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Foreword

When, 40 years ago, intracardiac stimulation and

activation studies were started for the analysis of

cardiac arrhythmias, nobody could have predicted

the advances that were going to be made in the years

thereafter in our understanding and management of

ventricular arrhythmias and sudden death.

Since then an enormous amount of information

has become available, leading to our current un-

derstanding of mechanisms, etiology, epidemiol-

ogy, risk stratification, and management of these,

unfortunately too often occurring, life-threatening

situations.

The best way to present that knowledge, and also

the relation between those different areas, is to put

it in the form of a book.

We live in a time when information spreads

rapidly by way of the internet. However, tunnel

vision is one of the dangers of that medium: the

subspecialist, looking only for what is new in his or

her specialized area, may lose sight of the complete

picture with its inherent dangers.

Therefore one has to welcome this book for its

coverage and time of publication. By selecting the

contributors carefully, the editors have succeeded

in bringing together, in one book, an excellent and

complete overview of what the cardiologist should

know for optimal management of the patient with a

ventricular arrhythmia. Among the many in-depth

presentations one will find how to select the candi-

date for catheter ablation, when to implant an ICD,

and what measures have to be taken to reduce sud-

den death out of hospital.

Hein J. Wellens

Maastricht, The Netherlands

August 2007

xi
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1 CHAPTER 1

The role of spatial dispersion of
repolarization and intramural
reentry in inherited and acquired
sudden cardiac death syndromes

Charles Antzelevitch

Abstract

The cellular basis for intramural reentry that de-

velops secondary to the development of transmu-

ral dispersion of repolarization (TDR) is examined

in this review. The hypothesis that amplification

of spatial dispersion of repolarization underlies

the development of intramural reentry and life-

threatening ventricular arrhythmias associated with

inherited ion channelopathies is probed. The roles

of TDR in the long-QT, short-QT, and Brugada

syndromes as well as catecholaminergic polymor-

phic ventricular tachycardia are critically examined.

In the long-QT syndrome, amplification of TDR

is generally secondary to preferential prolongation

of the action potential duration (APD) of M cells,

whereas in the Brugada syndrome, it is due to se-

lective abbreviation of the APD of right ventricular

epicardium. Preferential abbreviation of APD of ei-

ther endocardium or epicardium appears to be re-

sponsible for amplification of TDR in the short-QT

syndrome. The available data suggest that the long-

QT, short-QT, and Brugada syndromes are patholo-

gies with very different phenotypes and etiologies,

but which share a common final pathway in causing

sudden cardiac death.

Keywords:

long QT syndrome; short QT syndrome; Brugada

syndrome; polymorphic ventricular tachycardia;

electrophysiology

Inherited sudden cardiac death secondary to the de-

velopment of life-threatening ventricular arrhyth-

mias have been associated with a variety of ion

channelopathies such as the long-QT, short-QT, and

Brugada syndromes. Table 1.1 lists the genetic de-

fects thus far identified to be associated with these

primary electrical diseases. These ion channel de-

fects have been shown to amplify spatial dispersion

of repolarization, in some cases with the assistance

of pharmacologic agents that further exaggerate the

gain or loss of function of ion channel activity. Be-

fore examining these interactions, we will review the

basis for intrinsic electrical heterogeneity within the

ventricular myocardium.

Intrinsic electrical heterogeneity
within the ventricular
myocardium

It is now well established that ventricular my-

ocardium is comprised of at least three electrophys-

iologically as well as functionally distinct cell types:

epicardial, M, and endocardial cells [1,2]. These

three principal ventricular myocardial cell types dif-

fer with respect to phase 1 and phase 3 repolariza-

tion characteristics. Ventricular epicardial and M,

1

Ventricular Arrhythmias and Sudden Cardiac Death.

