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Preface

For the first edition of this textbook, we had set out to fill a void
for an updated comprehensive resource on all aspects related to
echocardiography in patients with congenital heart disease, from
the fetus to the adult. We felt it was important to include detailed
information about the anatomy and pathophysiology of each
lesion and to describe the goals and techniques of the echocar-
diographic examinations for diagnosis, guidance of treatment,
and monitoring after intervention. In addition to diagrams and
still images, hundreds of videos were provided to illustrate key
anatomic and functional issues mentioned in the text. We were
pleased by the overwhelmingly positive response that the first
edition of this book received.

In this second edition, we made improvements in multiple
areas. The discussion of fundamental concepts of echocardio-
graphy and the sections on imaging techniques were updated to
include advances in knowledge and improvements in ultrasound
technology. Our coverage of congenital lesions was expanded
to include separate chapters on the post-Fontan patient and on
pregnancy and heart disease. Each of the lesion chapters now
has a section highlighting the Key elements of the echocardio-
gram(s). Finally, all of the figures and videos were reviewed with
the goal of upgrading and standardizing image quality and dis-
play technique.

The field of echocardiography remains dynamic and con-
stantly evolving. Nevertheless, the mainstay for education in

clinical echocardiography continues to be the written text illus-
trated with images. As we try to expand the resources available
to trainees, practitioners, and educators, we are constrained by
the publishing format currently available for textbooks. There-
fore, our second edition remains mostly accessible in print or
PDF format. The videos have moved from being primarily avail-
able on DVD to a companion website. Future efforts will no
doubt benefit from greater electronic access to the text and
images.

As with the first edition, this book is the product of many
excellent contributions from the best physician and sonographer
experts in the field. We are indebted to their dedication to the
field and their commitment to education. We remain grateful to
our mentors and colleagues, and we continue to be inspired by
our trainees. The staff at Wiley-Blackwell have been truly sup-
portive, and the professional appearance of this book is due to
their many contributions. Finally, this and all projects in which
the editors are involved remain possible only with the unwaver-
ing support of our families and friends.

Wyman W. Lai, MD, MPH
Luc L. Mertens, MD

Meryl S. Cohen, MD
Tal Geva, MD
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CHAPTER 1

Ultrasound Physics

Jan D’hooge1 and Luc L. Mertens2

1Department of Cardiovascular Sciences, Catholic University of Leuven; Medical Imaging Research Center, University Hospital Gasthuisberg, Leuven, Belgium
2Cardiology, The Hospital for Sick Children; Department of Pediatrics, University of Toronto, Toronto, ON, Canada

Physics and technology of echocardiography

Echocardiography is the discipline of medicine in which images
of the heart are created by using ultrasound waves. Knowledge of
the physics of ultrasound helps us to understand how the differ-
ent ultrasound imaging modalities operate and also is important
when operating an ultrasound machine to optimize the image
acquisition.

This section describes the essential concepts of how ultra-
sound waves can be used to generate an image of the heart. Cer-
tain technological developments will also be discussed as well as
how systems settings influence image characteristics. For more
detailed treatment of ultrasound physics and imaging there is
dedicated literature, to which readers should refer, for example
[1,2].

How the ultrasound image is created
The pulse–echo experiment
To illustrate how ultrasound imaging works, the acoustic “pulse–
echo” experiment can be used:
1 A short electric pulse is applied to a piezoelectric crystal. This

electric field will induce a shape change of the crystal through
reorientation of its polar molecules. In other words, due to
application of an electric field the crystal will momentarily
deform.

2 The deformation of the piezoelectric crystal induces a local
compression of the tissue with which the crystal is in contact:
that is, the superficial tissue layer is briefly compressed result-
ing in an increase in local pressure; this is the so-called acous-
tic pressure (Figure 1.1).

