Cardiology

CLINICAL CASES UNCOVERED

Tim Betts

MD, MBChB, MRCP

Consultant Cardiologist and Electrophysiologist Department of Cardiology John Radcliffe Hospital Oxford, UK

Jeremy Dwight

MD, FRCP

Consultant Cardiologist Department of Cardiology John Radcliffe Hospital Oxford, UK

Sacha Bull

MRCP

Cardiology Registrar Department of Cardiology John Radcliffe Hospital Oxford, UK

A John Wiley & Sons, Ltd., Publication

This page intentionally left blank

Cardiology

CLINICAL CASES UNCOVERED

To my wife, Mags, for her patience. TB

To my parents for their lifelong support. JD

To my father, for his constant love and support. SB

Cardiology

CLINICAL CASES UNCOVERED

Tim Betts

MD, MBChB, MRCP

Consultant Cardiologist and Electrophysiologist Department of Cardiology John Radcliffe Hospital Oxford, UK

Jeremy Dwight

MD, FRCP

Consultant Cardiologist Department of Cardiology John Radcliffe Hospital Oxford, UK

Sacha Bull

MRCP

Cardiology Registrar Department of Cardiology John Radcliffe Hospital Oxford, UK

A John Wiley & Sons, Ltd., Publication

This edition first published 2010, © 2010 by T. Betts, J. Dwight and S. Bull

Blackwell Publishing was acquired by John Wiley & Sons in February 2007. Blackwell's publishing program has been merged with Wiley's global Scientific, Technical and Medical business to form Wiley-Blackwell.

Registered office: John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial offices: 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030-5774, USA

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www. wiley.com/wiley-blackwell

The right of the authors to be identified as the authors of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Betts, Tim (Tim Rider)
Cardiology / Tim Betts, Jeremy Dwight, Sacha Bull.
p.; cm. – (Clinical cases uncovered)
Includes indexes.
ISBN 978-1-4051-7800-6
1. Heart–Diseases–Case studies. I. Dwight, Jeremy. II. Bull, Sacha. III. Title. IV. Series:

[DNLM: 1. Cardiovascular Diseases-diagnosis-Case Reports. 2. Cardiovascular Diseasesdiagnosis-Problems and Exercises. 3. Cardiovascular Diseases-therapy-Case

Reports. 4. Cardiovascular Diseases–therapy–Problems and Exercises. WG 18.2 B565c 2010] RC682.B48 2010

616.1'2-dc22 2009035144

ISBN: 978-1-4051-7800-6

A catalogue record for this book is available from the British Library

Set in 9 on 12 pt Minion by Toppan Best-set Premedia Limited Printed in Malaysia

1 2010

Contents

Preface, vii How to use this book, viii List of abbreviations, ix

(Part 1) Basics, 1

Basic science, 1

Approach to the patient, 23

(Part 2) Cases, 38

Case 1 A 47-year-old man with chest pain, 38
Case 2 A 60-year-old heavy goods vehicle (HGV) driver with chest pain, 48
Case 3 An 85-year-old man with collapse, 56
Case 4 A 71-year-old man with exertion chest tightness, 63
Case 5 A 50-year-old man with sudden-onset severe central chest pain, 72
Case 6 A 45-year-old man with chest pain and breathlessness, 77
Case 7 A 34-year-old man with chest pain following a viral illness, 84
Case 8 An 80-year-old woman with acute severe breathlessness, 90
Case 9 A 50-year-old man with exertional breathlessness, 98
Case 10 A 72-year-old woman with breathlessness on exertion, 107
Case 11 A 50-year-old man with a murmur, 112
Case 12 A 30-year-old man with high blood pressure and a heart murmur, 118
Case 13 A 64-year-old man with collapse and a murmur, 124
Case 14 A 34-year-old man with malaise, chest pains and breathlessness, 130
Case 15 A 22-year-old woman with faints, 136
Case 16 A 76-year-old woman with blackouts, 142
Case 17 A 35-year-old woman with palpitations, 148