Edited by Paul J. Wang, Amin Al-Ahmad, Henry H.  Hsia, Paul C. Zei.
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2 PART 1 Mechanisms of VT

Table 1.1 Inherited disorders caused by ion channelopathies

Rhythm Inheritance Locus Ion channel Gene

Long-QT syndrome (RW) TdP AD

LQT1 AD 11p15 IKs KCNQ1, KvLQT1

LQT2 AD 7q35 IKr KCNH2, HERG

LQT3 AD 3p21 INa SCN5A, Nav1.5

LQT4 AD 4q25 ANKB, ANK2

LQT5 AD 21q22 IKs KCNE1, minK

LQT6 AD 21q22 IKr KCNE2, MiRP1

LQT7 (Anderson–Tawil

syndrome)

AD 17q23 IK1 KCNJ2, Kir 2.1

LQT8 (Timothy syndrome) AD 6q8A ICa CACNA1C, Cav1.2

LQT9 AD 3p25 INa CAV3, Caveolin-3

LQT10 AD 11q23.3 INa SCN4B, Navb4

LQT syndrome (JLN) TdP AR 11p15 IKs KCNQ1, KvLQT1

21q22 IKs KCNE1, minK

Brugada syndrome BrS1 PVT AD 3p21 INa SCN5A, Nav1.5

BrS2 PVT AD 3p24 INa GPD1L

BrS3 PVT AD 12p13.3 ICa CACNA1C, Cav1.2

BrS4 PVT AD 10p12.33 ICa CACNB2b, Cav B2b

Short-QT syndrome SQT1 VT/VF AD 7q35 IKr KCNH2, HERG

SQT2 AD 11p15 IKs KCNQ1, KvLQT1

SQT3 AD 17q23.1-24.2 IK1 KCNJ2, Kir2.1

SQT4 AD 12p13.3 ICa CACNA1C, Cav1.2

SQT5 AD 10p12.33 ICa CACNB2b, Cavβ2b

Catecholaminergic VT CVPT1 VT AD 1q42-43 RyR2

CPVT2 VT AR 1p13-21 CASQ2

Abbreviations: AD, autosomal dominant; AR, autosomal recessive; JLN, Jervell and Lange-Nielsen; LQT, long QT; RW,

Romano–Ward; TdP, Torsade de Pointes; VF, ventricular fibrillation; VT, ventricular tachycardia; PVT, polymorphic VT.

but not endocardial, cells generally display a promi-

nent phase 1, due to a large 4-aminopyridine (4-

AP)-sensitive transient outward current (Ito), giv-

ing the action potential either a spike-and-dome or

a notched configuration. These regional differences

in Ito were first suggested on the basis of action

potential data [3] and subsequently demonstrated

using patch clamp techniques in canine [4], feline

[5], rabbit [6], rat [7], ferret [8], and human [9,10]

ventricular myocytes.

The magnitude of the action potential notch

and corresponding differences in Ito have also been

shown to be different between right and left ventric-

ular epicardium [11]. Similar interventricular dif-

ferences in Ito have also been described for canine

ventricular M cells [12]. This distinction is thought

to form the basis for why the Brugada syndrome, a

channelopathy-mediated form of sudden death, is

a right ventricular disease.

Wang and co-workers [13] reported a larger L-

type calcium channel current (ICa) in canine en-

docardial versus epicardial ventricular myocytes,

although other studies have failed to detect any

difference in ICa among cells isolated from epi-

cardium, M, and endocardial regions of the ca-

nine left ventricular wall [14,15]. Myocytes isolated

from the epicardial region of the left ventricular

wall of the rabbit show a higher density of cAMP-

activated chloride current when compared to en-

docardial myocytes [16]. Ito2, initially ascribed to a

K+ current, is now thought to be caused primarily

by the calcium-activated chloride current (ICl(Ca));

it is thought to also contribute to the action poten-

tial notch but it is not known whether this current
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differs among the three ventricular myocardial cell

types [17].

Characteristics of the M cell

Residing in the deep structures of the ventricular

wall between the epicardial and endocardial layers,

are M cells and transitional cells. The M cell, ma-

sonic midmyocardial Moe cell, discovered in the

early 1990s, was named in memory of Gordon K

Moe [2,18,19]. The hallmark of the M cell is that

its action potential can prolong more than that of

epicardium or endocardium in response to a slow-

ing of rate or in response to agents that prolong

APD (Figure 1.1) [1,18,20]. Histologically, M cells

are similar to epicardial and endocardial cells. Elec-

trophysiologically and pharmacologically, they ap-

pear to be a hybrid between Purkinje and ventric-

ular cells [21]. Like Purkinje fibers, M cells show

a prominent APD prolongation and develop early

afterdepolarizations (EAD) in response to IKr block-

ers, whereas epicardium and endocardium do not.

