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Disturbances in cardiac rhythm occur in a large proportion of the 
population. Arrhythmias can have sequelae that range from life-short-
ening to inconsequential. Sudden cardiac deaths and chronic disability 
are among the most frequent serious complications resulting from 
arrhythmias.

The eleventh edition of Braunwald’s Heart Disease: A Textbook of 
Cardiovascular Medicine includes an excellent section on rhythm dis-
turbances carefully edited and largely written by Douglas Zipes and 
Gordon Tomaselli, the most accomplished and respected investigators 
and clinicians in this field. However, there are many subjects that simply 
cannot be discussed in sufficient detail, even in a 2000-page, densely 
packed book. For this reason, the current editors and I decided to 
commission a series of companions to the parent title. We were extremely 
fortunate to enlist Dr. Zipes’ help in editing and writing Clinical Arrhyth-
mology and Electrophysiology. Dr. Zipes, in turn, enlisted two talented 
collaborators, Drs. Ziad F. Issa and John M. Miller, to work with him 
to produce this excellent volume.

This third edition is superbly illustrated, with the number of figures 
and tables increasing substantially from its predecessor. What has not 
changed, however, is the very high quality of the content, which is 
accurate, authoritative, and clear; second, it is as up-to-date as last 
month’s journals; and third, the writing style and illustrations are con-
sistent throughout with little, if any, duplication. As this important 
branch of cardiology has grown, so has this book.

The first seven chapters (“Molecular Mechanisms of Cardiac Electri-
cal Activity,” “Cardiac Ion Channels,” “Electrophysiological Mechanisms 
of Cardiac Arrhythmias,” “Electrophysiological Testing: Tools and Tech-
niques,” “Conventional Intracardiac Mapping Techniques,” “Advanced 
Mapping and Navigation Modalities,” and “Ablation Energy Sources”) 
provide a superb introduction to the field. This is followed by 24 chapters 
on individual arrhythmias, each following a similar outline. Here, the 
authors lead us from a basic understanding of the arrhythmia to its 
clinical recognition, natural history, and management. The latter is 
moving rapidly from being largely drug-based to device-based, although 
many patients receive combination device-drug therapy. These options, 
as well as ablation therapy, are clearly spelled out as they apply to each 
arrhythmia. The final chapter discusses the complications of catheter 
ablation of cardiac arrhythmias.

We are proud to include Clinical Arrhythmology and Electrophysiology 
as a companion to Braunwald’s Heart Disease, and we are fully confident 
that it will prove to be valuable to cardiologists, internists, investigators, 
and trainees.

Eugene Braunwald, MD
Peter Libby, MD

Robert Bonow, MD
Douglas Mann, MD

Gordon Tomaselli, MD
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The third edition of Clinical Arrhythmology and Electrophysiology main-
tains its unique style, written by just the three of us. Once again, we 
can “explain, integrate, coordinate, and educate in a comprehensive, 
cohesive fashion while avoiding redundancies and contradictions.” We 
liken it to a comprehensive travel guide written by an expert who has 
actually stayed in that unique hotel or eaten in that special restaurant. 
We have experienced the progress first-hand, from basic science to 
clinical application, and are able to pass on our experiences to you. In 
addition, as before, readers have the opportunity to delve deeper into 
basic mechanisms or invasive procedures…or not…depending on the 
level of interest.

We have thoroughly revised and updated all chapters. In addition, 
we have greatly expanded the book by increasing the total number of 

pages from 700 to over 1100 and increased the number of figures to 
almost 1000 in print and over 200 online. A unique feature of our book 
are 74 new videos that take the reader into our electrophysiology labs 
to become a “fly on the wall” observing electrophysiology procedures. 
We believe the adage that “one picture is worth a thousand words,” and 
we invite you to learn with us during actual procedures.

Our textbook, written as a companion to the Braunwald’s Heart 
Disease series, is for learners of all stages. We hope you enjoy, learn, 
and expand your care of arrhythmia patients.

Ziad F. Issa
John M. Miller

Douglas P. Zipes
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1 
Molecular Mechanisms of Cardiac 

Electrical Activity

IONIC EQUILIBRIUM
The lipid bilayer of the cell membrane is hydrophobic and impermeable 
to water-soluble substances such as ions. Hence, for the hydrophilic 
ions to be able to cross the membrane, they need hydrophilic paths 
that span the membrane (i.e., pores), which are provided by transmem-
brane proteins called ion channels. Once a hydrophilic pore is available, 
ions move passively across the membrane, driven by two forces: the 
electrical gradient (voltage difference) and chemical gradient (concen-
tration difference). The chemical gradient forces the ions to move from 
a compartment of a higher concentration to one of lower concentration. 
The electrical gradient forces ions to move in the direction of their 
inverse sign (i.e., cations [positively charged ions] move toward a nega-
tively charged compartment, whereas anions [negatively charged ions] 
move toward a positively charged compartment). Because the chemical 
and electrical gradients can oppose each other, the direction of net ion 
movement will depend on the relative contributions of chemical  
gradient and electrical potential (i.e., the net electrochemical gradient), 
so that ions tend to move spontaneously from a higher to a lower 
electrochemical potential.1

The movement of an ion down its chemical gradient in one direc-
tion across the cell membrane results in build-up of excess charge carried 
by the ion on one side of the membrane, which generates an electrical 
gradient that impedes (repels) continuing ionic movement in the same 
direction. When the driving force of the electrical gradient across the 
membrane becomes equal and opposite to the force generated by the 
chemical gradient, the ion is said to be in electrochemical equilibrium, 
and the net transmembrane flux (or current) of that particular ion is 
zero. In this setting, the membrane electrical potential is called the 
equilibrium potential (Eion) (“reversal potential” or “Nernst potential”) 
of that individual ion. Any further current flow would reverse the balance 
of forces and therefore reverse the current direction until equilibrium 
is restored, hence the name “reversal potential.”2 The Eion for a given 
ion measures the voltage that the ion concentration gradient generates 
when it acts as a battery, and it depends on its concentration on either 
side of the membrane and the temperature. At membrane voltages 
more positive to the reversal potential of the ion, passive ion movement 
is outward, whereas it is inward at a membrane potential (Em) more 
negative to the Nernst potential of that channel.1

When multiple ions across a membrane are removed from their 
electrochemical equilibrium, each ion will tend to force the Em toward 

its own Eion. The contribution of each ion type to the overall Em at any 
given moment is determined by the instantaneous permeability of the 
plasma membrane to that ion. The larger the membrane conductance 
to a particular ion, the greater is the ability of that ion to bring the Em 
toward its own Eion. Hence the Em is the average of the Eion of all the 
ions to which the membrane is permeable, weighed according to the 
membrane conductance of each individual ion relative to the total ionic 
conductance of the membrane.1

TRANSMEMBRANE POTENTIALS
All living cells, including cardiomyocytes, maintain a difference in the 
concentration of ions across their membranes. There is a slight excess 
of positive ions on the outside of the membrane and a slight excess of 
negative ions on the inside of the membrane, resulting in a difference 
in the electrical charge (i.e., voltage, potential difference, or electrical 
gradient) across the cell membrane, called the Em (also known as mem-
brane voltage or transmembrane potential). A membrane that exhibits 
an electrical gradient is said to be polarized.

In nonexcitable cells, and in excitable cells in their baseline states 
(i.e., not conducting electrical signals), the Em is held at a relatively 
stable value, called the resting Em. All cells have a negative resting Em 
(i.e., the cytoplasm is electrically negative relative to the extracellular 
fluid), which arises from the interaction of ion channels and ion pumps 
embedded in the membrane that maintain different ion concentrations 
on the intracellular and extracellular sides of the membrane.