3 Due to an interplay between tissue elasticity and inertia, this
local tissue compression (with subsequent decompression,
i.e., rarefaction) will propagate away from the piezoelectric
crystal at a speed of approximately 1530 m/s in soft tissue
(Figure 1.2). This is called the acoustic wave. The rate of
compression/decompression determines the frequency of the

wave and is typically 2.5–10 MHz (i.e., 2.5–10 million cycles
per second) for diagnostic ultrasonic imaging. As these fre-
quencies cannot be perceived by the human ear, these waves
are said to be “ultrasonic.” The spatial distance between sub-
sequent compressions is called the wavelength (λ) and relates
to the frequency (f) and sound velocity (c) as: λf = c. Dur-
ing propagation, acoustic energy is lost mostly as a result of
viscosity (i.e., friction) resulting in a reduction in amplitude
of the wave with propagation distance. The shorter the wave-
length (i.e., the higher the frequency), the faster the particle
motion and the larger the viscous effects. Higher frequency
waves will thus attenuate more and penetrate less deep into
the tissue.

4 Spatial changes in tissue density or tissue elasticity will result
in a disturbance of the propagating compression (i.e., acous-
tic) wave and will cause part of the energy in the wave to
be reflected. These so-called “specular reflections” occur, for
example, at the interface between different types of tissue (e.g.,
blood and myocardium) and behave in a similar way to optic
waves in that the direction of the reflected wave is determined
by the angle between the reflecting surface and the incident
wave (cf. reflection of optic waves on a water surface). When
the spatial dimensions of the changes in density or compress-
ibility become small relative to the wavelength (i.e., below
∼100 μm), these inhomogeneities will cause part of the energy
in the wave to be scattered, that is, retransmitted in all possi-
ble directions. The part of the scattered energy that is retrans-
mitted back into the direction of origin of the wave is called
backscatter. Both the specular and backscattered reflections
propagate back towards the piezoelectric crystal.

5 When the reflected (compression) waves impinge upon the
piezoelectric crystal, the crystal deforms. This results in rela-
tive motion of its (polar) molecules and generation of an elec-
tric field, which can be detected and measured. The ampli-
tude of this electric signal is directly proportional to the
amount of compression of the crystal, that is, the amplitude of
the reflected/backscattered wave. This electric signal is called

Echocardiography in Pediatric and Congenital Heart Disease: From Fetus to Adult, Second Edition. Edited by Wyman W. Lai, Luc L. Mertens, Meryl S. Cohen and Tal Geva.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion website: www.lai-echo.com
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Figure 1.1 Local tissue compression due to
deformation of the piezoelectric crystal when
applying an electric field.

the radio-frequency (RF) signal and represents the ampli-
tude of the reflected ultrasound wave as a function of time
(Figure 1.3). Because reflections occurring further away from
the transducer need to propagate further, they will be received
later. As such, the time axis in Figure 1.3 can be replaced by
the propagation distance of the wave (i.e., depth). The signal
detected by the transducer is typically electronically ampli-
fied. The amount of amplification has a preset value but can
be modified on an ultrasound system by using the “gain”
button (typically the largest button on the operating panel).

Importantly, the overall gain will amplify both the signal
and potential measurement noise and will thus not affect the
signal-to-noise ratio.
In the example shown in Figure 1.3, taken from a water tank

experiment, two strong specular reflections can be observed
(around 50 and 82 μs, respectively) while the lower ampli-
tude reflections in between are scatter reflections. In clinical
echocardiography, the most obvious specular reflection is the
strong reflection coming from the pericardium observed in the
parasternal views as a consequence of its increased stiffness with
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Figure 1.2 The local tissue compression/
decompression propagates away from its
source at a speed of approximately 1530 m/s
in soft tissue.
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Figure 1.3 The reflected amplitude of the reflected ultrasound waves as a
function of time after transmission of the ultrasound pulse is called the
radio-frequency (RF) signal.

respect to the surrounding tissues. The direction of propagation
of the specular reflection is determined by the angle between the
incident wave and the reflecting surface. Thus, the strength of
the observed reflection will depend strongly on the exact trans-
ducer position and orientation with respect to the pericardium.
Indeed, for given transducer positions/orientations, the strong
specular reflection might propagate in a direction not detectable
by the transducer. For this reason, the pericardium typically does
not show as bright in the images taken from an apical transducer
position. In contrast, scatter reflections are not angle dependent
and will always be visible for a given structure independent of
the exact transducer position.