Like Purkinje fibers, M cells develop delayed after-

depolarizations (DAD) more readily in response to

agents that calcium load or overload the cardiac

cell. α1 Adrenoceptor stimulation produces APD

prolongation in Purkinje fibers, but abbreviation in

M cells, and little or no change in endocardium and

epicardium [22].

Although transitional cells are found throughout

much of the wall in the canine left ventricle, M cells

displaying the longest action potentials (at basic cy-

cle lengths (BCLs) ≥ 2000 ms) are often localized

in the deep subendocardium to midmyocardium in

the anterior wall [23], deep subepicardium to mid-

myocardium in the lateral wall [18], and throughout

the wall in the region of the right ventricular (RV)

outflow tracts [2]. M cells are also present in the deep

cell layers of endocardial structures, including pap-

illary muscles, trabeculae, and the interventricular

septum [24]. Unlike Purkinje fibers, M cells are not

found in discrete bundles or islets [24,25] although

there is evidence that they may be localized in dis-

crete muscle layers. Cells with the characteristics of

M cells have been described in the canine, guinea

pig, rabbit, pig, and human ventricles [4,18,20,23–

44].

Isolated myocytes dissociated from discrete lay-

ers of the left ventricular wall display APD values

(a)

(b)

(c)

(d)

40 mV

Endocardial

Transitional

M cell

Epicardial

200 ms

0 −

0 −

0 −

0 −

Figure 1.1 Transmembrane activity recorded from cells
isolated from the epicardial, M, and endocardial regions of
the canine left ventricle at basic cycle lengths (BCL) of
300–5000 milliseconds (steady-state conditions). The M and
transitional cells were enzymatically dissociated from the
midmyocardial region. Deceleration-induced prolongation
of APD is much greater in M cells than in epicardial and
endocardial cells. The spike-and-dome morphology is also
more accentuated in the epicardial cell. From [4], with
permission.

that differ by more than 200 milliseconds at rel-

atively slow rates of stimulation. When the cells

are in a functional syncytium that comprises the

ventricular myocardium, electrotonic interactions

among the different cells types lead to reduction

of the APD dispersion to 25–55 milliseconds. The

transmural increase in APD from epicardium to

endocardium is relatively gradual, except between

the epicardium and subepicardium where there is

often a sharp increase in APD (Figure 1.2). This

has been shown to be due to an increase in tissue
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Figure 1.2 Transmural distribution of action potential
duration and tissue resistivity across the ventricular wall.
(a) Schematic diagram of the coronary-perfused canine LV
wedge preparation. Transmembrane action potentials are
recorded simultaneously from epicardial (Epi), M region
(M), and endocardial (Endo) sites using three floating
microelectrodes. A transmural ECG is recorded along the
same transmural axis across the bath, registering the entire
field of the wedge. (b) Histology of a transmural slice of
the left ventricular wall near the epicardial border. The
region of sharp transition of cell orientation coincides with
the region of high tissue resistivity depicted in Panel (d)
and the region of sharp transition of action potential
duration illustrated in Panel (c). (c) Distribution of

conduction time (CT), APD90, and repolarization time (RT =
APD90+ CT) in a canine left ventricular wall wedge
preparation paced at BCL of 2000 milliseconds. A sharp
transition of APD90 is present between epicardium and
subepicardium. Epi: epicardium; M: M cell; Endo:
endocardium. RT: repolarization time; CT: conduction time.
(d) Distribution of total tissue resistivity (Rt) across the
canine left ventricular wall. Transmural distances at 0%
and 100% represent epicardium and endocardium,
respectively. * P < 0.01 compared with Rt at mid-wall.
Tissue resistivity increases most dramatically between deep
subepicardium and epicardium. Error bars represent SEM
(n = 5). From [21,23], with permission.