When an ion channel opens, it allows ion flux across the membrane 
that generates an electrical current (I). This current affects the Em, 
depending on the membrane resistance (R), which refers to the ratio 
between the Em and electrical current, as shown in Ohm’s law: E = I × 
R, or R = E/I. Resistance arises from the fact that the membrane impedes 
the movement of charges across it; hence the cell membrane functions 
as a resistor (i.e., when current is passed through the membrane, there 
is a voltage drop that is predictable from Ohm’s law). Conductance 
describes the ability of a membrane to allow the flux of charged ions 
in one direction across the membrane. The more permeable the mem-
brane is to a particular ion, the greater is the conductance of the mem-
brane to that ion (Table 1.1). Membrane conductance (g) is the reciprocal 
of resistance: g = 1/R.

Because the lipid bilayer of the cell membrane is very thin, accu-
mulation of charged ions on one side gives rise to an electrical force 
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tively charged ions (e.g., Cl−) out of the cell. An outward current increases 
the electronegativity within the cell (i.e., causes hyperpolarization of 
the Em [to become more negative]) and can result from either the move-
ment of anions into the cell or the efflux of cations (most commonly 
K+) out of the cell.

Opening and closing of ion channels can induce a departure from 
the relatively static resting Em, which is called depolarization if the interior 
voltage rises (becomes less negative) or hyperpolarization if the interior 
voltage becomes more negative. The most important ion fluxes that 
depolarize or repolarize the membrane are passive (i.e., the ions move 
down their electrochemical gradient without requiring the expenditure 
of energy), occurring through transmembrane ion channels. In excitable 
cells a sufficiently large depolarization can evoke a short-lasting all-or-
none event called an action potential, in which the Em very rapidly 
undergoes specific and large dynamic voltage changes.

Both resting Em and dynamic voltage changes such as the action 
potential are caused by specific changes in membrane permeabilities 
for Na+, K+, Ca2+, and Cl−, which, in turn, result from concerted changes 
in functional activity of various ion channels, ion transporters, and ion 
exchangers.

CARDIAC ACTION POTENTIAL
During physiological electrical activity, the Em is a continuous function 
of time. The current flowing through the cell membrane, at each instant, 
is provided by multiple channels and transporters carrying charge in 

(potential) that pulls oppositely charged particles toward the other side. 
Hence the cell membrane functions as a capacitor (i.e., capable of sepa-
rating and storing charge). Although the absolute potential differences 
across the cell membrane are small, they give rise to enormous electrical 
potential gradients because they occur across a very thin surface. As a 
consequence, apparently small changes in Em can produce large changes 
in potential gradient and powerful forces that are able to induce molecular 
rearrangement in membrane proteins, such as those required for opening 
and closing ion channels embedded in the cell membrane. The capaci-
tance of the membrane is generally fixed and unaffected by the molecules 
that are embedded in it. In contrast, membrane resistance is highly 
variable and depends on the conductance of ion channels embedded 
in the membrane.3

The sodium (Na+), potassium (K+), calcium (Ca2+), and chloride 
(Cl−) ions are the major charge carriers, and their movement across 
the cell membrane creates a flow of current that generates excitation 
and signals in cardiac myocytes. The electrical current generated by the 
flux of an ion across the membrane is determined by the membrane 
conductance to that ion (gion) and the potential (voltage) difference 
across the membrane. The potential difference represents the potential 
at which there is no net ion flux (i.e., the Eion) and the actual Em: current 
= gion × (Em − Eion).

By convention, an inward current increases the electropositivity 
within the cell (i.e., causes depolarization of the Em [to become less 
negative]) and can result from either the movement of positively charged 
ions (most commonly Na+ or Ca2+) into the cell or the efflux of nega-

Term Unit Definition

Charge (electric charge, Q) Coulombs • The physical property of matter that causes it to experience a force (electrostatic attraction or 
repulsion) in the presence of other matter.

• There are two types of electric charges: positive and negative. Like charges repel and unlike attract.
Voltage (potential difference, V) Volt (V) • A separation of unlike charge in space; the greater the amount of charge separated, the larger the 

voltage, and the greater the tendency for the charges to flow toward each other.
• Voltage is always measured at one point with respect to another point. There cannot be a voltage 

at one point in space.
• Voltage is the ability to drive an electric current across a resistance.

Current (I) Amperes (A) • A flow of electrical charges.
Resistance (R) Ohm (Ω) • A measure of the difficulty with which current flows in a circuit; the greater the difficulty, the 

greater the resistance.
Conductance (g) Siemen (S) • A measure of the ease with which current flows in a circuit.

• Conductance is the reciprocal of the resistance.
Capacitance (C) Farad • The ability of a body to store an electrical charge.

• A material with a large capacitance holds more electric charge at a given voltage, than one with 
low capacitance.

Membrane potential (transmembrane 
potential, membrane voltage, Em)

Volt (V) • The difference in electrical potential between the interior and the exterior of a biological cell.

Equilibrium potential of an ion (Eion) 
(reversal potential, Nernst potential)

Volt (V) • The value of the Em at which diffusive and electrical gradients for a particular ion counterbalance, 
so that there is no net ion flow across the membrane (i.e., electrochemical equilibrium).

• In other words, equilibrium potential is the membrane potential necessary to maintain a given 
concentration difference or the membrane potential that will result from maintenance of a given 
concentration difference.

• An ion will be in electrochemical equilibrium if Em = Eion.
Ionic current (Iion) Amperes (A) • Electrical current generated by the flux of charged ions across the cell membrane.
Capacitive current (nonfaradaic 

current, double-layer current)
• The electric current generated by the movement of electrons toward and away from the surfaces of 

the cell membrane.
• This current does not involve movement of charged ions across the cell membrane, it only causes 

accumulation (or removal) of electrical charges on membrane surface.

TABLE 1.1 Definitions Related to Electrical Properties of Cell Membranes
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the cell. On the other hand, because the calculated reversal potential of 
a cardiac Ca2+ channel (ECa) is +64 mV, passive Ca2+ flux is into the cell.

In normal atrial and ventricular myocytes and in His-Purkinje fibers, 
action potentials have very rapid upstrokes, mediated by the fast inward 
INa. These potentials are called fast response potentials. In contrast, action 
potentials in the normal sinus and atrioventricular (AV) nodal cells 
and many types of diseased tissues have very slow upstrokes, mediated 
by a slow inward, predominantly L-type voltage-gated Ca2+ current 
(ICaL), rather than by the fast inward INa (Fig. 1.2). These potentials have 
been termed slow response potentials.

Fast Response Action Potential
Phase 4: The Resting Membrane Potential
The Em of resting atrial and ventricular cardiomyocytes remains steady 
throughout diastole. The resting Em is caused by the differences in ionic 
concentrations across the membrane and the selective membrane per-
meability (conductance) to various ions. Large concentration gradients 
of Na+, K+, Ca2+, and Cl− across the cell membrane are maintained by 
the ion pumps and exchangers (Table 1.2).4

Under normal conditions, the resting membrane is most permeable 
to K+ and relatively impermeable to other ions. K+ has the largest resting 
membrane conductance (gK is 100 times greater than gNa) because of 
the abundance of open K+ channels at rest, whereas Na+ and Ca2+ chan-
nels are generally closed. Thus K+ exerts the largest influence on the 
resting Em. As a consequence, the resulting Em is almost always close to 
the K+ reversal potential (Em approximates EK). The actual resting Em 
is slightly less negative than EK because the cell membrane is slightly 
permeable to other ions.

The inwardly rectifying K+ (Kir) channels underlie an outward K+ 
current (IK1) responsible for maintaining the resting potential near the 
EK in atrial, His-Purkinje, and ventricular cells, under normal condi-
tions. Kir channels preferentially allow currents of K+ ions to flow into 
the cell with a strongly voltage-dependent decline of K+ efflux (i.e., 
reduction of outward current) on membrane depolarization. As such, 
IK1 is a strong rectifier that passes K+ currents over a limited range of 
Em. At a negative Em, IK1 conductance is much larger than that of any 
other current; thus it clamps the resting Em close to the reversal potential 
for K+ (EK) (see Chapter 2 for detailed discussion on the concept of 
rectification). IK1 density is much higher in ventricular than in atrial 
myocytes, a feature that largely prevents the ventricular cell from having 
diastolic membrane depolarization and pacemaker activity. By contrast, 
IK1 is almost absent in sinus and AV nodal cells, thus allowing for rela-
tively more depolarized resting diastolic potentials compared with atrial 
and ventricular myocytes (Table 1.3). The effect of outward K+ current 
to resist membrane depolarization (keeping voltage fixed) is sometimes 
referred to as a voltage clamping effect.2

A unique property of Kir currents is the unusual dependence of 
rectification on extracellular K+ concentration. Specifically, with an 

opposite directions because of their different ion selectivity. The alge-
braic summation of these contributions is referred to as net transmem-
brane current.

