequencies that 
can be detected by the system with a wider band-
width, which allows better resolution of structures 
distant from the transducer. The stated frequency 
of a transducer represents the center frequency of  
the pulse.

Types of Transducers
The simplest type of ultrasound transducer is based 
on a single piezoelectric crystal (Table 1.3). Alternate 
pulsed transmission and reception periods allow 
repeated sampling along a single line, with the 
sampling rate limited only by the time delay needed 
for return of the reflected ultrasound wave from the 
depth of interest. An example of using the transducer 
for simple transmission and reception along a single 
line is an A-mode (amplitude vs. depth) or M-mode 
(depth vs. time) cardiac recording when a high 
sampling rate is desirable.

Formation of more complex images uses an array 
of ultrasound crystals arranged to provide a 2D 
tomographic or 3D volumetric data set of signals. 
Each element in the transducer array can be controlled 
electronically both to direct the ultrasound beam 
across the region of interest and to focus the transmit-
ted and received signals. Echocardiographic imaging 
uses a sector scanning format with the ultrasound signal 
originating from a single location (the narrow end of 
the sector), thus resulting in a fanlike shape of the 
image. Sector scanning is optimal for cardiac applica-
tions because it allows a fast frame rate to show 
cardiac motion and a small transducer size (aperture 
or “footprint”) to fit into the narrow acoustic windows 
used for echocardiography. 3D imaging transducers 
are discussed in Chapter 4.

Most transducers can provide simultaneous imaging 
and Doppler analysis, for example, 2D imaging and 
a superimposed color Doppler display. Quantitative 
Doppler velocity data are recorded with the image 
“frozen” or with only intermittent image updates, 
with the ultrasound crystals used to optimize the 
Doppler signal. Although CW Doppler signals can 
be obtained using two elements of combined trans-
ducer, use of a dedicated nonimaging transducer with 
two separate crystals (with one crystal continuously 
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