Case 18 A 42-year-old man with palpitations, 153

Case 19 A 64-year-old man with fatigue and palpitations, 160

Case 20 A 24-year-old man with palpitations, 165

Case 21 A 77-year-old woman with fatigue and bradycardia, 171

Case 22 A 57-year-old man with collapse, 177

Case 23 A 36-year-old woman with a family history of sudden death, 183

Case 24 A 60-year-old man with high blood pressure, 190

Case 25 A 24-year-old woman with visual loss and dysphasia, 196

Case 26 A 59-year-old woman with low blood pressure and breathlessness, 202

(Part 3) Self-assessment, 208

MCQs, 208

EMQs, 214

SAQs, 224

Answers, 228

Index of cases by diagnosis, 235 Index, 237

Preface

Although there are many books already published on the subject of cardiovascular medicine, we felt that there was nothing that offered medical students and junior doctors a practical, patient-based approach. This book has been written to fill that gap. It is suitable for students, trainees in general internal medicine, general practice and budding cardiologists.

It provides a concise resume of the key features of anatomy and physiology that have direct clinical applications when investigating and treating patients with cardiac disease. By presenting 'real world' examples in 26 case scenarios, all the common (and some uncommon) cardiac diagnoses are revealed. Particular emphasis is placed on history taking, the interpretation of physical signs and the appropriate use of non-invasive and invasive investigations. Arguments for and against differential diagnoses are discussed. Treatment options are explained in detail and the impact of cardiovascular disease on prognosis, lifestyle and genetic screening is explored. Throughout the text, key points and red flags are highlighted and learning points are summarized at the end of each case. High-quality reproductions of electrocardiograms, echocardiograms and other imaging modalities have been included to simulate the real patient encounter.

Three self-assessment sections have been written in the format of commonly-used examination methods. The questions stem from the clinical cases, yet add an additional layer of education and information for the reader.

We hope this book acts as a stepping stone from traditional cardiology texts to the application of knowledge in the clinical world. As well as being a reference and assessment tool, it should above all be an enjoyable read that can be dipped in and out of or read from cover to cover in one go. We hope it inspires the next generation of cardiologists!

> Tim Betts Jeremy Dwight Sacha Bull *Oxford*

How to use this book

Clinical Cases Uncovered (CCU) books are carefully designed to help supplement your clinical experience and assist with refreshing your memory when revising. Each book is divided into three sections: Part 1, Basics; Part 2, Cases; and Part 3, Self-assessment.

Part 1 gives you a quick reminder of the basic science, history and examination, and key diagnoses in the area. Part 2 contains many of the clinical presentations you would expect to see on the wards or crop up in exams, with questions and answers leading you through each case. New information, such as test results, is revealed as events unfold and each case concludes with a handy case summary explaining the key points. Part 3 allows you to test your learning with several question styles (MCQs, EMQs and SAQs), each with a strong clinical focus.

Whether reading individually or working as part of a group, we hope you will enjoy using your CCU book. If you have any recommendations on how we could improve the series, please do let us know by contacting us at: medstudentuk@oxon.blackwellpublishing.com.

Disclaimer

CCU patients are designed to reflect real life, with their own reports of symptoms and concerns. Please note that all names used are entirely fictitious and any similarity to patients, alive or dead, is coincidental.

