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 The concept of cardiac remodeling as a mechanism of heart disease leading to heart 
failure has evolved since the mid-1970s. The initial emphasis was on heart failure 
related to pressure and volume overload; this led to theories on adaptive and mal-
adaptive structural and functional changes after life-threatening insults such as 
myocardial infarction and hypertensive heart disease. Later, the scope of cardiac 
remodeling expanded to pure and mixed pressure and volume overload states and a 
wide range of cardiomyopathies, inherited or acquired from infections or exposure 
to various therapeutic drugs with cardiotoxic pleiotropic effects and other cardio-
toxic agents. Results of cardiovascular research at the bench and bedside levels and 
a host of population studies since the mid-1980s fueled the concept of adverse left 
ventricular remodeling during acute and subacute phases of myocardial infarction, 
with structural changes that have a negative impact on cardiac function. These stud-
ies have established that adverse cardiac remodeling is a major mechanism for pro-
gressive left ventricular enlargement, deterioration of ventricular function, increased 
suffering, and deaths from chronic heart failure. Concurrently over the last 4 
decades, expanding knowledge of the basic molecular mechanisms and clinical 
implications of cardiac remodeling has identi fi ed several molecular pathways and 
potential targets, leading to drug discovery and development and improved thera-
pies for major causes of adverse cardiac remodeling, such as myocardial infarction 
and hypertension. A major advance has been the appreciation that lifelong exposure 
to cardiovascular risk factors and cardiotoxic agents, beginning from the pediatric 
age through adulthood and old age, fuels the march to heart failure. This has opened 
up a new area of research into the biology of aging and its impact on cardiac 
remodeling. 

 Despite the advances, hearts continue to enlarge, and the heart failure burden 
continues to increase, especially after ST-segment-elevation myocardial infarction 
(STEMI). Many knowledge gaps exist. With the expanded spectrum of diseases that 
result in adverse cardiac remodeling, improved understanding of the underlying 
molecular mechanisms through research is crucial. During the last 20 years, atten-
tion focused on cellular and subcellular changes, including those at the molecular 
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and biochemical levels. There has been an explosion in knowledge of molecular and 
cellular mechanisms, importance of oxidative stress, metabolic pathways, extracel-
lular and intracellular matrix remodeling, and the far-reaching effects of infarct and 
non-infarct zone  fi brosis in the progression to heart failure. This has led to a profu-
sion of original scienti fi c and review papers dealing with several aspects of molecu-
lar mechanisms of adverse cardiac remodeling. There is therefore a need to 
synthesize these ideas into one book on molecular mechanisms of cardiac 
remodeling. 

 The main objective of this book has been to summarize the major research 
advances in molecular, biochemical, and translational aspects of cardiac remodeling 
over the last 2 to 3 decades under one cover and touch on future directions. The 
invited leaders and established investigators in the  fi eld have generously contrib-
uted 30 chapters on key topics relating to molecular mechanisms, with emphasis on 
selected biochemical and translational aspects of cardiac remodeling. The authors 
have succinctly summarized large volumes of data on these key topics and high-
lighted novel pathways and key molecules that need to be further explored and pos-
sibly targeted. They provide integrative reviews of the basic mechanisms and clinical 
correlates as well as critical assessments of publications on the key topics by the 
leading investigators in the  fi eld. The reference lists are fairly comprehensive and 
include key papers that are currently not easily accessed from Pubmed or other 
search engines. The book is carefully organized into two sections: Section A con-
tains 15 chapters that focus mainly on molecular mechanisms in pressure and vol-
ume overload hypertrophy, with some overlap into brief ischemia–reperfusion 
injury; Section B contains 15 chapters that focus on molecular mechanisms after 
myocardial injury and infarction. The list of topics is by no means comprehensive 
but addresses some major areas needing attention. To our knowledge, there is no 
other book on this topic to date. 

 In summary, this book provides a high-pro fi le and valuable publication resource 
on molecular mechanisms of cardiac remodeling for both the present and future 
generations of researchers, teachers, students, and trainees. It should stimulate 
future translational research targeted towards discovery and development for pre-
venting, limiting, and reversing bad remodeling over the next few decades, with the 
ultimate goal of preventing progression to systolic and/or diastolic heart failure. The 
chapters suggest potential novel strategies that should receive attention for translat-
ing basic research knowledge to application in patients at the bedside. We would 
like to thank all the authors for their excellent contributions. We would also like to 
express our deepest appreciation for the preparation and editorial help provided by 
Catherine E. Jugdutt, Eva Little, and Dr. Vijayan Elimban in assembling this book. 
Cordial thanks are also due to Ms. Portia Formento and Melanie Tucker, Springer, 
USA, for their continuous advice and understanding during the editorial process. 
We hope that the book will prove useful for scientists and clinicians, students and 
teachers, and the industry interested in drug and discovery research.