The cardiac action potential reflects a balance between inward and 
outward currents. When a depolarizing stimulus (typically generated 
by an electric current from an adjacent cell) abruptly changes the Em 
of a resting cardiomyocyte to a critical value (the threshold level), the 
properties of the cell membrane and ion conductances change dramati-
cally, precipitating a sequence of events involving the influx and efflux 
of multiple ions that together produce the action potential of the cell. 
In this fashion an electrical stimulus is conducted from one cell to the 
cells adjacent to it.4

Unlike skeletal muscle, cardiac muscle is electrically coupled so that 
the wave of depolarization propagates from one cell to the next, inde-
pendent of neuronal input. The heart is activated by capacitive currents 
generated when a wave of depolarization approaches a region of the 
heart that is at its resting potential. Unlike ionic currents, which are 
generated by the flux of charged ions across the cell membrane, capaci-
tive currents are generated by the movement of electrons toward and 
away from the surfaces of the membrane. These electrotonic potential 
changes are passive and independent of membrane conductance. The 
resulting decrease in positive charge at the outer side of the cell mem-
brane reduces the negative charge on the intracellular surface of the 
membrane. These charge movements, which are carried by electrons, 
generate a capacitive current. When an excitatory stimulus causes the 
Em to become less negative and beyond a threshold level (approximately 
−65 mV for working atrial and ventricular cardiomyocytes), Na+ chan-
nels activate (open) and permit an inward Na+ current (INa), resulting 
in a rapid shift of the Em to a positive voltage range. This event triggers 
a series of successive opening and closure of selectively permeable ion 
channels. The direction and magnitude of passive movement (and the 
resulting current) of an ion at any given transmembrane voltage are 
determined by the ratio of the intracellular and extracellular concentra-
tions and the reversal potential of that ion, with the net flux being 
larger when ions move from the more concentrated side.

The “threshold potential” is the lowest Em at which opening of enough 
Na+ channels (or Ca2+ channels in the setting of nodal cells) is able to 
initiate the sequence of channel openings needed to generate a propa-
gated action potential. Small (subthreshold) stimuli depolarize the 
membrane in proportion to the strength of the stimulus and cause only 
local responses because they do not open enough Na+ channels to gen-
erate depolarizing currents large enough to activate nearby resting cells 
(i.e., insufficient to initiate a regenerative action potential). On the 
other hand, when the stimulus is sufficiently intense to reduce the Em 
to a threshold value, regenerative action potential results, whereby 
intracellular movement of Na+ depolarizes the membrane more, a process 
that increases conductance to Na+ more, which allows more Na+ to 
enter, and so on. In this fashion the extent of subsequent depolarization 
becomes independent of the initial depolarizing stimulus, and more 
intense stimuli do not produce larger action potential responses; rather, 
an all-or-none response results.4

Electrical changes in the action potential follow a relatively fixed 
time and voltage relationship that differs according to specific cell types. 
Although the entire action potential takes only a few milliseconds in 
nerve cells, the cardiac action potential lasts several hundred millisec-
onds. The course of the action potential can be divided into five phases 
(numbered 0 to 4). Phase 4 is the resting Em, and it describes the Em 
when the cell is not being stimulated.

During the cardiac action potential, membrane voltages fluctuate 
in the range of −94 to +30 mV (Fig. 1.1). With physiological external 
K+ concentration, the reversal potential of K+ (EK) is approximately 
−94 mV, and passive K+ movement during an action potential is out of 

Ion

Extracellular 
Concentration 
(mM)

Intracellular 
Concentration 
(mM)

Equilibrium 
Potential (mV)

Na+ 135–145 10 +70
K+ 3.5–5.0 155 −94
Ca2+ 2 0.0001 +132
Cl− 87 30 −28

TABLE 1.2 Intracellular and Extracellular 
Ion Concentrations and Equilibrium 
Potentials in Cardiomyocytes
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Fig. 1.1 Contribution of Depolarizing Inward and Repolarizing Outward Currents to the Atrial and 
Ventricular Action Potential (AP). The top panel from the atrial (left) and ventricular (right) myocytes. The 
five phases of the AP are labeled: 0 = upstroke of the AP represents depolarization of the membrane; 1 = 
initial repolarization; 2 = plateau phase; 3 = late repolarization; 4 = the resting (diastolic) phase. The rate of 
change of the AP is directly proportional to the sum of the underlying transmembrane ion currents (lower 
panels). Inward currents (blue) depolarize the membrane, whereas outward currents (red) contribute to 
repolarization. Compared with an atrial AP, the ventricular AP typically has longer duration, higher plateau 
potential (phase 2), and more negative resting membrane potential (phase 4). ICa, L-type Ca2+ current; INa,  
Na+ current; INCX, Na+-Ca2+ exchanger; IKr, rapidly activating delayed rectifier K+ current; IKs, slowly activating 
delayed rectifier K+ current; IKur, ultrarapidly activating delayed rectifier K+ current; IK1, inward rectifier K+ 
current; Ito, transient outward K+ current. (With permission from Oudit GY, Backx PH. Voltage-gated  
potassium channels. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology: From Cell to Bedside. 7th ed. 
Philadelphia: Elsevier; 2018.)
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its electrochemical gradient at the expense of one ATP molecule. Because 
the stoichiometry of ion movement is not 1 : 1, the Na+-K+ pump is 
electrogenic and generates a net outward movement of positive charges 
(i.e., an outward current). At faster heart rates, the rate of Na+-K+ 
pumping increases to maintain the same ionic gradients, thus coun-
teracting the intracellular gain of Na+ and loss of K+ with each 
depolarization.

Ca2+ does not contribute directly to the resting Em because the voltage-
activated Ca2+ channels are closed at the hyperpolarized resting Em. 
However, changes in intracellular free Ca2+ concentration can affect 
other membrane conductance values. Increases in intracellular Ca2+ 

increase in extracellular K+, the IK1 current-voltage relationship shifts 
nearly in parallel with the EK and leads to a crossover phenomenon. 
One important consequence of such behavior is that at potentials posi-
tive to the crossover, K+ conductance increases rather than decreases, 
against an expectation based on a reduced driving force for K+ ions as 
a result of elevated extracellular K+ concentration.5

The resting Em is also powered by the Na+-K+ adenosine triphos-
phatase (ATPase) (the Na+-K+ pump), which helps to establish concen-
tration gradients of Na+ and K+ across the cell membrane. Under 
physiological conditions, the Na+-K+ pump transports two K+ ions into 
the cell against its chemical gradient and three Na+ ions outside against 

Property Sinus Nodal Cell Atrial Muscle Cell AV Nodal Cell Purkinje Fiber Ventricular Muscle Cell

Resting potential (mV) −50 to −60 −80 to −90 −60 to −70 −90 to −95 −80 to −90
Action potential amplitude (mV) +60 to +70 +110 to +120 +70 to +80 +120 +110 to +120
Action potential duration (msec) 100 to 300 100 to 300 100 to 300 300 to 500 200 to 300

TABLE 1.3 Regional Differences in Cardiac Action Potential

AV, Atrioventricular.
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the Na+-Ca2+ exchanger operating in reverse mode likely contributes to 
this early phase of repolarization.4

Phase 2: The Plateau
Phase 2 (plateau) represents a delicate balance between the depolarizing 
inward currents (ICaL and a small residual component of inward INa) 
and the repolarizing outward currents (ultrarapidly [IKur], rapidly [IKr], 
and slowly [IKs] activating delayed outward rectifying currents) (see 
Fig. 1.1). Phase 2 is the longest phase of the action potential, lasting 
tens (atrium) to hundreds of milliseconds (His-Purkinje system and 
ventricle). The plateau phase is unique among excitable cells and marks 
the phase of Ca2+ entry into the cell. It is the phase that most clearly 
distinguishes the cardiac action potential from the brief action potentials 
of skeletal muscle and nerve.4,7,8

ICaL is activated by membrane depolarization, is largely responsible 
for the action potential plateau, and is a major determinant of the 
duration of the plateau phase. ICaL also links membrane depolarization 
to myocardial contraction. L-type Ca2+ channels activate on membrane 
depolarization to potentials positive to −40 mV. ICaL peaks at an Em of 
0 to +10 mV and tends to reverse at +60 to +70 mV, following a bell-
shaped current-voltage relationship.