The total duration of the above described “pulse–echo” exper-
iment is about 100 μs when imaging at 5 MHz. The reflected
signal in Figure 1.3 is referred to as an A-mode image (“A”
referring to “Amplitude”) and is the most fundamental form
of imaging given that it tells us something about the acoustic
characteristics of the materials in front of the transducer. For
example, Figure 1.3 clearly shows that at distance of ∼3.7 cm
in front of the transducer the propagation medium changes
density and/or compressibility with a similar change occur-
ring at a distance of ∼6.3 cm (these distances correspond to
50/82 μs × 1530 m/s – which is the total propagation distance
of the wave – divided by two as the wave has to travel back and
forth). The 2.6 cm of material in between these strong reflections
is acoustically inhomogeneous (i.e., shows scatter reflections)
and thus contains local (very small) fluctuations in mass density
and/or compressibility while the regions closer and further away
from the transducer do not cause significant scatter and would
thus be acoustically homogeneous. Indeed, this A-mode image
was taken from a 2.6 cm thick tissue-mimicking material (i.e.,
gelatin in which small graphite particles were dissolved) put in a
water tank.

Grayscale encoding
Since the A-mode image presented above is not visually attrac-
tive, the RF signal resulting from a pulse–echo experiment is
processed in the following manner:
1 Envelope detection: The high-frequency information of the

RF signal is removed by detecting the envelope of the signal
(Figure 1.4). This process is also referred to as “demodulation.”

2 Grayscale encoding: The signal is subdivided as a function of
time in small intervals (i.e., pixels). Each pixel is attributed a
number, defined by the local amplitude of the signal, ranging
between 0 and 255 (28 or 8-bit image). “0” represents “black;”
“255” represents “white;” a value in between is represented by
a grayscale. By definition, bright pixels correspond to high-
amplitude reflections. This process is illustrated in Figure 1.4.
Please note that a different kind of color encoding is also pos-
sible simply by attributing different colors to the range of val-
ues between 0 and 255. For example, shades of blue or bronze
are also popularly used. The choice of the color map used
to display an image is a matter of preference and can eas-
ily be changed on all ultrasound systems. Nowadays, most
ultrasound systems have 12- or 16-bit resolution images (i.e.,
encoding 4096 or 65536 gray/color levels).

3 Attenuation correction: As wave amplitude decreases with
propagation distance due to attenuation (mostly due to con-
version of acoustic energy to heat), reflections from deeper
structures are intrinsically smaller in amplitude and there-
fore show less bright. In order to give identical structures
located at different distances from the transducer a simi-
lar gray value (i.e., reflected amplitude), compensation for
this attenuation must occur. Thus, an attenuation profile as
a function of distance from the transducer is assumed, which
allows for automatic amplification of the signals from deeper
regions – the so-called automated time-gain compensation
(TGC), also referred to as depth-gain compensation. As the
pre-assumed attenuation profile might be incorrect, sliders on
the ultrasound scanner (TGC toggles) allow for manual cor-
rection of the automatic compensation and will result in more
or less local amplification of the received signal as required
to obtain a more homogenous brightness of the image. In
this way, the operator can optimize local image brightness.
It is recommended to start scanning using a neutral setting
of these sliders, as attenuation characteristics will be patient
and view specific. For each view the TGC can be optimized
manually.

4 Log-compression: In order to increase the image contrast in
the darker (i.e., less bright) regions of the image, gray val-
ues in the image may be redistributed according to a loga-
rithmic curve (Figure 1.5). The characteristics of this com-
pression (i.e., local contrast enhancement) can be changed
through settings on the ultrasound scanner. They will not
change the ultrasound acquisition as such (and thus impact
image quality) but will merely influence the visual representa-
tion of the resulting image. This is similar to what is nowadays
very common in digital photography, where ambient lighting
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Figure 1.4 The RF signal is demodulated in order to detect its envelope. This envelope signal (bold) is color encoded based on the local signal amplitude.
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Figure 1.6 Translation of the ultrasound
source results in a linear image format (a)
whereas pivoting results in sector images (b).

and/or contrast can be retrospectively enhanced. The setting
on the system impacting the visual aspect of the image is the
so-called “dynamic range” which will change the number of
gray values used and will therefore result in “hard” (i.e., almost
black-and-white images without much gray) or “soft” images
for low and high dynamic range, respectively.

Image construction
In order to obtain an ultrasound image, the above procedures of
signal acquisition and post-processing are repeated.