resistivity in this region [23], which may be re-

lated to the sharp transition in cell orientation in

this region as well as to reduced expression of con-

nexin43 [45,46], which is principally responsible

for intracellular communication in ventricular my-

ocardium. Moreover, LeGrice et al. [47] have shown

that the density of collagen is heterogeneously dis-

tributed across the ventricular wall. A greater den-

sity of collagen in the deep subepicardium may also

contribute to the resistive barrier in this region of

the wall, limiting the degree of electrotonic inter-

action between myocardial layers. The degree of

electrotonic coupling, together with the intrinsic

differences APD, contribute to TDR in the ventric-

ular myocardium [48].

The ionic bases for these features of the M cell

include the presence of a smaller slowly activat-

ing delayed rectifier current (IKs) [30], a larger late

sodium current (late INa) [49], and a larger Na–

Ca exchange current (INa–Ca) [50]. In the canine

heart, the rapidly activating delayed rectifier (IKr)

and the inward rectifier (IK1) currents are similar

in the three transmural cell types. Transmural and

apico-basal differences in the density of IKr chan-

nels have been described in the ferret heart [51].

IKr message and channel protein are much larger in
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the ferret epicardium. IKs is larger in M cells iso-

lated from the right versus left ventricles of the dog

[12]. These ionic distinctions sensitize the M cells

to a variety of pharmacological agents. Agents that

block the rapidly activating delayed rectifier current

(IKr), IKs, or that increase calcium channel current

(ICa) or late INa, generally produce a much greater

prolongation of the APD of the M cell than of epi-

cardial or endocardial cells leading to amplification

of TDR.

Amplification of transmural heterogeneities nor-

mally present in the early and late phases of the ac-

tion potential can lead to the development of a va-

riety of arrhythmias, including Brugada, long-QT,

and short-QT syndromes as well as catecholamin-

ergic ventricular tachycardia (VT).

Brugada syndrome

The Brugada syndrome is an inherited primary elec-

trical disease in which amplification of TDR is be-

lieved to lead to the development of polymorphic

VT and sudden cardiac death [52]. The Brugada

ECG is characterized by an elevated ST segment or

J wave appearing in the right precordial leads (V1–

V3), often followed by a negative T wave. First de-

scribed in 1992, the syndrome is associated with a

high incidence of sudden cardiac death secondary to

a rapid polymorphic VT or ventricular fibrillation

(VF) [53]. The ECG characteristics of the Brugada

syndrome are dynamic and often concealed, but can

be unmasked by potent sodium channel blockers

such as ajmaline, flecainide, procainamide, disopy-

ramide, propafenone, and pilsicainide [54–56].

The Brugada syndrome (BrS) is associated with

mutations in SCN5A, the gene that encodes the α

subunit of the cardiac sodium channel, in approx-

imately 15% of probands [57]. Over one hundred

mutations in SCN5A have been linked to the syn-

drome in recent years (see [58] for references; also

see http://www.fsm.it/cardmoc). Only a fraction of

these mutations have been studied in expression

systems and shown to result in loss of function of

sodium channel activity. Weiss et al. [59] described

a second locus on chromosome 3, close to but dis-

tinct from SCN5A, linked to the syndrome in a large

pedigree in which the syndrome is associated with

progressive conduction disease, a low sensitivity to

procainamide, and a relatively good prognosis. The

gene was recently identified in a preliminary re-

port as the Glycerol-3-Phosphate Dehydrogenase 1-

Like (GPD1L) gene and the mutation in GPD1L was

shown to result in a reduction of INa [60].

The third and fourth genes associated with

the Brugada syndrome were recently identified

and shown to encode the α1 (CACNA1C) and β

(CACNB2b) subunits of the L-type cardiac calcium

channel. Mutations in the α and β subunits of the

calcium channel also lead to a shorter than normal

QT interval, in some cases creating a new clinical

entity consisting of a combined Brugada/short-QT

syndrome [61].