Na+ channels also make a contribution, although minor, to the plateau 
phase. After phase 0 of the action potential, some Na+ channels occa-
sionally fail to inactivate or exhibit prolonged opening or reopening 
repetitively for hundreds of milliseconds after variable and prolonged 
latencies, resulting in a small inward INa (with a magnitude of less than 
1% of the peak INa). This persistent or “late” INa (INaL), along with ICaL, 
helps to maintain the action potential plateau.9

IKr and IKs are activated at depolarized membrane potentials. IKr 
activates relatively fast (in the order of tens of milliseconds) on mem-
brane depolarization, thus allowing outward diffusion of K+ ions in 
accordance with its electrochemical gradient, but voltage-dependent 
inactivation thereafter is very fast. Hence only limited numbers of chan-
nels remain in the open state, whereas a considerable fraction resides 
in the nonconducting inactivated state. The fast voltage-dependent 
inactivation limits outward current through the channel at positive 
voltages and thus helps to maintain the action potential plateau phase 
that controls contraction and prevents premature excitation. However, 
as the voltage becomes less positive at the end of the plateau phase of 
repolarization, the channels recover rapidly from inactivation; this 
process leads to a progressive increase in IKr amplitudes during action 
potential phases 2 and 3, with maximal outward current occurring 
before the final rapid declining phase of the action potential.10

IKs, which is approximately 10 times larger than IKr, also contributes 
to the plateau phase. IKs activates in response to membrane depolariza-
tion to potentials positive to −30 mV and gradually increases during 
the plateau phase because its time course of activation is extremely 
slow, slower than any other known K+ current. In fact, steady-state 
amplitude of IKs is achieved only with extremely long membrane depo-
larization. Hence the contribution of IKs to the net repolarizing current 
is greatest late in the plateau phase, particularly during action potentials 
of long duration. Importantly, although IKs activates slowly compared 
with action potential duration, it is also slowly inactivated. As heart 
rate increases, IKs increases because channel deactivation is slow and 
incomplete during the shortened diastole. This allows IKs channels to 
accumulate in the open state during rapid successive action potentials 
and mediate the faster rate of repolarization. Hence IKs plays an impor-
tant role in determining the rate-dependent shortening of the cardiac 
action potential.5

IKur is detected only in human atria but not in the ventricles, such 
that it is the predominant delayed rectifier current responsible for atrial 
repolarization and is a basis for the much shorter duration of the action 

levels can stimulate the Na+-Ca2+ exchanger (INa-Ca), which exchanges 
three Na+ ions for one Ca2+ ion; the direction depends on the Na+ and 
Ca2+ concentrations on the two sides of the membrane and the Em 
difference. At resting Em and during a spontaneous sarcoplasmic reticu-
lum Ca2+ release event, this exchanger would generate a net Na+ influx, 
possibly causing transient membrane depolarizations.

Phase 0: The Upstroke—Rapid Depolarization
On excitation of an atrial, ventricular, or Purkinje cardiomyocyte by 
electrical stimuli from adjacent cells, its resting Em (approximately 
−85 mV) depolarizes, leading to opening (activation) of Na+ channels 
from its resting (closed) state and enabling a large and rapid influx of 
Na+ ions (inward INa) into the cell down their electrochemical gradient. 
As a consequence of increased Na+ conductance, the excited membrane 
no longer behaves like a K+ electrode (i.e., exclusively permeable to K+) 
but more closely approximates an Na+ electrode, and the Em moves 
toward the ENa (see Table 1.2). Once an excitatory stimulus depolarizes 
the Em beyond the threshold for activation of Na+ channels (approxi-
mately −65 mV), the activated INa is regenerative and no longer depends 
on the initial depolarizing stimulus. As a consequence, the influx of 
Na+ ions further depolarizes the membrane and thereby increases con-
ductance to Na+ more, which allows more Na+ to enter the cell (thus 
“regenerative”).6

Normally, activation of Na+ channels is transient; fast inactivation 
(closing of the channel pore) starts simultaneously with activation, but 
because inactivation is slightly delayed relative to activation, the chan-
nels remain transiently (less than 1 millisecond) open to conduct INa 
during phase 0 of the action potential before it closes. In addition, the 
influx of Na+ into the cell increases the positive intracellular charges 
and reduces the driving force for Na+. When the ENa is reached, no 
further Na+ ions enter the cell.

The rate at which depolarization occurs during phase 0 (i.e., the 
maximum rate of change of voltage over time [dV/dtmax]) is a reason-
able approximation of the rate and magnitude of Na+ entry into the 
cell and a determinant of conduction velocity for the propagated action 
potential (see later).

The threshold for activation of ICaL is approximately −30 to −40 mV. 
Although ICaL is normally activated during phase 0 by the regenerative 
depolarization caused by the fast INa, ICaL is much smaller than the peak 
INa. Furthermore, the amplitude of ICaL is not maximal near the action 
potential peak because of the time-dependent nature of ICaL activation, 
as well as the low driving force (Em − ECa) for ICaL. Therefore ICaL con-
tributes little to the action potential until the fast INa is inactivated, after 
completion of phase 0. As a result, ICaL affects mainly the plateau of 
action potentials recorded in atrial and ventricular muscle and His-
Purkinje fibers. On the other hand, ICaL plays a prominent role in the 
upstroke of slow response action potentials in partially depolarized 
cells in which the fast Na+ channels have been inactivated.

Phase 1: Early Repolarization
Phase 0 is followed by phase 1 (early repolarization), during which the 
membrane repolarizes rapidly and transiently to almost 0 mV (early 
notch), partly because of the inactivation of INa and concomitant activa-
tion of several outward currents. The transient outward K+ current (Ito) 
is mainly responsible for phase 1 of the action potential. Ito rapidly 
activates (with time constants less than 10 milliseconds) by depolariza-
tion and then rapidly inactivates (25 to 80 milliseconds for the fast 
component of Ito [Ito,f], and 80 to 200 milliseconds for the slow com-
ponent of Ito [Ito,s]). The influx of K+ ions via Ito channels partially 
repolarizes the membrane, thus shaping the rapid repolarization (phase 
1) of the action potential and setting the height of the initial plateau 
(phase 2) (see Fig. 1.1). In addition, an Na+ outward current through 
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and atrial myocytes. Although IKr and IKs densities are similar in atrial 
and ventricular myocytes, IKur is detected only in human atria and not 
in the ventricles. In fact, IKur is the predominant delayed rectifier current 
responsible for human atrial repolarization, with only small contribu-
tion of IKr and IKs.