For conventional B-mode imaging (“B” referring to “bright-
ness” mode), the transducer can either be translated (Fig-
ure 1.6a) or tilted (Figure 1.6b) within a plane between two sub-
sequent “pulse–echo” experiments. In this way, a conventional
2D cross-sectional image is obtained. The same principle holds
for 3D imaging by moving the ultrasound beam in 3D space
between subsequent acquisitions.

Alternatively, the ultrasound beam is transmitted into the
same direction for each transmitted pulse. In that case, an image
line is obtained as a function of time, which is particularly use-
ful to look at motion. This modality is therefore referred to as
M-mode (motion-mode) imaging.

Image artifacts
Side lobe artifacts
In the construction of an ultrasound image, the assumption is
made that all reflections originate from a region directly in front
of the transducer. Although most of the ultrasound energy is
indeed centered on an axis in front of the transducer, in prac-
tice part of the energy is also directed sideways (i.e., directed off-
axis). The former part of the ultrasound beam is called the main
lobe whereas the latter is referred to as the side lobes (Figure 1.7).

Because the reflections originating from these side lobes are
much smaller in amplitude than the ones coming from the main
lobe, they can typically be neglected. However, image artifacts
can arise when the main lobe is in an anechoic region (i.e., a
cyst or inside the left ventricular cavity) causing the relative con-
tribution of the side lobes to become significant. In this way, a
small cyst or lesion may be more difficult to detect, as it appears
brighter than it should due to spillover of (side-lobe) energy
from neighboring regions. Similarly, when using contrast agents
(see later) the reflections resulting from small side lobes may
still become significant as these agents reflect energy strongly.
As such, increased brightness may appear in regions adjacent to
regions filled with contrast without contrast being present in the
region itself.
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Figure 1.7 Reflections caused by side lobes
(red) will induce image artifacts because all
reflections are assumed to arrive from the
main ultrasound lobe (green).
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Figure 1.8 A transmitted wave (green) will reflect
and result in an echo signal (green). The reflected
wave will, however, partially reflect at the
transducer surface (red) and generate secondary
signals (red).

Reverberation artifacts
When the reflected wave arrives at the transducer, part of the
energy is converted to electrical energy as described in the
previous section. However, another part of the wave is sim-
ply reflected on the transducer surface and will start propagat-
ing away from the transducer as if it were another ultrasound
transmission. This secondary “transmission” will propagate in a
way similar to that of the original pulse, which means that it is
reflected by the tissue and detected again (Figure 1.8).

These higher-order reflections are called reverberations and
give rise to ghost (mirror image) structures in the image. These
ghost images typically occur when strongly reflecting structures
such as ribs or the pericardium are present in the image. Sim-
ilarly, as the reflected wave coming from the pericardium is
very strong, its backscatter (i.e., propagating again towards the
pericardium) will be sufficiently strong as well. This wave will
reflect on the pericardium and can be detected by the trans-
ducer after the actual pericardial reflection arrives. In clinical
practice, this causes a ghost image to be created behind the
pericardial reflection that typically appears as a mirror image
of the left ventricle around the pericardium in a parasternal
long-axis view.

Shadowing and dropout artifacts
When perfect reflections occur, no acoustic energy is transmit-
ted to more distal structures and – as a consequence – no reflec-
tions from these distal structures can be obtained. As a result, a
very bright structure will appear in the image followed by a sig-
nal void, that is, an acoustic shadow. For example, when a metal-
lic artificial valve has been implanted, the metal (being very
dense and extremely stiff) can cause close to perfect ultrasound

reflections resulting in an apparently anechoic region distal to
the valve. This occurs because no ultrasound energy reaches
these deeper regions. Similarly, some regions in the image may
receive little ultrasound energy due to superficial structures
blocking ultrasound penetration. Commonly, ribs (being more
dense and stiff than soft tissue) are fairly strong reflectors at car-
diac diagnostic frequencies and can impair proper visualization
of some regions of the image. These artifacts are most commonly
referred to as “dropout” and can only be avoided – if at all – by
changing the transducer position/orientation.