Edmonton, AB, Canada Bodh I. Jugdutt
Winnipeg, MB, Canada Naranjan S. Dhalla  
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  Abstract   Acute activation of the sympathetic system and resultant  b -adrenergic 
receptor ( b -AR) signaling are required to maintain homeostasis, providing inotropic 
support in times of need, as in “ fi ght or  fl ight” or response to any stress, such as 
cardiac dysfunction and heart failure. For most of the twentieth century, it was rea-
soned that sympathetic stimulation of  b -ARs through administration of naturally 
occurring catecholamines or synthetic sympathomimetic amines could provide ino-
tropic support and should be used in heart failure therapy. However, in heart failure, 
sympathetic drive to the heart is excessively increased, and chronic sympathetic 
stimulation is deleterious, since it increases     

i

2MVO   , which cannot be met by appro-
priate increases in coronary blood  fl ow, thereby creating subendocardial ischemia 
and intensifying the cardiac dysfunction. Furthermore, continued stimulation of the 
 b -ARs also becomes problematic because it can activate multiple cellular processes 
including those involved in pathological remodeling seen in the development of 
cardiomyopathy. However, this reasoning took a diametrically opposite turn in the 
latter twentieth century when the adverse effects of chronic  b -AR stimulation 
became apparent from experimental studies in transgenic mice with cardiac-speci fi c 
overexpression of G 

s a 
  and  b -ARs and also from clinical studies with poor outcomes 

for patients on chronic sympathomimetic amine therapy. At this time it was also 
found that internal compensatory physiological processes countering continued 
 b -AR stimulation in the heart were cleverer than physicians. As a protective 
response,  b -AR desensitize, which reduces the effectiveness of  b -AR stimulation 
and the consequent increases in myocardial oxygen demands. Taken together, these 
factors were fundamental to the change in course from  b -AR stimulation to  b -AR 
blockade in the treatment of heart failure.  

    G.  J.  A.   Lee   •     L.   Yan   •     D.  E.   Vatner   •     S.  F.   Vatner ,  M.D.   (*)
     Department of Cell Biology and Molecular Medicine ,  Cardiovascular Research Institute, 
New Jersey Medical School, University of Medicine and Dentistry of New Jersey ,
  185 South Orange Avenue, MSB G-609 ,  Newark ,  NJ   07103 ,  USA    
e-mail:  vatnersf@umdnj.edu   
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    1.1   Introduction 

  b -Adrenergic receptor ( b -AR) signaling is central to all aspects of the pathophysiol-
ogy of heart failure. The sympathetic nervous system including the neurohormones, 
epinephrine, and norepinephrine is rapidly called into action by any stress, such as 
cardiac dysfunction and heart failure. For most of the twentieth century, it was rea-
soned that sympathetic stimulation of  b -ARs through administration of naturally 
occurring catecholamines or synthetic sympathomimetic amines could provide ino-
tropic support and should be used in heart failure therapy. However, this reasoning 
took a diametrically opposite turn in the latter twentieth century when it was realized 
that patients with  b -AR blocker therapy fared signi fi cantly better. The goal of this 
chapter is to document the scienti fi c and clinical basis for the changing paradigm of 
the role of  b -AR signaling in heart failure. To do this, the chapter has the following 
sections: Sect.  1.2  (The Discovery of  b -ARs), Sect.  1.3  (Regulation of Cardiac 
Contractility by  b -ARs), Sect.  1.4  (Targeting  b -ARs in the Treatment of Heart Failure: 
Use of  b -AR Inotropic Agonists), Sect.  1.5  (Adverse Effects of Chronic  b -AR 
Stimulation in the Treatment of Heart Failure), Sect.  1.6  (Advent of  b -AR Blockade 
Therapy), Sect.  1.7  (Mechanisms Mediating Salutary Effects of  b -AR Blockade 
Therapy in Heart Failure), Sect.  1.8  (Future Directions), and Sect.  1.9  (Conclusions).  