List of abbreviations

AICD	automated implantable		
	cardioverter-defibrillator		
ACE	angiotensin-converting enzyme		
ACS	acute coronary syndrome		
A&E	Accident & Emergency		
AHA	American Heart Association		
ALT	alanine aminotransferase		
AR	aortic regurgitation		
AS	aortic stenosis		
ASD	atrial septal defect		
AV	atrioventricular		
AVA	aortic valve area		
AVNRT	atrioventricular nodal re-entrant		
	tachycardias		
AVRT	atrioventricular re-entrant		
BMI	body mass index		
BNP	brain natriuretic peptide		
bpm	beats per minute		
CCU	Coronary Care Unit		
COPD	chronic obstructive airways disease		
CPAP	continuous positive airways pressure		
CPR	cardiopulmonary resuscitation		
CT	computer tomography		
CTR	cardiothoracic ratio		
CVP	central venous pressure		
Cx	circumflex		
CXR	chest X-ray		
DC	direct current		
DVLA	Driver and Vehicle Licensing Agency		
DVT	deep vein thrombosis		
ESR	erythrocyte sedimentation rate		
FBC	full blood count		
FEV_1	forced expiratory volume in 1s		
FVC	forced vital capacity		
GFR	glomerular filtration rate		
GGT	gamma-glutamyl transpeptidase		
GI	gastrointestinal		
GP	general practitioner		
GTN	glyceryl trinitrate		

Hb	haemoglobin			
HDL	high-density lipoprotein			
HFNEF	heart failure normal ejection fraction			
HGV	heavy goods vehicle			
HIV	human immunodeficiency virus			
HOCM	hypertrophic obstructive cardiomyopathy			
ICD	implantable cardioverter defibrillator			
ICU	Intensive Care Unit			
INR	international normalised ratio			
IVAB	intravenous antibiotics			
JVP	jugular venous pressure			
LAD	left anterior descending			
LBBB	left branch bundle block			
LCA	left coronary artery			
LCx	left circumflex			
LDH	lactate dehydrogenase			
LDL	low-density lipoprotein			
LMS	left main stem			
LQTS	long-QT syndrome			
LVEF	left ventricular ejection fraction			
LVH	left ventricular hypertrophy			
MCV	mean corpuscle volume			
MEN	multiple endocrine neoplasia			
MIBG	metaiodobenzylguanidine			
MR	mitral regurgitation			
MRI	magnetic resonance imaging			
MS	mitral stenosis			
MUGA	multi-gated acquisition			
MCV	mean corpuscle volume			
NICE	National Institute for Health and Clinical			
	Excellence			
NYHA	New York Heart Association			
PCI	percutaneous coronary intervention			
PDA	patent ductus arteriosus			
PEA	pulseless electrical activity			
PFO	patent foramen ovale			
PV	pulmonary valve			
RBBB	right branch bundle block			
RCA	right coronary artery			

x List of abbreviations

rtPA	recombinant tissue plasminogen activator	TIMI	thrombolysis in myocardial infarction
rPA	reteplase	TNK	tenecteplase
SA	sinoatrial	TS	tricuspid stenosis
SCD	sudden cardiac death	TR	tricuspid regurgitation
STEMI	ST-elevation myocardial infarction (also	tPA	tissue plasminogen activator
	non-STEMI)	TR	tricuspid regurgitation
SVT	supraventricular tachycardia	VPC	ventricular premature contraction
TB	tuberculosis	VSD	ventricular septal defect
TC	total cholesterol	VVIR	ventricular inhibited rate responsive
TIA	transient ischaemic attack	WCC	white cell count

Basic science

Anatomy

The primary function of the heart is to pump deoxygenated blood to the lungs and to return oxygenated blood to the rest of the body. The basic anatomy consists of:

• Pericardium (visceral and parietal): the fibrous sac containing the heart.

• Four cardiac chambers: the right and left atria and ventricles.

• Heart valves:

• Two outflow valves: the aortic and pulmonary valves consist of three semi-lunar cusps.

• Two atrioventricular (AV) valves: the mitral and tricuspid valves, which are attached by chordae tendinae to papillary muscles.

• Vascular system:

• Great vessels: the pulmonary artery, pulmonary vein and aorta.

• Three main coronary arteries: the left anterior descending (LAD) and circumflex (Cx) arteries, which originate from the left main stem (LMS) and the right coronary artery (RCA).

• Venous system: the venous blood is drained via the great cardiac vein, small anterior cardiac vein and thesbian veins.