Several experimental models of the BrS have been

developed using the right coronary-perfused right

ventricular wedge preparation [62–66]. The avail-

able data point to amplification of heterogeneities

intrinsic to the early phases (phase 1-mediated

notch) of the action potential of cells residing in dif-

ferent layers of the right ventricular wall of the heart

as the basis for the development of extrasystolic

activity and polymorphic VT in BrS (Figure 1.3).

Rebalancing of the currents active at the end of

phase 1 can lead to accentuation of the action po-

tential notch in right ventricular epicardium, which

is responsible for the augmented J wave and ST seg-

ment elevation associated with the Brugada syn-

drome (see [52,67] for references). Under physio-

logic conditions, the ST segment is isoelectric due to

the absence of major transmural voltage gradients

at the level of the action potential plateau. Accentu-

ation of the right ventricular action potential notch

under pathophysiological conditions leads to exag-

geration of transmural voltage gradients and thus to

accentuation of the J wave or to an elevation of the J

point (Figure 1.3). If the epicardial action potential

continues to repolarize before that of endocardium,

the T wave remains positive, giving rise to a sad-

dleback configuration of the ST segment elevation.

Further accentuation of the notch is accompanied

by a prolongation of the epicardial action poten-

tial causing it to repolarize after endocardium, thus

leading to inversion of the T wave [62,63]. Despite

the appearance of a typical Brugada ECG, accen-

tuation of the RV epicardial action potential (AP)

notch alone does not give rise to an arrhythmo-

genic substrate. The arrhythmogenic substrate may

develop with a further shift in the balance of cur-

rent leading to loss of the action potential dome at
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some epicardial sites but not others. A steep gradi-

ent of TDR develops as a consequence, creating a

vulnerable window, which when captured by a pre-

mature extrasystole can trigger a reentrant arrhyth-

mia. Because loss of the action potential dome in

epicardium is generally heterogeneous, epicardial

dispersion of repolarization develops as well. Prop-

agation of the action potential dome from sites at

which it is maintained to sites at which it is lost

causes local reexcitation via phase 2 reentry, leading

to the development of a closely coupled extrasystole

capable of capturing the vulnerable window across

the ventricular wall, thus triggering a circus move-

ment reentry in the form of VT/VF (Figures 1.3

and 1.4) [62,68,69]. The polymorphic VT may start

in epicardium reentry, but quickly shifts to an in-

tramural reentry before self-terminating or deteri-

orating to VF [69].

Evidence in support of these hypotheses derives

from experiments involving the arterially perfused

right ventricular wedge preparation [62,63,66,69,

70] and from studies in which monophasic action

potential (MAP) electrodes were positioned on the

epicardial and endocardial surfaces of the right ven-

tricular outflow tract (RVOT) in patients with the

Brugada syndrome [71,72].

Long-QT syndrome

The long-QT syndromes (LQTS) are phenotypi-

cally and genotypically diverse, but have in com-

mon the appearance of a long QT interval in the

ECG, an atypical polymorphic VT known as Tor-

sade de Pointes (TdP), and, in many but not all

cases, a relatively high risk for sudden cardiac death

[73–75]. Ten genotypes of the congenital LQTS have

been identified. The identified syndromes are dis-

tinguished by mutations in at least eight different

ion channel genes, a structural anchoring protein,

and a caveolin protein located on chromosomes 3,

4, 6, 7, 11, 17, and 21 (Table 1.1) [76–81].

The most recent genes associated with LQTS are

CAV3 which encodes caveolin-3 and SCN4B which

encodes NaV B4, an auxiliary subunit of the car-

diac sodium channel. Caveolin-3 spans the plasma

membrane twice, forming a hairpin structure on

the surface, and is the main constituent of caveo-

lae, small invaginations in the plasma membrane.

Mutations both in CAV3 and in SCNB4 produce a

gain in function in late INa, causing an LQT3-like

phenotype [82,83].

LQTS shows both autosomal recessive and auto-

somal dominant patterns of inheritance: (1) a rare

autosomal recessive disease associated with deafness

(Jervell and Lange-Nielsen), caused by two genes

that encode for the slowly activating delayed rectifier

potassium channel (KCNQ1 and KCNE1); and (2)

a much more common autosomal dominant form

known as the Romano–Ward syndrome, caused by

mutations in 10 different genes (Table 1.1). Eight of

the 10 genes encode cardiac ion channels.