When signal dropout occurs at deeper regions only, the
acoustic power transmitted can be increased. This will obvi-
ously result in more energy penetrating to deeper regions and
will increase the overall signal-to-noise ratio of the image (in
contrast to increasing the overall gain of the received signals
as explained earlier). However, the maximal transmit power
allowed is limited in order to avoid potential adverse biolog-
ical effects. Indeed, at higher energy levels, ultrasound waves
can cause tissue damage either due to cavitation (i.e., the for-
mation of vapor cavities that subsequently implode and gener-
ate very high local pressures and temperatures) or tissue heat-
ing. The former risk is quantified in the “mechanical index”
(MI) and should not pass a value of 1.9 while the latter is esti-
mated through a “thermal index” (TI). Both parameters are
displayed on the monitor during scanning and will increase
with increasing power output. The operator thus has to find
a compromise between image quality (including penetration
depth) and the risk of adverse biological effects. In case pene-
tration is not appropriate at maximal transmit power, the oper-
ator has to choose a transducer with lower transmit frequency
(see earlier).
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Figure 1.9 An array of crystals can be used to
steer the ultrasound beam electronically by
introducing time delays between the activation of
individual elements in the array.

Ultrasound technology and image
characteristics

Ultrasound technology
Phased array transducers
Rather than mechanically moving or tilting the transducers,
as in early generation ultrasound machines, modern ultra-
sound devices use electronic beam steering. To do this an array
of piezoelectric crystals is used. By introducing time delays
between the excitation of different crystals in the array, the ultra-
sound wave can be sent in a specific direction without mechan-
ical motion of the transducer (Figure 1.9). The RF signal for a
transmission in a particular direction is then simply the sum of
the signals received by the individual elements. These individual
contributions can be filtered, scaled, and time-delayed separately
before summing. This process is referred to as beam-forming
and is a crucial element for obtaining high-quality images. The
scaling of the individual contributions is typically referred to as
apodization and is critical in suppressing side lobes and thus
avoiding the associated artifacts.

This concept can be generalized by creating a 2D matrix of
elements that enables steering of the ultrasound beam in three
dimensions. This type of transducer is referred to as a matrix
array or 2D array transducer. Because each of the individual
elements of such an array needs electrical wiring, manufactur-
ing such a 2D array remained technically challenging for many
years, in part because of the limitation of the thickness of the
transducer cable. Generally, these obstacles have been overcome
and 2D arrays are now readily available.

Second harmonic imaging
Wave propagation as illustrated in Figure 1.2 is only valid when
the amplitude of the ultrasound wave is relatively small (i.e., the
acoustic pressures involved are small). Indeed, when the ampli-
tude of the transmitted wave becomes significant, the shape of
the ultrasound wave will change during propagation, as illus-
trated in Figure 1.10. This phenomenon of wave distortion dur-
ing propagation is referred to as nonlinear wave propagation. It
can be shown that this wave distortion causes harmonic frequen-
cies (i.e., integer multiples of the transmitted frequency) to be

Depth

Depth

Depth

D
e

n
s
it
y
/

P
re

s
s
u

re

D
e
n
s
it
y
/

P
re

s
s
u
re

D
e
n
s
it
y
/

P
re

s
s
u
re

Figure 1.10 Nonlinear wave behavior results in
changes in shape of the waveform during
propagation.
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generated. Transmitting a 1.7-MHz ultrasound pulse will thus
result in the spontaneous generation of frequency components
of 3.4, 5.1, 6.8, 8.5 MHz, and so on. These harmonic compo-
nents will grow stronger with propagation distance. The rate at
which the waveform distorts for a specific wave amplitude is tis-
sue dependent and characterized by a nonlinearity parameter, β
(or the so-called “B/A” parameter).

The ultrasound scanner can be set up to receive only the sec-
ond harmonic component through filtering of the received RF
signal. If further post-processing of the RF signal is done in
exactly the same way as described earlier, a second harmonic
image is obtained. Such an image typically has a better signal-to-
noise ratio by avoiding clutter noise due to (rib) reverberation
artifacts. This harmonic image is commonly used in patients
with poor acoustic windows and poor penetration. Although
harmonic imaging increases signal-to-noise, it has intrinsically
poorer axial resolution as elucidated later. Please note that higher
harmonics (i.e., third, fourth, etc.) are present but typically fall
outside the bandwidth of the transducer and thus remain unde-
tected. Harmonic imaging has become the default cardiac imag-
ing mode for adult scanning on many systems. It is typically
unnecessary to use harmonic imaging in young infants but is
often required to enhance the image in the older patient. Switch-
ing between conventional and harmonic imaging is done by
changing the transmit frequency of the system. For lower fre-
quency transmits, it will automatically enter a harmonic imaging
mode, which is indicated on the display by showing both trans-
mit and receive frequencies (i.e., 1.7/3.4 MHz). When a single
frequency is displayed, the scanner is in a conventional (i.e., fun-
damental) imaging mode. For pediatric scanning, especially in
smaller infants, fundamental imaging is the preferred mode due
to its better spatial resolution.