Furthermore, the density of Ito is twofold higher in the atria com-
pared with ventricular myocytes. In addition, Ito subtypes (Ito,f and Ito,s) 
are differentially expressed in the heart. Ito,f is the principal subtype 
expressed in human atrium. Conversely, Ito,s is larger and Ito,f is smaller 
in the ventricles compared with atrial tissue.8

The markedly higher densities of Ito,f, together with the expression 
of IKur, accelerate the early phase of repolarization and lead to lower 
plateau potentials and shorter action potential durations in atrial as 
compared with ventricular cells.13

IK1 density is much higher in ventricular than in atrial myocytes, 
and this explains the steep repolarization phase in the ventricles (where 
the more abundant IK1 plays a larger role in accelerating the terminal 
portion of repolarization) and the shallower phase in the atria. Fur-
thermore, the higher IK1 channel expression underlies the hyperpolarized 
resting Em in ventricular myocytes, and prevents the ventricular cell 
from exhibiting pacemaker activity.14

Several other K+ channels are atrial selective and potentially con-
tribute significantly to the atrial, but not ventricular, action potential. 
These include IKACh, two-pore K+ channels (K2P), and small-conductance 
Ca2+-activated K+ (SK) channels.

Ventricular Regional Heterogeneity of the Action Potential
Action potential differences exist among the different layers across the 
ventricular wall, between the left and right ventricles, and from the 
apical region to the base.

Three distinct action potential waveforms have been distinguished 
from three predominant cell types contributing to the transmural het-
erogeneity of ventricular repolarization: the epicardial, midmyocardial, 
and endocardial cardiomyocytes. The most notable differences among 
these three layers are the prominent phase 1 notch and the spike and 
dome morphology of epicardial and midmyocardial action potentials 
compared with endocardium. The action potential duration of epicardial 
myocytes is shorter than that of endocardial myocytes. The duration 
of the action potential is longest in midmyocardial myocytes.8,14

The distinct notch phase in the action potential waveform of epi-
cardial myocytes has mainly been attributed to the regional differ-
ences in Ito density across the myocardial wall. In human ventricles, 
Ito densities are much higher in the epicardium and midmyocardium 
than in the endocardium. Furthermore, although both Ito,f and Ito,s are 
expressed in the ventricle, Ito,f is more prominent in the epicardium 
and midmyocardium than in the endocardium, whereas Ito,s is mainly 
present in the endocardium and Purkinje cells. A prominent Ito-mediated 
action potential notch in ventricular epicardium but not endocar-
dium produces a transmural voltage gradient during early ventricular 
repolarization that registers as a J wave or J point elevation on the  
electrocardiogram (ECG).8,14

Some experimental studies in wedge preparations strongly suggest the 
presence of a subpopulation of cells in the midmyocardium (referred to 
as the M cells) that exhibits distinct electrophysiological (EP) properties, 
although the presence of M cells has not been consistently confirmed 
by intact heart experiments. The putative M cells appear to have the 
longest action potential duration across the myocardial wall, largely 
attributed to their weaker IKs current but stronger late INa and Na+-Ca2+ 
exchanger currents. Hence the M cells have been proposed to underlie 
the EP basis for transmural ventricular dispersion of repolarization and 
the T wave on the surface ECG, with the peak of the T wave (in wedge 
preparations) coinciding with the end of epicardial repolarization and 

potential in the atrium. IKur activates rapidly on depolarization in the 
plateau range and displays outward rectification, but it inactivates slowly 
during the time course of the action potential.

The Na+-Ca2+ exchanger operating in forward mode (three Na+ ions 
in for one Ca2+ ion out) and the Na+-K+ pump provide minor current 
components during phase 2.

Importantly, during the plateau phase, membrane conductance to 
all ions falls to rather low values. Thus less change in current is required 
near plateau levels than near resting potential levels to produce the 
same changes in Em. In particular, K+ conductance falls during the plateau 
phase as a result of inward rectification of IK1 (i.e., voltage-dependent 
decline of K+ efflux and hence reduction of outward current) on mem-
brane depolarization, in spite of the large electrochemical driving force 
on K+ ions during the positive phase of the action potential (phases 0, 
1, and 2). This property allows membrane depolarization following 
Na+ channel activation, slows membrane repolarization, and helps to 
maintain a more prolonged cardiac action potential. This also confers 
energetic efficiency in the generation of the action potential.11,12

Phase 3: Final Rapid Repolarization
Phase 3 is the phase of rapid repolarization that restores the Em to its 
resting value. Phase 3 is mediated by the increasing conductance of the 
delayed outward rectifying currents (IKr and IKs), the inwardly rectifying 
K+ currents (IK1 and acetylcholine-activated K+ current [IKACh]), and 
time-dependent inactivation of ICaL (see Fig. 1.1). Final repolarization 
during phase 3 results from K+ efflux through the IK1 channels, which 
open at potentials negative to −20 mV.4

Phase 4: Restoration of Resting Membrane Potential
During the action potential, Na+ and Ca2+ ions enter the cell and depo-
larize the Em. Although the Em is quickly repolarized by the efflux of 
K+ ions, restoration of transmembrane ionic concentration gradients 
to the baseline resting state is necessary. This is achieved by the Na+-K+ 
ATPase (Na+-K+ pump, which exchanges two K+ ions inside and three 
Na+ ions outside) and by the Na+-Ca2+ exchanger (INa-Ca, which exchanges 
three Na+ ions for one Ca2+ ion).4

Reduction of cytosolic Ca2+ concentration during diastole is achieved 
by the reuptake Ca2+ by the sarcoplasmic reticulum via activation of 
the sarco/endoplasmic reticulum calcium-ATPase calcium pump 
(SERCA), in addition to extrusion across the sarcolemma via the Na+-
Ca2+ exchanger. In the human heart under resting conditions, the time 
required for cardiac myocyte depolarization, contraction, relaxation, 
and recovery is approximately 600 milliseconds.

Regional Heterogeneity of the Action Potential
Substantial differences in expression levels of ion channels underlie the 
considerable heterogeneity in action potential duration and configura-
tion between cardiomyocytes located in different regions of the heart. 
The characteristics of the action potential differ in atrial versus ven-
tricular myocardium, as well as across the ventricular myocardial wall 
from endocardium, midmyocardium, to epicardium (see Fig. 1.2).

Atrioventricular Heterogeneity of the Action Potential
Compared with the atrium, ventricular myocytes maintain a slightly 
more hyperpolarized resting Em (approximately −85 mV vs. −80 mV). 
In addition, the action potential duration is longer, the plateau phase 
reaches a more depolarized Em (approximately +20 mV), and phase 3 
repolarization curve is steeper in ventricular myocytes as compared 
with the atrial action potential (see Table 1.3).

The differences in action potential configuration between atria and 
ventricles are mainly related to differences in ionic current densities 
and ion channel expression (especially K+ channels) between ventricular 
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clock” (also referred to as the “voltage clock” or “ion channel clock”) 
refers to the time- and voltage-dependent membrane ion channels 
underlying pacemaking activity, including the decay of the outward 
rectifier K+ current and the activation of several inward currents (If, ICaL,  
ICaT, and INa).

Newer evidence suggests that the sarcoplasmic reticulum, a major 
Ca2+ store in sinus nodal cells, can function as a physiological clock 
(the so-called calcium clock) within the cardiac pacemaker cells and 
has a substantial impact on late diastolic depolarization.15,17

There remains some degree of uncertainty about the relative role 
of If versus that of intracellular Ca2+ cycling in controlling the normal 
pacemaker cell automaticity. Furthermore, the interactions between the 
membrane clock and the intracellular calcium clock and cellular mecha-
nisms underlying this internal Ca2+ clock are not completely elucidated. 
A further debate has arisen around their individual (or mutual) relevance 
in mediating the positive and negative chronotropic effects of neu-
rotransmitters. Nevertheless, these interactions are of fundamental 
importance for understanding the integration of pacemaker mechanisms 
at the cellular level (see Chapter 3 for detailed discussion on the mecha-
nisms of automaticity and pacemaker activity).14

Phase 0: The Upstroke—Slow Depolarization
IK1 is almost absent in sinus and AV nodal cells, thus allowing for rela-
tively more depolarized resting diastolic potentials (−50 to −65 mV) 
compared with atrial and ventricular myocytes and facilitating dia-
stolic depolarization mediated by the inward currents (e.g., If). At the 
depolarized level of the maximum diastolic potential of pacemaker 
cells, most Na+ channels are inactivated and unavailable for phase 
0 depolarization. Consequently, action potential upstroke is mainly  
achieved by ICaL.