Acquired LQTS refers to a QT prolongation

caused by exposure to drugs that prolong the du-

ration of the ventricular action potential [84] or

QT prolongation secondary to cardiomyopathies

including dilated or hypertrophic cardiomyopathy,

as well as to abnormal QT prolongation associated

with bradycardia or electrolyte imbalance [85–89].

The acquired form of the disease is far more preva-

lent than the congenital form and in some cases may

have a genetic predisposition [90].

Amplification of spatial dispersion of repolariza-

tion within the ventricular myocardium has been

identified as the principal arrhythmogenic substrate

in both acquired and congenital LQTS. The ampli-

fication of spatial dispersion of refractoriness can

take the form of an increase in transmural, trans-

septal, or apico-basal dispersion of repolarization.

This exaggerated intrinsic heterogeneity together

with EAD- and DAD-induced triggered activity,

both caused by reduction in net repolarizing cur-

rent, underlie the substrate and trigger for the devel-

opment of TdP arrhythmias observed under LQTS

conditions [91,92]. Models of the LQT1, LQT2, and

LQT3 forms of the LQTS have been developed using

the canine arterially perfused left ventricular wedge

preparation (Figure 1.5) [93]. These models suggest

that in these three forms of LQTS, preferential pro-

longation of the M cell APD leads to an increase in

the QT interval as well as an increase in TDR, which

contributes to the development of spontaneous as

well as stimulation-induced TdP via an intramural

reentry mechanism (Figure 1.6) [35,40,94–97]. The

spatial dispersion of repolarization is further ex-

aggerated by sympathetic influences in LQT1 and

LQT2, accounting for the great sensitivity of pa-

tients with these genotypes to adrenergic stimuli

(Figures 1.5 and 1.6).
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Figure 1.3 Cellular basis for electrocardiographic and
arrhythmic manifestation of Brugada syndrome. Each
panel shows transmembrane action potentials from one
endocardial (top) and two epicardial sites together with a
transmural ECG recorded from a canine coronary-perfused
right ventricular wedge preparation. (a) Control (BCL 400
ms). (b) Combined sodium and calcium channel block with
terfenadine (5 μM) accentuates the epicardial action
potential notch, creating a transmural voltage gradient
that manifests as an ST segment elevation or exaggerated
J wave in the ECG. (c) Continued exposure to terfenadine

results in all-or-none repolarization at the end of phase 1
at some epicardial sites but not others, creating a local
epicardial dispersion of repolarization (EDR) as well as a
transmural dispersion of repolarization (TDR). (d) Phase 2
reentry occurs when the epicardial action potential dome
propagates from a site where it is maintained to regions
where it has been lost, giving rise to a closely coupled
extrasystole. (e) Extrastimulus (S1 – S2 = 250 ms) applied to
epicardium triggers a polymorphic VT. (f) Phase 2 reentrant
extrasystole triggers a brief episode of polymorphic VT.
(Modified from Ref. [63], with permission).

Voltage gradients that develop as a result of the

different time course of repolarization of phases 2

and 3 in the three cell types give rise to opposing

voltage gradients on either side of the M region,

which are in part responsible for the inscription of

the T wave [44]. In the case of an upright T wave, the

epicardial response is the earliest to repolarize and

the M cell action potential is the latest. Full repolar-

ization of the epicardial action potential coincides

with the peak of the T wave and repolarization of
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Figure 1.4 Proposed mechanism for the Brugada
syndrome. A shift in the balance of currents serves to
amplify existing heterogeneities by causing loss of the
action potential dome at some epicardial, but not
endocardial sites. A vulnerable window develops as a
result of the dispersion of repolarization and

refractoriness within epicardium as well as across the wall.
Epicardial dispersion leads to the development of phase 2
reentry, which provides the extrasystole that captures the
vulnerable window and initiates VT/VF via a circus
movement reentry mechanism. Modified from [128], with
permission.

the M cells is coincident with the end of the T wave.