    1.2   The Discovery of  b -ARs 

 Although the concept of  b -ARs mediating the signaling from the sympathetic ner-
vous system to regulate cardiac function is axiomatic today, this was not always the 
case. Throughout much of the twentieth century, it was erroneously believed that 
adrenergic signaling was primarily mediated by two classes of neurotransmitters, 
sympathin E (excitatory) and sympathin I (inhibitory), classi fi ed according to their 
physiological response  [  1,   2  ] . This was due, in part, to the use of natural adrenalin, 
which contained variable mixtures of epinephrine and norepinephrine with quite 
different agonistic activities, resulting in obscured conclusions that masked their 
distinct effects. In retrospect, the fallacy of their results is clear. Not only do 
 epinephrine and norepinephrine have different effects, e.g., norepinephrine has 
 a -vasoconstrictor activity as well as  b -vasodilator and inotropic activity, whereas 
epinephrine does not have much  a -activity, but both elicit re fl ex effects in vivo with 
the most prominent mediated by the arterial barore fl ex, which modulates the direct 
actions of the catecholamines on arterial pressure, heart rate, and peripheral  vascular 
resistance. 



51  β-Receptors in Heart Failure

 In 1906, Dale  fi rst introduced the concept of receptors in connection with the 
sympathetic nervous system  [  3  ] . In his studies, he observed the actions of ergot 
alkaloid antagonists on the effects of epinephrine and proposed there are two 
distinct receptor types. One type, in which epinephrine mediated excitatory 
responses, was antagonized by ergot alkaloids, whereas in the second type, 
ergots had no effect on the inhibitory effects of epinephrine. Then in 1948, a 
major step was taken by Ahlquist, who challenged this idea of sympathins by 
characterizing two AR types,  a  and  b , based on the rank order of catecholamine 
potencies rather than the nature of their physiological response (contraction vs. 
relaxation)  [  2  ] . 

 However, the idea of ARs existing as physical entities received much skepticism 
 [  4,   5  ] . Even Ahlquist noted in his later paper that ARs are hypothetical structures 
that hold momentary value until the exact mechanism of adrenergic signaling is 
deciphered  [  6  ] . However, his seminal studies persevered and in 1967, Lands et al. 
extended his classi fi cation scheme by introducing two  b -AR subtypes,  b  

1
  and  b  

2
 , 

based on their af fi nities for epinephrine and norepinephrine  [  7  ] . Whereas  b  
1
 -ARs in 

cardiac and adipose tissue have approximately equal af fi nity for epinephrine and 
norepinephrine,  b  

2
 -ARs relax bronchial and vascular smooth muscle and have 

greater af fi nity for epinephrine than for norepinephrine. Then in 1972, Carlsson 
et al. provided pharmacological evidence that both  b  

1
 - and  b  

2
 -ARs are present and 

functional in the feline heart and that  b  
1
 -AR is the predominant subtype in both the 

atria and the ventricles  [  8  ] . 
 From these  fi ndings, Lefkowitz developed highly speci fi c radioligand-binding 

assays that allowed selective labeling of  b -ARs, which was responsible for the most 
signi fi cant progress in the  fi eld in the latter half of the twentieth century  [  9  ] . Using this 
method, he and his colleagues physically identi fi ed cardiac  b -ARs for the  fi rst time in 
the canine heart in 1975  [  9  ] . Moreover, the radioligand-binding technique made pos-
sible the quanti fi cation of the relative proportions of  b  

1
 - and  b  

2
 -ARs and in 1983, it 

was reported that human left ventricle (LV) consists of 86%  b  
1
 -AR and 14%  b  

2
 -AR 

 [  10  ] , thus con fi rming and extending the work of Carlsson. In addition, the interactions 
of  b -ARs with various agonists and antagonists were explored based on the concept 
that the radioligand competes for the binding site with an agonist. In 1980, it was dis-
covered that binding of an agonist and antagonist was affected by GTP  [  11  ] , and tak-
ing into account that adenylyl cyclase systems require GTP for activation  [  12  ] , the 
ternary complex model, consisting of the adrenergic receptor coupling to GTP-binding 
G protein to activate adenylyl cyclase (AC), was proposed  [  13  ] . 

 The advances in molecular biology techniques that shortly followed led to the 
successful cloning of the  b  

2
 -AR, the very  fi rst G protein-coupled receptor to be 

cloned  [  14  ] . Then by the 1990s, six  a -AR subtypes ( a  
1A

 ,  a  
1B

 ,  a  
1C

  and  a  
2A

 ,  a  
2B

 ,  a  
2C

 ) 
 [  15,   16  ]  and three  b -AR subtypes ( b  

1
 ,  b  

2
 ,  b  

3
 )  [  17–  19  ]  were  fi rmly established. 

Moreover, insights on the physiological actions of various AR subtypes were made 
possible through generation of transgenic mice models with targeted disruption of 
ARs  [  20–  23  ] . Today, we now understand that  a -ARs have positive inotropic activity 
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