15

L-type Ca2+ channels activate on depolarization to potentials positive 
to −40 mV, and ICaL peaks at 0 to +10 mV. The peak amplitude ICaL is 
less than 10% that of INa, and the time required for activation and 
inactivation of ICaL is approximately an order of magnitude slower than 
that for INa. As a consequence, the rate of depolarization in phase 0 
(dV/dt) is much slower and the peak amplitude of the action potential 
is less than that in the working myocardial cells.

EXCITABILITY
Excitability of a cardiac cell describes the ease with which the cell responds 
to a stimulus with a regenerative action potential. A certain minimum 
charge must be applied to the cell membrane to elicit a regenerative 
action potential (i.e., the stimulus should be sufficiently intense to reduce 
the Em to the threshold value). Excitability is inversely related to the 
charge required for excitation.

Excitability of a cardiac cell depends on the passive and active prop-
erties of the cell membrane. The passive properties include the membrane 
resistance and capacitance and the intercellular resistance. The most 
important determinant of reduced excitability is the reduced availability 
of Na+ channels. The more negative the Em is, the more Na+ channels 
are available for activation, the greater the influx of Na+ into the cell 
during phase 0, and the greater the conduction velocity. In contrast, 
membrane depolarization to levels of −60 to −70 mV can inactivate 
half the Na+ channels, and depolarization to −50 mV or less can inac-
tivate all the Na+ channels, thereby rendering Na+ channels unavailable 
for mediating an action potential upstroke and thus reducing tissue 
excitability (Fig. 1.3).

Reduced excitability is physiologically observed during the relative 
refractory period (occurring during phase 3 of the action potential, 
before full recovery of Em). At less negative potentials of the cell mem-
brane, a portion of Na+ channels will still be inactivated and unavailable 

the end of the T wave coinciding with the end of repolarization of the 
M cells. Although the role of M cells under physiological conditions 
remains controversial, these cells appear to have a significant role in 
arrhythmogenesis under a variety of pathological conditions, such as 
the long QT and Brugada syndromes, secondary to exaggeration of 
transmural repolarization gradients.

In addition to the transmural action potential gradient that exists 
across the three layers of myocardium in the left and right ventricles, 
the right ventricular (RV) action potential duration overall is shorter 
and the spike and dome morphology is more pronounced compared 
with that of the left ventricle (LV). These differences have been attrib-
uted to higher Ito densities in the right than in the left ventricular  
myocytes.14

Evidence also suggests an apicobasal ventricular action potential 
heterogeneity. Action potential duration appears to be shorter in LV 
base compared with the apex. Larger Ito and IKs in apical compared with 
basal myocytes likely underlie those observations.14

Slow Response Action Potential
In normal atrial and ventricular myocytes and in the His-Purkinje  
fibers, action potentials have very rapid upstrokes mediated by the  
fast inward INa. These potentials are called fast response potentials. In 
contrast, action potentials in the normal sinus and AV nodal cells  
and many types of diseased tissue have very slow upstrokes, mediated 
predominantly by the slow inward ICaL, rather than by the fast inward 
INa (see Fig. 1.2). These potentials have been termed slow response 
potentials.4

As noted, action potentials of pacemaker cells in the sinus and AV 
nodes are significantly different from those in working atrial and ven-
tricular myocardium. Slow response action potentials are characterized 
by a more depolarized Em at the onset of phase 4 (−50 to −65 mV), 
slow diastolic depolarization during phase 4, and reduced action potential 
amplitude. Furthermore, the rate of depolarization in phase 0 is much 
slower than that in the working myocardial cells, resulting in reduced 
conduction velocity of the cardiac impulse in the nodal regions (see 
Table 1.3). Cells in the His-Purkinje system can also exhibit phase 4 
depolarization under special circumstances (when Na+ channels are 
inactivated by pathological processes).

Phase 4: Diastolic Depolarization
The sinus and AV nodal cells lack the inward rectifier K+ current (IK1), 
which acts to stabilize the resting Em in the normal working atrial and 
ventricular myocardium and Purkinje fibers. Sinus and AV nodal excit-
able cells exhibit a spontaneous, slow, and progressive decline in the 
Em during diastole (spontaneous diastolic depolarization or phase 4 
depolarization) that underlies normal automaticity and pacemaking 
function. Once this spontaneous depolarization reaches threshold 
(approximately −40 mV), a new action potential is generated.15

The ionic mechanisms responsible for diastolic depolarization and 
normal pacemaker activity in the sinus node are still controversial. 
Originally, a major role was attributed to the decay of the delayed K+ 
conductance (an outward current) activated during the preceding action 
potential (the IK-decay theory). This model of pacemaker depolarization 
lost favor upon the discovery of the “funny” current (If), sometimes 
referred to as the pacemaker current. If is a hyperpolarization-activated 
inward current that is carried largely by Na+ and, to a lesser extent, K+ 
ions. Once activated, If depolarizes the membrane to a level where the 
Ca2+ current activates to initiate an action potential.15,16

Other ionic currents gated by membrane depolarization (i.e., ICaL 
and T-type Ca2+ current [ICaT]), nongated and nonspecific background 
leak currents, and a current generated by the Na+-Ca2+ exchanger have 
also been proposed to be involved in pacemaking. The “membrane 
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has repolarized to a certain level. With repolarization, Na+ channels 
normally recover rapidly from inactivation (within 10 milliseconds) 
and are ready to open again. Refractoriness is determined, in part, by 
the action potential duration and the Em, and the degree of refractori-
ness primarily reflects the number of Na+ channels that have recovered 
from their inactive state. The period of refractoriness to stimulation is 
physiologically necessary for the mechanical function of the heart; it 
allows only gradual recovery of excitability, thus permitting relaxation 
of cardiac muscle before subsequent activation. In addition, the refrac-
tory period acts as a protective mechanism by preventing multiple, 
compounded action potentials from occurring (i.e., it limits the frequency 
of depolarization and heart rate). Therefore refractoriness is a deter-
minant of susceptibility to arrhythmias. In general, shorter refractoriness 
facilitates reentry and arrhythmias.9

There are different levels of refractoriness during the action potential 
(Fig. 1.4). During the absolute refractory period (which extends over 
phases 0, 1, 2, and part of phase 3 of the action potential), no stimulus, 
regardless of its strength, can reexcite the cell. After the absolute refrac-
tory period, a stimulus can cause some cellular depolarization, but it 
does not lead to a propagated action potential. The sum of this period 
(which includes a short interval of phase 3 of the action potential) and 
the absolute refractory period is termed the effective refractory period 
(ERP, ending during phase 3 at an Em of approximately −60 mV). The 
ERP is followed by the relative refractory period, which extends over the 
middle and late parts of phase 3 (at an Em of approximately −60 mV 
during phase 3) to the end of phase 3 of the action potential. During 
the relative refractory period, initiation of a second action potential is 
more difficult but not impossible; a larger-than-normal stimulus can 
result in activation of the cell and lead to a propagating action potential 
(Fig. 1.5). However, the upstroke of the new action potential is less 
steep and of lower amplitude and its conduction velocity is reduced 
compared with normal. As noted, there is a brief period in phase 3, the 
supernormal period, during which excitation is possible in response to 
an otherwise subthreshold stimulus (supernormal excitability).18

In pacemaking tissues, INa is predominantly absent and excitability 
is mediated by the activation of ICaL. After inactivation, the transition 
of Ca2+ channels from the inactivated to the closed resting state (i.e., 
recovery from inactivation) is relatively slow. The time constant for 
recovery from inactivation depends on both the Em and the intracellular 
Ca2+ concentration (typically 100 to 200 milliseconds at −80 mV and 
low intracellular Ca2+ concentration). This means that ICaL must recover 
from inactivation between action potentials. As a result, excitability in 

for activation. As a result, initiation of a propagating action potential 
will require a larger-than-normal stimulus. Even then, INa and phase 0 
of the resulting action potential are reduced, and conduction of a pre-
mature stimulus occurring during that period is slowed.