The duration of the M cell action potential there-

fore determines the QT interval, whereas the du-

ration of the epicardial action potential determines

the QTpeak interval. The interval between the peak

and end of the T wave (Tpeak–Tend interval) in pre-

cordial ECG leads is suggested to provide an index

of TDR [2]. Recent studies provide guidelines for

the estimation of TDR in the case of more complex

T waves, including negative, biphasic, and triphasic

T waves [98]. In these cases, the interval from the

nadir of the first component of the T wave to the end

of the T wave provides an approximation of TDR.

Because the precordial leads (V1–V6) are de-

signed to view the electrical field across the ventric-

ular wall, Tpeak–Tend is the most representative of

TDR in these leads. Tpeak–Tend intervals measured

in the limb leads are unlikely to provide an index

of TDR, but may provide a measure of global dis-

persion within the heart [99,100]. Because TDR can

vary dramatically in different regions of the heart,

it is inadvisable to average Tpeak–Tend among all or

several leads [100]. Because LQTS is principally a

left ventricular disorder, TDR is likely to be greatest

in the left ventricular wall or septum and thus be

best reflected in left precordial leads or V3, respec-

tively [101]. In contrast, because Brugada syndrome

is a right ventricular disorder, TDR is greatest in the

right ventricular free wall and thus is best reflected

in the right precordial leads [102].

Tpeak–Tend interval does not provide an absolute

measure of transmural dispersion in vivo [100], al-

though changes in this parameter are thought to

reflect changes in spatial dispersion of repolariza-

tion, including TDR, and thus may be prognostic of

arrhythmic risk under a variety of conditions [103–

108]. Takenaka et al. [107] recently demonstrated

exercise-induced accentuation of the Tpeak–Tend in-

terval in LQT1 patients, but not LQT2. These obser-

vations coupled with those of Schwartz et al. [109],

demonstrating an association between exercise and

risk for TdP in LQT1 but not LQT2 patients, once

again point to the potential value of Tpeak–Tend in

forecasting risk for the development of TdP. Di-

rect evidence in support of Tpeak–Tend measured

in V5 as an index to predict TdP in patients with

LQTS was provided by Yamaguchi and co-workers

[101]. These authors concluded that Tpeak–Tend is
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Figure 1.5 LQT1, LQT2, and LQT3 models of LQTS. Panels
(a)–(c) show action potentials recorded simultaneously
from endocardial (Endo), M, and epicardial (Epi) sites of
arterially perfused canine left ventricular wedge
preparations together with a transmural ECG. BCL = 2000
milliseconds. Transmural dispersion of repolarization
across the ventricular wall, defined as the difference in the
repolarization time between M and epicardial cells, is
denoted below the ECG traces. LQT1 model was mimicked
using Isoproterenol + chromanol 293B − an IKs blocker.
LQT2 was created using the IKr blocker d-sotalol + low
[K+]o. LQT3 was mimicked using the sea anemone toxin
ATX-II to augment late INa. Panels (d)–(f): Effect of
isoproterenol in the LQT1, LQT2, and LQT3 models. In
LQT1, isoproterenol (Iso) produces a persistent

prolongation both of the APD90 of the M cell and of the
QT interval (at both 2 and 10 min), whereas the APD90 of
the epicardial cell is always abbreviated, resulting in a
persistent increase in TDR (d). In LQT2, isoproterenol
initially prolongs (2 min) and then abbreviates the QT
interval and the APD90 of the M cell to the control level (10
min), whereas the APD90 of epicardial cell is always
abbreviated, resulting in a transient increase in TDR (e). In
LQT3, isoproterenol produced a persistent abbreviation of
the QT interval and the APD90 of both M and epicardial
cells (at both 2 and 10 min), resulting in a persistent
decrease in TDR (f). *P < 0.0005 versus Control;
†P < 0.0005, ††P < 0.005, †††P < 0.05, versus 293B,
d-Sotalol (d-Sot), or ATX-II. (Modified from references
[35,40,94] with permission).