Contrast imaging
As blood reflects little ultrasound energy it shows dark in the
image. For some applications (such as myocardial perfusion
assessment) it can be useful to artificially increase the blood
reflectivity. This can be achieved using an ultrasound contrast
agent. As air is an almost perfect reflector of ultrasound energy
given it is very compressible and has a low density compared to
soft tissue, it often is used as a contrast agent. As such, the injec-
tion of small air bubbles (of diameter similar to that of red blood
cells) will increase blood reflectivity. This can be done using agi-
tated saline or by using ultrasound contrast agents that encapsu-
late air bubbles in order to limit diffusion of the air (or a heavier
gas) in blood. Contrast imaging can be used to help in visualizing
the endocardial border by enhancing the difference in gray value
between the myocardium and the blood pool (i.e., left ventricu-
lar opacification) or to detect shunts. Similarly, contrast agents
can be used to increase the brightness of perfused (myocar-
dial) tissue although artifacts become more prominent and may
make interpretation less obvious. At present, different contrast
agents are commercially available for clinical use but none of

them have been approved for pediatric use. Especially in the
presence of right-to-left shunting, contrast agents should be used
carefully.

Image resolution
Resolution is defined as the shortest distance at which two adja-
cent objects can be distinguished as separate. The spatial reso-
lution of an ultrasound image varies depending on the position
of the object relative to the transducer. Also the resolution in the
direction of the image line (range or axial resolution) is differ-
ent from the one perpendicular to the image line within the 2D
image plane (azimuth or lateral resolution), which is different
again from the resolution in the direction perpendicular to the
image plane (elevation resolution).

Axial resolution
In order to obtain an optimal axial resolution, a short ultra-
sound pulse needs to be transmitted. The length of the trans-
mitted pulse is mainly determined by the characteristics of the
transducer. Current transducers can generate multiple frequen-
cies influencing axial resolution by selecting different frequen-
cies. The bandwidth is most commonly expressed relative to the
center frequency of the transducer. A typical value would be
80% implying that for a 5-MHz transducer the absolute band-
width is about 4 MHz. This type of transducer can thus gen-
erate/receive frequencies in the range of 3–7 MHz. The abso-
lute transducer bandwidth is typically proportional to the mean
transmission frequency. A higher frequency transducer will thus
produce shorter ultrasound pulses and thus, better axial resolu-
tion. Unfortunately, higher frequencies are attenuated more by
soft tissue and are impacted by depth (see earlier). As such, a
compromise needs to be made between image resolution and
penetration depth (i.e., field of view). In pediatric and neona-
tal cardiology, higher frequency transducers can be used that
increase image spatial resolution. Generally, for infants 10–12-
MHz transducers are used resulting in a typical axial resolution
of the order of 250 μm.

Most systems allow changing the transmit frequency of the
ultrasound pulse within the bandwidth of the transducer. As
such, a 5-MHz transducer can be used to transmit a 3.5-MHz
pulse which can be practical when penetration is not sufficient
at 5 MHz. The lower frequency will result in a longer transmit
pulse with a negative impact on axial resolution. Similarly, for
second harmonic imaging a narrower band pulse needs to be
transmitted, as part of the bandwidth of the transducer needs to
be used to be able to receive the second harmonic. As such, in
harmonic imaging mode, a longer ultrasound pulse is transmit-
ted (i.e., less broadband) resulting in a worse axial resolution of
the second harmonic image despite improvement of the signal-
to-noise ratio. Therefore, some of the cardiac structures appear
thicker, especially valve leaflets. This should be considered when
interpreting the images.
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Figure 1.11 Introducing time delays during transmission of individual
array elements (left) allows for all wavelets to arrive at a particular point
(focus) simultaneously. Similarly, received echo signals can be time delayed
so that they constructively interfere (receive focus).