On the other hand, supernormal excitability can be observed during 
a brief period at the end of phase 3 of the action potential. During the 
supernormal period, excitation is possible in response to an otherwise 
subthreshold stimulus; that same stimulus fails to elicit a response earlier 
and later than the supernormal period. Two factors are responsible for 
supernormality: the availability of fast Na+ channels and the proximity 
of the Em to threshold potential. During the supernormal phase of 
excitability, the cell has recovered enough to respond to a stimulus (i.e., 
an adequate number of Na+ channels is available for activation). At the 
same time, because the Em is still reduced, it requires only a little addi-
tional depolarization to bring the fiber to threshold; thus a stimulus 
that is smaller than is normally required is now able to elicit an action 
potential. However, because Na+ channels are still not fully activated, 
the resulting action potential is still somewhat reduced from normal 
in amplitude and propagation velocity.18 In general, the later the second 
stimulus comes, the more the Na+ channels are reactivated, and the 
more rapid the upstroke of the second action potential.

Reduced membrane excitability can occur in certain pathophysiologi-
cal conditions, including genetic mutations that result in loss of Na+ 
channel function, Na+ channel blockade with class I antiarrhythmic 
drugs, and acute myocardial ischemia.19

Action potentials with reduced upstroke velocity resulting from 
partial inactivation of Na+ channels are called “depressed fast responses.” 
Importantly, refractoriness in cells with reduced Em can outlast voltage 
recovery of the action potential (i.e., the cell can still be refractory or 
partially refractory after the resting Em returns to its most negative value).

REFRACTORINESS
During a cardiac cycle, once an action potential is initiated, the cardio-
myocyte becomes inexcitable to stimulation (i.e., unable to initiate 
another action potential in response to a stimulus of threshold intensity) 
for some duration of time (which is generally slightly shorter than the 
duration of the “true” action potential duration) until its membrane 
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R, recovery of Na+ channels. (Redrawn from Rosen MS, Wit AL, Hoffman 
BF. Electrophysiology and pharmacology of cardiac arrhythmias. I. Cel-
lular electrophysiology of the mammalian heart. Am Heart J. 1974;88:380.)
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ogy of cardiac arrhythmias. I. Cellular electrophysiology of the mammalian 
heart. Am Heart J. 1974;88:380.)
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[dV/dt]). These factors depend on the amplitude of INa, which, in turn, 
is directly related to the Em at the time of stimulation, the availability 
of Na+ channels for stimulation, and the size of the Na+ electrochemical 
potential gradient across the cell membrane.

Normally, the charge flow across depolarizing ion channels (INa) is 
significantly larger than the charge needed to excite the same cell, pro-
viding sufficient extra stimulatory current to drive propagation forward. 
This property (referred to as “propagation reserve” or “safety of propa-
gation”) helps to maintain action potential propagation under different 
physiological and pathophysiological conditions.23 Working atrial and 
ventricular myocardium and, in particular, Purkinje fibers have high 
concentrations of Na+ channels (Purkinje fibers contain up to 1 million 
Na+ channels per cell), which help to generate a large depolarizing 
current flow (INa) during the action potential. The large INa spreads 
quickly within and between cells to support rapid conduction.

Reduction of membrane excitability leads to a reduction in the rate 
or amplitude of depolarization (INa) during phase 0 of the action poten-
tial. Conduction velocity decreases monotonically with progressive 
reduction of membrane excitability. When the safety factor for conduc-
tion falls to less than 1 (i.e., the source current becomes less than the 
current necessary for excitation of downstream tissue), conduction can 
no longer be sustained, and failure (conduction block) occurs.

In tissues with slow response action potentials (sinus and AV nodes), 
the upstroke of the action potential is formed by ICaL instead of INa. 
Because ICaL has lower amplitude and slower activation kinetics than 
INa, slow response action potentials exhibit reduced amplitudes and 
upstroke velocities. Hence slow conduction (approximately 0.1 to 0.2 m/s) 
and prolonged refractoriness are characteristic features of nodal tissues. 
These cells also have a reduced safety factor for conduction, which 
means that the stimulating efficacy of the propagating impulse is low, 
and conduction block occurs easily.

Intercellular Propagation
Propagation of action potentials from one cell to adjacent cells is achieved 
by direct ionic current spread (without electrochemical synapses) via 
specialized, low resistance intercellular connections (gap junctional 
channels) located mainly in arrays within the intercalated disks. Gap 
junctions facilitate impulse propagation throughout the heart, so that 
the heart behaves electrically as a functional syncytium, resulting in a 
coordinated mechanical function.22

Gap junctional channels connect neighboring cells and allow bio-
chemical and low-resistance electrical coupling. Although the resistivity 
of the gap junctional membrane for the passage of ions and small 
molecules and for electrical propagation is several orders of magnitude 
lower compared with uncoupled cell membranes, gap junction coupling 
provides a resistance pathway that is several orders of magnitude higher 
than the cytoplasmic intracellular resistivity (conduction delay is approxi-
mately 0.21 to 0.27 milliseconds at gap junctions, and 0.05 to 0.1 mil-
liseconds at the cell membrane).24 As a consequence, impulse propagation 
along single cell chains of cardiomyocytes is saltatory, in which the 
high-resistance intercellular junctions alternate with the low cytoplasmic 
resistance. However, this feature is lost in intact multicellular tissue due 
to lateral gap junctional coupling which serves to average local small 
differences in activation times of individual cardiomyocytes at the exci-
tation wavefront.19

The number, size, and molecular composition of the gap junction 
channels contribute to the specific propagation properties of a given 
tissue. Tissue-specific connexin expression and gap junction spatial 
distribution, as well as the variation in the structural composition of 
gap junction channels, allow for a greater versatility of gap junction 
physiological features and enable disparate conduction properties in 
cardiac tissue.25

pacemaking cells may not be recovered by the end of phase 3 of the 
action potential and full restoration of maximum diastolic potential 
because L-type Ca2+ channels require longer time to recovery from 
inactivation to be able to mediate the upstroke of a new action potential. 
In other words, sinus and AV nodal cells remain refractory for a time 
interval that is longer than the time it takes for full membrane repo-
larization to occur, a phenomenon termed postrepolarization refractori-
ness. This can also occur in working myocardium during some disease 
states such as myocardial infarction.

PROPAGATION
Cardiac excitation involves generation of the action potential by indi-
vidual cells, followed by propagation of the electrical impulse along the 
cardiac muscle fiber and rapidly from cell to cell throughout the cardiac 
tissue. Conduction velocity refers to the speed of propagation of the 
action potential through cardiac tissue. The conduction velocity varies 
in cardiac tissues, ranging from 0.05 m/s in the atrioventricular node 
(AVN), to 0.5 m/s in atrial and ventricular working myocardium, 2 m/s 
in the bundle branches, and up to 4 m/s in Purkinje fibers.20 In most 
regions of the heart, conduction does not occur as a continuous process; 
rather, the propagating electrical wavefronts interact with structural 
boundaries that exist at the cellular level (cell membranes, intercellular 
gap junctions, the three-dimensional [3-D] arrangement of cardiomyo-
cytes), as well as at the more macroscopic level (microvasculature, con-
nective tissue barriers, trabeculation).21,22

Intracellular Propagation
Once initiated, the action potential propagates along the cell membrane 
until the entire cardiomyocyte is depolarized. The velocity of propaga-
tion increases with increasing cell diameter, action potential amplitude, 
and the initial rate of the rise of the action potential.