• Electrical conducting system, which consists of specialised cells that are able to depolarise spontaneously (*automaticity*) forming:

- The sinoatrial (SA) node.
- The atrioventricular node.

• The Bundle of His (right and left) and terminal Purkinje fibres.

The foetal heart

A knowledge of basic cardiac embryology is helpful for

Cardiology: Clinical Cases Uncovered. By T. Betts, J. Dwight and S. Bull. Published 2010 by Blackwell Publishing.

understanding how lesions found in adult congenital heart disease develop.

Foetal atria and ventricles (Figure A)

The heart begins life as a primitive tube, which folds to produce early cardiac chambers: the sinus venosus, the primitive atrium, the ventricle and the bulbus cordis. Further separation of the chambers occurs as follows: • A pair of septa, the *septum primum* and *septum secundum*, grow to separate the right and left atria. The septum primum fuses with the endocardial cushions, the septum secundum does not. The free edge of the septum primum and secundum form the *foramen ovale*.

• A muscular interventricular septum grows from the floor of the common ventricle to divide it into two chambers.

Foetal shunts (Figure B)

The lungs are bypassed in the foetal circulation by the following right to left shunts:

• *Foramen ovale:* oxygenated blood passes from the left umbilical vein to the right atrium via the *ductus venosus*. From the right atrium the blood is then shunted through the foramen ovale to the left atrium.

• *Ductus arteriosus:* the remaining oxygenated blood passes from the right atrium to the right ventricle and enters the pulmonary trunk. From here it passes via the ductus arteriosus directly to the aorta, bypassing the lungs.

Circulation changes at birth

As the newborn takes its first breath, the pulmonary vascular resistance drops and conversion from the foetal to adult circulation starts. The following changes occur:

• The *foramen ovale* closes by the mechanical effect of the reversal in pressure between the two atria, and forms the *fossa ovalis* in adult life.

• Changes in oxygen concentration of the blood and hormonal changes contribute to the closure of the *ductus arteriosus*.

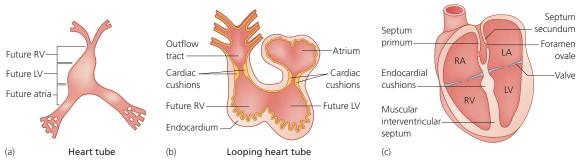
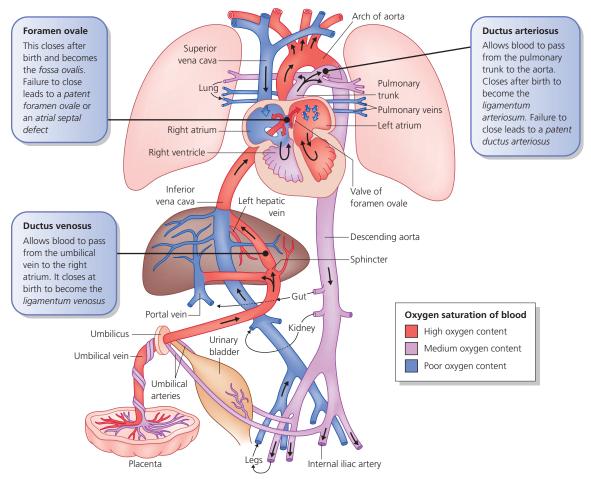



Figure A Development of the heart. LA, left atrium; LV, left ventricle; RA, right atrium; RV, right ventricle.

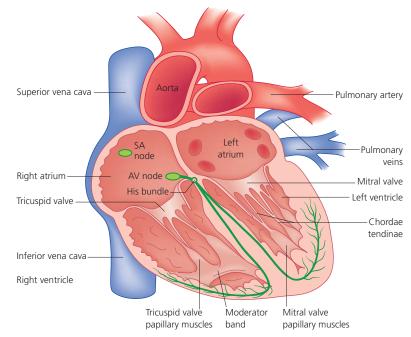


Figure C Adult heart. AV, atrioventricular; SA, sinoatrial.