Lateral resolution
Lateral resolution is determined by the width of the ultra-
sound beam (i.e., the width of the main lobe). The narrower the
ultrasound beam, the better the lateral resolution. In order to
narrow the ultrasound beam, several methods can be used but
the most obvious one is focusing. This is achieved by introduc-
ing time delays between the firing of individual array elements
(similar to what is done for beam steering) in order to assure that
the transmitted wavelets of all individual array elements arrive
at the same position at the same time and will thus construc-
tively interfere (Figure 1.11). Similarly, time delaying the reflec-
tions of the individual crystals in the array will make sure that
reflections coming from a particular point in front of the trans-
ducer will sum in phase and therefore create a strong echo signal
(Figure 1.11). Because the sound velocity in soft tissue is known,
the position from which reflections can be expected is known at
each time instance after transmission of the ultrasound pulse. As
such, the time delays applied in receive can be changed dynam-
ically in order to move the focus point to the appropriate posi-
tion. This process is referred to as dynamic (receive) focusing .
In practice, dynamic receive focusing is always used and does
not need adjustments by the operator in contrast to the transmit
focus point whose position should be set manually. Obviously,
to resolve most morphologic detail, the transmit focus should
always be positioned close to the structure/region of interest.
Most ultrasound systems allow selecting multiple transmit focal
points. In this setting, each image line will be created multiple
times with a transmit pulse at each of the set focus positions and
the resulting echo signals will be combined in order to gener-
ate a single line in the image. Although this results in a more
homogeneous distribution of the lateral resolution with depth,
this obviously implies that it takes more time to generate a sin-
gle image and thus will result in lowering the frame rate (i.e.,
temporal resolution).

The easiest way to improve the focus performance of a trans-
ducer is by increasing its size (i.e., aperture). Unfortunately, the
footprint needs to fit between the patient’s ribs, thereby limiting
the size of the transducer and thus limiting lateral resolution of

the imaging system. For an 8-MHz pediatric transducer, realistic
numbers for the lateral resolution of the system are depth depen-
dent and are approximately 0.3 mm at 2 cm going up to 1.2 mm
at 7 cm depth.

Elevation resolution
For elevation resolution, the same principles hold as for lateral
resolution in the sense that the dimension of the ultrasound
beam in the elevation direction will be determinant. However,
most ultrasound devices are still equipped with 1D array trans-
ducers. As such, focusing in the elevation direction needs to be
done by the use of acoustic lenses (similar to optic lenses acous-
tic lenses concentrate energy in a given spatial position), which
implies that the focus point is fixed in both transmit and receive
(i.e., dynamic focusing is not possible in the elevation direction).
This results in a resolution in the elevation direction that is worse
than the lateral resolution. The homogeneity of the resolution is
also worse with depth. Moreover, transducer aperture in the ele-
vation direction is typically somewhat smaller (in order to fit in
between the ribs of the patient) resulting in a further decrease of
elevation resolution compared to the lateral component. Newer
systems with 2D array transducer technology have more similar
lateral and elevation image resolution. Matrix array transducers
not only create 3D images but also allow generating 2D images
of higher/more homogeneous spatial resolution.

Temporal resolution
Typically, a 2D pediatric cardiac image consists of 300 lines. The
construction of a single image thus takes about 300 × 100 μs
(the time required to acquire one line as explained earlier) or
30 ms. About 33 images can be produced per second, which is
sufficient to look at motion (e.g., standard television displays
only 25 frames per second). With more advanced imaging tech-
niques such as parallel beam forming, higher frame rates can be
obtained (70–80 Hz). In order to increase frame rate, either the
field of view can be reduced (i.e., a smaller sector will require
fewer image lines to be formed and will thus speed up the acqui-
sition of a single frame) or the number of lines per frame (i.e.,
the line density) can be reduced. The latter comes at the cost
of spatial resolution, as image lines will be further apart. There
is thus an intrinsic trade-off between the image field-of-view,
spatial resolution and temporal resolution. Most systems have a
“frame rate” button nowadays that allow changing the frame rate
although this always comes at the expense of spatial resolution.
Higher frame rates are important when the heart rate is higher
as is often the case in pediatric patients and when you want to
study quickly moving structures like valve leaflets or myocardial
wall motion.

Image optimization in pediatric echocardiography
All the aforementioned principles can be used to optimize
image acquisition in the pediatric population. As children are
smaller, less penetration is required. The heart rates are higher
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