An action potential traveling along a cardiac muscle fiber is propa-
gated by local circuit currents, much as it does in nerve and skeletal 
muscle. Conduction velocity along the cardiac fiber is directly related 
to the action potential amplitude (i.e., the voltage difference between 
the fully depolarized and the fully polarized regions) and the rate of 
change of potential (i.e., the rate of rise of phase 0 of the action potential 
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Fig. 1.5 Excitability as a Function of Latency. The changes in action 
potential amplitude and shape of the upstroke as action potentials are 
initiated at different stages of the relative refractory period of the pre-
ceding excitation. (Redrawn from Rosen MS, Wit AL, Hoffman BF. 
Electrophysiology and pharmacology of cardiac arrhythmias. I. Cellular 
electrophysiology of the mammalian heart. Am Heart J. 1974;88:380.)
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This particular subcellular distribution of gap junctions is a main deter-
minant of anisotropic conduction in the heart; a wavefront must traverse 
more cells in the transverse direction than over an equivalent distance 
in the longitudinal direction because cell diameter is much smaller than 
cell length. In addition, less intercellular gap junctional coupling occurs 
and hence greater resistance and slower conduction transversely than 
longitudinally.19,24

A further level of anisotropy exists in the normal working myocar-
dium secondary to discontinuities of 3-D myocyte architecture at the 
tissue scale. The myocardium is not a continuum. Distinct layers or 
bundles of myocytes are evident in the atria and ventricles, at dimen-
sions ranging from approximately 100 µm to several millimeters.22 The 
myocardial tissue is not uniformly connected transverse to the myofiber 
direction. Ventricular myocytes are arranged in layers four to six cells 
thick (referred to as sheets, myolaminae, or sheetlets) that are separated 
by clefts of connective tissue, across which there is little direct cell-to-
cell coupling. These layers form a branching network. In addition to 
the laminar myocyte architecture, transmural myofiber rotation adds 
further complexity to cellular organization. In a normal heart, myocardial 
fiber direction changes (gradually) from the endocardium to the epi-
cardium by nearly 90 degrees. A lower axial resistivity in the longitudinal 
myofiber and myolaminar orientation than in the transverse direction 
further exacerbates electrical anisotropy.22

Source-Sink Relationship
Source-sink relationships reflect the interplay between the main factors 
influencing source current (the rate of rise of the upstroke and ampli-
tude of the action potential) and those that influence the current require-
ments of the sink (the membrane resistance, the difference between 
the resting and threshold potentials, cell-to-cell coupling, and tissue 
geometry).

During action potential propagation, an excited cell serves as a source 
of electrical charge for depolarizing neighboring unexcited cells. The 
requirements of adjacent resting cells to reach the threshold Em constitute 
an electrical sink (load) for the excited cell. For propagation to succeed, 
the excited cell must provide sufficient charge to bring the Em at a site 
in the sink from its diastolic value to the threshold. Once threshold is 
reached and an action potential is generated, the load on the excited 
cell is removed, and the newly excited cell switches from being a sink 
to being a source for the downstream tissue, thus perpetuating the 
process of action potential propagation. Action potentials are “regenera-
tive” because they can be conducted over large distances without attenu-
ation. Propagation will continue to be successful as long as the active 
sources can generate enough current to satisfy local sinks. Alternatively, 
if the sink overwhelms the source, propagation will fail.27

The current provided by the source must reach the sink. The pathway 
between the source and the sink includes intracellular resistance (pro-
vided by the cytoplasm) and intercellular resistance (provided by the 
gap junctions). Extracellular resistance plays a role, but it can often be 
neglected. The coupling resistance is mainly determined by resistance 
of the gap junctions. Therefore the number and distribution of gap 
junctions, as well as the conductance of the gap junction proteins (con-
nexins) and the geometry of the source-sink relationship, are important 
factors for propagation of the action potential.21,28

A major cause for source-sink mismatch is an abrupt change in 
the structure of the cellular network, such as that which occurs at the 
Purkinje fiber–ventricular muscle junction. Each Purkinje fiber (source) 
transfers the impulse to hundreds or thousands of ventricular car-
diomyocytes (sink). This mismatch can potentially result in disper-
sion of the source current to many neighboring cells (sink), and in 
each of these the accumulated charge may be too low to trigger an 
action potential, leading to conduction failure.12,29 Nonetheless, in a 

Three different connexins are prominently expressed in the atrial 
and ventricular myocardium: connexin 40 (Cx40), connexin 43 (Cx43), 
and connexin 45 (Cx45), named for their molecular masses. A fourth 
connexin has been described in the AVN (Cx31.9). Cx40 gap junction 
channels exhibit the largest conductance and Cx45 the smallest. The 
myocytes of the sinus node and AVN are equipped with small, sparse, 
and dispersed gap junctions containing Cx45, a connexin that forms 
low conductance channels, thus underlying the relatively poor intercel-
lular coupling in nodal tissues, a property that is linked to slowing of 
conduction. In contrast, atrial myocardium gap junctions consist mainly 
of Cx43 and Cx40, ventricular myocardium of Cx43, and the and Pur-
kinje fibers of Cx40.24,25

Importantly, there is a high redundancy in connexin expression in 
the heart with regard to conduction of electrical impulse, and a large 
reduction of intercellular coupling is required to cause major slowing 
of conduction velocity. It has been shown that a 50% reduction in Cx43 
does not alter ventricular impulse conduction. Cx43 expression must 
decrease by 90% to affect conduction, but even then conduction velocity 
is reduced only by 20%.25,26

Similar to its behavior during reduced membrane excitability, con-
duction velocity decreases monotonically with reduction in intercellular 
coupling. Of note, partial gap junctional uncoupling was shown to 
result in conduction velocities that are over an order of magnitude 
slower than those obtained during a maximal reduction of excitability 
before conduction failure develops.19,23

An alternative to the generally accepted understanding of gap 
junction–mediated intercellular impulse propagation is the electric field 
mechanism (also referred to as “ephaptic transmission”). Electrical field 
coupling (ephaptic coupling) refers to the initiation of an action potential 
in a nonactivated downstream cell by the electrical field caused by an 
activated upstream cell. This model postulates that activation spreads 
along tracts of cardiac cells in a saltatory fashion driven by the negative 
potential that develops in the restricted cleft space between cells when 
an action potential develops in the prejunctional membrane. The large 
INa in the proximal side of an intercellular cleft at the intercalated disks 
(where Na+ channels are concentrated) generates a negative extracellular 
potential within the cleft, which depolarizes the distal membrane and 
activates its Na+ channels. Thus propagation can continue downstream 
in the absence of gap junctions, provided there is a large INa at the 
intercalated disk and a narrow (2 to 5 nm) intercellular cleft that sepa-
rates the two opposing cells. Computer simulation studies suggest that, 
under certain conditions, ephaptic coupling may play a role in cardiac 
impulse propagation, and that ephaptic transmission can explain the 
insensitivity of conduction velocity to reduced intercellular gap junction 
coupling. However, the importance and contribution of ephaptic trans-
mission to action potential propagation in normal cardiac tissue are 
currently unclear and remain difficult to define.22,24,25

Anisotropic Conduction
Anisotropy refers to directionally dependent conduction velocity. Iso-
tropic conduction is uniform in all directions; anisotropic conduction 
is not. Anisotropy is a normal feature of heart muscle and is related to 
the differences in longitudinal and transverse conduction velocities, 
which are attributable to the lower resistivity of myocardium in the 
longitudinal (parallel to the long axis of the myocardial fiber bundles) 
versus the transverse direction (eFig. 1.1).25

In normal adult working myocardium, a given cardiomyocyte is 
electrically coupled to an average of approximately 11 adjacent cells, 
with gap junctions being predominantly localized at the intercalated 
discs at the ends of the rod-shaped cells. Lateral (side-to-side) gap 
junctions in nondisc lateral membranes of cardiomyocytes are much 
less abundant and occur more often in atrial than ventricular tissues. 



CHAPTER 1 Molecular Mechanisms of Cardiac Electrical Activity 11.e1

B

A

eFig. 1.1 Anisotropic Conduction. Progression of activation wavefronts 
in blocks of ventricular myocardium with longitudinal fiber orientation 
are shown. A wavefront stimulated (asterisk) at the left edge progresses 
more rapidly (wider isochrone spacing, [A]) than one starting perpen-
dicularly (B) because of more favorable conduction parameters in the 
former direction. 
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