The adult heart

Right atrium

This chamber is a low-pressure (0–7 mmHg), thin-walled receiving chamber for systemic and cardiac venous blood. It also contains the 'pacemaker' (SA node) and the AV node of the heart.

Right ventricle

This chamber receives the venous blood from the right atrium and ejects it into the pulmonary artery. Unlike the left ventricle, it is heavily trabeculated. It contains the moderator band, which contains part of the conduction system, and the papillary muscles of the tricuspid valve. The pressure in this chamber is 15–30 mmHg during systole.

Left atrium

This chamber receives oxygenated blood from the pulmonary veins. Clinically important structures are:

• *Pulmonary veins:* in normal hearts four pulmonary veins (two upper and two lower) drain oxygenated blood from the lungs into the left atrium.

• Left atrial appendage: a blind-ending sac related to the

left atrium and a common site for thrombus formation in patients with atrial fibrillation.

The pressure in this chamber is slightly higher than in the right atrium (4–12 mmHg).

Left ventricle

This is a high-pressure (90–140 mmHg), thick-walled chamber, which reflects its greater contractile performance. It delivers oxygenated blood systemically. It contains the *mitral valve papillary muscles*. These are conical muscular projections from the walls of the left ventricle that attach to the chordae tendinae to support the two cusps of the mitral valve.

Vascular anatomy (Figure D)

Great vessels

• Superior and inferior vena cava: drain systemic deoxygenated venous blood into the right atrium.

• *Pulmonary artery:* carries *deoxygenated* blood to the lungs from the right ventricle. It has thinner walls than systemic arteries and subdivides many times into branches that carry blood to the network of 280 billion capillaries where it is oxygenated.

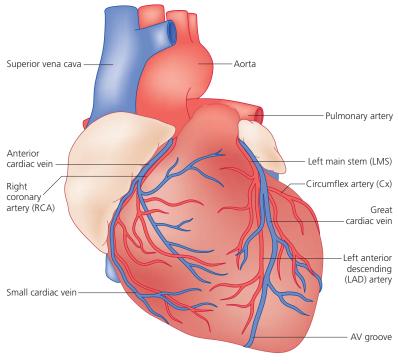


Figure D Vascular anatomy.

Box A Clinical reasons to know cardiac embryology

- A patent foramen ovale (PFO) is found in up to 20% of the population. The majority of people with a PFO have no symptoms. In some patients emboli form in the venous circulation and pass via the patent foramen into the systemic circulation, causing a stroke. (This is known as paradoxical embolus.) In such patients and some other selected groups, closure of the PFO is recommended. This can be done percutaneously.
- Failure of the *ductus arteriosus* to close after birth leads to the congenital heart defect *patent ductus arteriosus* (*PDA*). Surgical or percutaneous duct closure is recommended.
- Failure of the *interventricular septum* to fuse with the endocardial cushions gives rise to a *ventricular septal defect*, one of the most common congenital abnormalities.
- Failure of the atrial septum primum and septum secundum to fuse gives rise to the congenital defect known as *atrial septal defect*.

- *Pulmonary veins:* there are four draining oxygenated blood from the lungs into the left atrium.
- *Aorta:* carries oxygenated blood from the left ventricle to supply the rest of the body.

Arteries

Three main coronary arteries supply blood to the myocardium and arise from the sinuses of Valsalva above the semi-lunar cusps of the aortic valve. These are the RCA, the LAD and the Cx artery. The latter two arteries arise from the LMS.

• The RCA:

• Arises from above the anterior cusp of the aortic valve.

- Runs down the AV groove.
- Supplies the SA node, the AV node and right ventricle.
- \circ Is 'dominant' in 85–90% of the population. It is called a 'right dominant system' when it gives rise to the *posterior descending artery* to supply the *inferior wall of the left ventricle* and *the inferior third of the interventricular septum.*